CN111244194A - 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器 - Google Patents

一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器 Download PDF

Info

Publication number
CN111244194A
CN111244194A CN202010161000.5A CN202010161000A CN111244194A CN 111244194 A CN111244194 A CN 111244194A CN 202010161000 A CN202010161000 A CN 202010161000A CN 111244194 A CN111244194 A CN 111244194A
Authority
CN
China
Prior art keywords
zno
ultraviolet light
sputtering
local surface
ordered array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010161000.5A
Other languages
English (en)
Inventor
徐建萍
卜一辰
李岚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN202010161000.5A priority Critical patent/CN111244194A/zh
Publication of CN111244194A publication Critical patent/CN111244194A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器,所述探测器包括自下至上依次设置的透明基底、下电极、ZnO籽晶层、ZnO有序阵列、Cu2O薄膜和上电极,其中,ZnO有序阵列和Cu2O薄膜形成异质结结构;所述ZnO有序阵列的侧壁上负载有Al纳米颗粒。本发明所述的紫外光探测器,主要是利用Al纳米颗粒的局部表面等离子体共振作用,通过调控Al纳米颗粒制备条件,实现ZnO与Al纳米颗粒之间的共振耦合作用,增强异质结在紫外光波段光吸收强度和载流子在ZnO/Cu2O异质结界面的分离能力,提高器件在紫外光波段的光响应。

Description

一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质 结紫外光探测器
技术领域
本发明属于半导体光电子器件技术领域,尤其是涉及一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器。
背景技术
随着科学技术的快速发展,光电探测器在医疗、航空、军事和日常生活中受到越来越广泛关注,自驱动光探测器可实现微型化、可集成化、无电源工作,无线工作。而如何制备出具有较高光响应度,可对微弱光信号响应的自驱动光探测器是该领域的研究热点之一。
近年来金属纳米颗粒的局部表面等离子体效应在光电器件方面具有广泛的应用。目前,利用金属等离子体效应增强光电器件性能的金属主要集中在Au、Ag和Cu,可实现由可见光到近红外波段的表面等离子体共振,但是在紫外光波段产生表面等离子体效应的金属相对比较少,虽然Pt局部表面等离子体作用主要出现在紫外光波段,但是共振峰比较弱。因此,需要针对紫外光波段的探测器进行研发。
发明内容
有鉴于此,本发明旨在提出一种利用Al纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器,主要是利用Al纳米颗粒的局部表面等离子体共振作用,通过调控Al纳米颗粒制备条件,实现ZnO与Al纳米颗粒之间的共振耦合作用,增强异质结在紫外光波段光吸收强度和载流子在ZnO/Cu2O异质结界面的分离能力,提高器件在紫外光波段的光响应。
为达到上述目的,本发明的技术方案是这样实现的:
一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器,所述探测器包括自下至上依次设置的透明基底、下电极、ZnO籽晶层、ZnO有序阵列、Cu2O薄膜和上电极,其中,ZnO 有序阵列和Cu2O薄膜形成异质结结构;所述ZnO有序阵列的侧壁上负载有Al纳米颗粒。
进一步,所述Al纳米颗粒的负载方法包括如下步骤:首先利用磁控溅射在ZnO有序阵列上溅射一层Al膜,然后在真空条件下烘烤,即可得到Al纳米颗粒。
进一步,所述磁控溅射的条件为:Al靶纯度为99.99%,衬底温度15~60℃,真空度为1~10×10-3Pa,溅射功率为80-180W,溅射压强为1-2Pa,溅射时间为5-50s。
进一步,所述烘烤条件为:在真空腔原位150-300℃烘烤50-90min,然后自然冷却。
进一步,所述Al纳米颗粒的负载方法还包括用Ar等离子体处理,所述Ar等离子体处理的条件为:Ar通入量为0.1-0.3sccm,功率为 80-100W,时间为1min-2min。
本发明还提供了一种如上述所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器的制备方法,该方法包括如下步骤:
1)在透明基底上形成下电极,然后依次用洗洁精、丙酮、异丙醇、无水乙醇进行超声清洗,真空干燥烘干,氧等离子体表面处理;
2)在下电极上旋涂ZnO籽晶层,旋涂1-4层,退火处理;
3)利用湿化学法在所述步骤2)退火后得到的基片的ZnO籽晶层上生长ZnO有序阵列;
4)在ZnO有序阵列上负载Al纳米颗粒:利用磁控溅射在ZnO 有序阵列上溅射一层Al膜,然后在真空条件下烘烤,后自然冷却到室温;
5)利用Ar等离子体处理掉ZnO有序阵列的上表面的Al纳米颗粒;
6)利用电化学沉积在ZnO有序阵列上制备Cu2O薄膜;
7)在Cu2O薄膜上溅射金属电极作为上电极。
进一步,所述步骤4)中磁控溅射的条件为:Al靶纯度为99.99%,衬底温度15~60℃,真空度为1~10×10-3Pa,溅射功率为80-180W,溅射压强为1-2Pa,溅射时间为5-50s;所述烘烤条件为:在真空腔原位150-300℃烘烤50-90min。
进一步,所述步骤5)中Ar等离子体处理的条件为:Ar通入量为0.1-0.3sccm,功率为80-100W,时间为1-2min。
进一步,所述步骤6)中采用三电极电化学脉冲沉积Cu2O薄膜,沉积参数为:温度60-80℃,沉积电流7.5-9mA,脉冲沉积周期为 60-120s,中间停留时间30-60s,沉积后将Cu2O薄膜用去离子水冲洗干净,真空干燥10-30min。
进一步,所述步骤7)采用直流溅射法溅射Au、Pt或者Ti/Au 电极,电极厚度30-100nm。
相对于现有技术,本发明所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器具有以下优势:
(1)本发明所述的基于铝纳米颗粒局部表面等离子体效应的 ZnO/Cu2O异质结紫外光探测器采用的是ZnO和Cu2O作为探测器中的n型和p型材料,可形成II型异质结结构实现自驱动。其中,ZnO 是一种宽带隙直接半导体材料,禁带宽度3.37eV,具有优异的光学和电学性能,而一维ZnO有序阵列具有较大的比表面积,定向载流子传输等优势,被广泛应用于紫外光探测器。Cu2O是一种重要p型半导体材料,具有优异的空穴传输能力,被广泛的应用于太阳能电池、光探测器和光催化领域,而在本发明中采用电化学法制备Cu2O薄膜,具有制作成本低廉,制备过程简单等优点。Al纳米颗粒通过颗粒形状、大小的调节可实现在深紫外或者更长波段的表面等离子体共振效应,并且Al纳米颗粒在空气中容易发生氧化,由于自钝化效应,在 Al金属表面形成约为2nm的氧化Al保护层,防止Al纳米颗粒的进一步氧化,这样可提高了Al纳米颗粒的稳定性。此外,ZnO禁带宽度与Al纳米颗粒的光吸收能量匹配,可发生共振耦合作用,通过Al 纳米颗粒局部表面的等离子体共振作用,一方面通过增强在紫外光波段光吸收强度,提高光生载流子浓度;另外一方面,在光照条件下, Al纳米颗粒的电子注入到ZnO,贡献于器件的光态电流值,从而提高ZnO紫外光探测器的器件性能。
(2)本发明所述的Al纳米颗粒是通过磁控溅射在ZnO有序阵列的上溅射一层Al膜并烘烤后形成,其中磁控溅射的功率、压强、时间会影响Al纳米颗粒的形成,若溅射的Al膜过薄,则在经过烘烤处理之后形成的Al纳米颗粒尺寸比较小,不能够实现ZnO与Al纳米颗粒之间的共振耦和作用;若溅射的Al膜过厚,在烘烤过程中产生的热力学作用不足以实现Al膜到Al纳米颗粒状态的转变。而且,烘烤的时间对Al纳米颗粒的大小也有影响,若烘烤时间太短,很难制备出一种分立状态的Al纳米颗粒,若烘烤时间太长,会导致溅射的一部分Al被蒸发掉,形成的Al纳米颗粒尺寸也比较小,局部表面等离子共振作用更趋向于深紫外波段,降低ZnO与Al的共振耦合作用,而且颗粒太小极其容易被全部氧化。
3)本发明所述的Al纳米颗粒还需要用Ar等离子体处理,目的是除去ZnO有序阵列上表面的Al纳米颗粒;因为如果制备的Al纳米颗粒存在于ZnO和Cu2O界面处,Al纳米颗粒会产生类似于复合中心的作用,光生载流子通过Al纳米颗粒复合增多,影响光生载流子的传输,降低器件的光电性能。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器的结构示意图;
图2为本发明实施例所述的ZnO有序阵列没有沉积Al纳米颗粒的SEM图;
图3为本发明实施例所述的ZnO有序阵列沉积有Al纳米颗粒的 SEM图;
图4为本发明实施例所述的沉积Al纳米颗粒的ZnO有序阵列的吸收谱;
图5为本发明实施例所述的沉积Al纳米颗粒的ZnO有序阵列的 PL光谱;
图6为本发明实施例所述的沉积Al纳米颗粒的ZnO/Cu2O和未沉积Al纳米颗粒的ZnO/Cu2O在365nm光照条件下光态和暗态的I-V 曲线图;
图7为本发明实施例所述的沉积Al纳米颗粒的ZnO/Cu2O和未沉积Al纳米颗粒的在365nm光照条件下暗态的I-V曲线的局部放大图;
图8为本发明实施例所述的沉积Al纳米颗粒的ZnO/Cu2O和未沉积Al纳米颗粒的ZnO/Cu2O的I-t曲线图。
附图标记说明:
1-透明基底;2-下电极;3-ZnO籽晶层;4-ZnO有序阵列;5-Al 纳米颗粒;6-Cu2O薄膜;7-上电极。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
如图1所示,一种基于铝纳米颗粒局部表面等离子体效应的 ZnO/Cu2O异质结紫外光探测器,所述探测器包括自下至上依次设置的透明基底1、欧姆接触的下电极2、ZnO籽晶层3、ZnO有序阵列 4、Cu2O薄膜6和欧姆接触的上电极7,其中,ZnO有序阵列4和 Cu2O薄膜6形成异质结结构;所述ZnO有序阵列4的侧壁上负载有 Al纳米颗粒5。
本发明所述的基于铝纳米颗粒局部表面等离子体效应的 ZnO/Cu2O异质结紫外光探测器的制备方法,包括如下步骤:
1)在透明基底1上形成FTO下电极2,用洗洁精擦拭FTO下电极2,直至擦拭干净,以去除吸附在其表面的灰尘;依次用洗洁精、丙酮、异丙醇、无水乙醇对FTO下电极2进行超声清洗,去除表面有机物和杂质颗粒,每次清洗10-20min,真空干燥20-60min,干燥温度为60-80℃,再用氧等离子体处理基底表面,提高其功函数;
2)在FTO下电极2旋涂制备1-4层ZnO籽晶层3,每次旋涂后在马弗炉400℃退火15-30min,最后在400℃退火30-120min,提高结晶质量;
3)湿化学法生长ZnO有序阵列4:称取一定量的HMT和 Zn(NO3)2·6H2O分别溶解于去离子水,搅拌至澄清,再分别将两种溶液混合,搅拌;将退火后的基片正面向下悬挂于混合溶液中,然后将混合溶液放到80-100℃的恒温水浴锅中,反应1-5h,取出用去离子水清洗干净,放入干燥箱中干燥;
4)在ZnO有序阵列4上制备Al纳米颗粒5:选择Al靶纯度为99.99%,衬底温度15~60℃;将干燥好的ZnO放入到磁控溅射腔体中,将腔体的真空度抽到1~10×10-3Pa,然后以80-180W的溅射功率,在溅射压强为1-2Pa的条件下,溅射Al 5-50s;在真空腔原位150-300℃烘烤50-90min(所谓的“真空腔原位”烘烤,就是在溅射完Al膜之后,保持磁控溅射腔体里面的真空度,真空度范围1~10×10-3Pa,无需移动样品,利用磁控溅射的加热系统,对溅射完Al样品加热处理),然后自然冷却;
5)对ZnO有序阵列4顶端Al纳米颗粒5处理:用Ar离子等离子处理,Ar通入量0.1-0.3sccm,功率80-100W,时间1-2min;
6)在步骤5)处理的ZnO有序阵列4表面采用三电极电化学脉冲沉积Cu2O薄膜6:沉积样品作为工作电极,对电极为镀Pt钛网, Ag/AgCl为参比电极,溶液为Cu(SO4)2·5H2O水溶液,温度60-80℃,沉积电流7.5-9mA,脉冲沉积周期为60-120s,中间停留时间30-60s,沉积后将Cu2O薄膜用去离子水冲洗干净,真空干燥10-30min;
7)利用直流溅射法溅射Au、Pt或者Ti/Au电极,电极厚度 30-100nm。
具体的,在ZnO有序阵列4上制备Al纳米颗粒5采用双靶射频磁控溅射系统,沉积参数为:溅射功率150W,溅射压强1.6Pa,溅射 Al纳米颗粒20s,气体流量Ar气流量为8sccm。真空烘烤溅射Al的 ZnO有序阵列,烘烤温度200℃,烘烤时间90min。用Ar等离子体除去ZnO顶端的Al纳米颗粒,Ar等离子体处理功率80W、Ar气流量0.1sccm、处理时间1min。
如图3所示,在200℃真空原位处理的SEM图,从SEM图可以看出在ZnO有序阵列上形成分布均匀的Al纳米颗粒。
具体的,采用三电极电化学系统沉积Cu2O薄膜沉积参数为:沉积电流7.5mA,脉冲沉积时间设置为60s沉积四次,用去离子水冲洗干净,真空干燥处理。
具体的,如图4所示,ZnO有序阵列沉积Al纳米颗粒之后,紫外光部分的光吸收强度增加明显大于可见光部分的光吸收强度。Al 纳米颗粒的局部表面等离子体效应提高ZnO在紫外光波段的光吸收,而对于可见光波段光吸收强度的增加可能与Al纳米颗粒的四极子共振有关系。此外,Al纳米颗粒会增加ZnO有序阵列的粗糙度,提高光散射,增强器件对入射光的捕获能力。
如图5所示,ZnO有序阵列沉积Al纳米颗粒之后,近带边发光强度增加,缺陷态相关的发光强度降低,近带边发光强度的增加是由于ZnO有序阵列与Al纳米颗粒之间存在共振耦合作用,通过共振耦合作用Al纳米颗粒中的自由电子会转移至ZnO的导带上,导致ZnO 的近带边发光强度增加。而缺陷态发光强度降低主要是由于Al纳米颗粒的修饰作用,缺陷态中的电子会通过Al的纳米颗粒与价带中空穴复合,进而使得与ZnO缺陷态相关的发光强度降低。
如图6和图7所示,器件I-V曲线呈现出整流特性,且两个器件具有明显的光伏效应,有无Al纳米颗粒的两个器件的开路电压值几乎没有变化,但有Al纳米颗粒的短路电流值增大,说明该器件具有更多的光生载流子。开路电压值几乎保持不变说明Al纳米颗粒的加入对于界面处能级变化的影响不大。而且图7为图6的局部放大图,通过图7可以更加清楚的看出器件的开路电压和短路电流值的变化,而图6可以反映出器件在一定偏压范围内的整流特性。
如图8所示,在365nm的光照条件下,辐照度为2mA/cm2,器件可实现不需要外界偏压、自驱动紫外光探测器,器件光响应速度也比较快,并且有Al纳米颗粒的器件光态电流值明显提高,器件的开关比为2×103。光态电流值的提高,一方面是由于在紫外光波段Al 纳米颗粒的局部表面等离子体效应使得器件的光吸收强度增加,增加光生载流子数目;另一方面,Al纳米颗粒在光照条件下引入的热电子注入效应提高了器件光态电流。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器,其特征在于:所述探测器包括自下至上依次设置的透明基底(1)、下电极(2)、ZnO籽晶层(3)、ZnO有序阵列(4)、Cu2O薄膜(6)和上电极(7),其中,ZnO有序阵列(4)和Cu2O薄膜(6)形成异质结结构;所述ZnO有序阵列(4)的侧壁上负载有Al纳米颗粒(5)。
2.根据权利要求1所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器,其特征在于:所述Al纳米颗粒(5)的负载方法包括如下步骤:首先利用磁控溅射在ZnO有序阵列(4)上溅射一层Al膜,然后在真空条件下烘烤,即可得到Al纳米颗粒(5)。
3.根据权利要求2所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器,其特征在于:所述磁控溅射的条件为:Al靶纯度为99.99%,衬底温度15℃~60℃,真空度为1~10×10-3Pa,溅射功率为80-180W,溅射压强为1-2Pa,溅射时间为5-50s。
4.根据权利要求2所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器,其特征在于:所述烘烤条件为:在真空腔原位150-300℃烘烤50-90min,然后自然冷却。
5.根据权利要求2所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器,其特征在于:所述Al纳米颗粒(5)的负载方法还包括用Ar等离子体处理,所述Ar等离子体处理的条件为:Ar通入量为0.1-0.3sccm,功率为80-100W,时间为1-2min。
6.一种如权利要求1-5任一项所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器的制备方法,其特征在于:该方法包括如下步骤:
1)在透明基底(1)上形成下电极(2),然后依次用洗洁精、丙酮、异丙醇、无水乙醇进行超声清洗,真空干燥烘干,氧等离子体表面处理;
2)在下电极(2)上旋涂ZnO籽晶层(3),旋涂1-4层,退火处理;
3)利用湿化学法在所述步骤2)退火后得到的基片的ZnO籽晶层(3)上生长ZnO有序阵列(4);
4)在ZnO有序阵列(4)上负载Al纳米颗粒(5):利用磁控溅射在ZnO有序阵列(4)上溅射一层Al膜,然后在真空条件下烘烤,后自然冷却到室温;
5)利用Ar等离子体处理掉ZnO有序阵列(4)的上表面的Al纳米颗粒(5);
6)利用电化学沉积在ZnO有序阵列(4)上制备Cu2O薄膜(6);
7)在Cu2O薄膜(6)上溅射金属电极作为上电极(7)。
7.根据权利要求6所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器的制备方法,其特征在于:所述步骤4)中磁控溅射的条件为:Al靶纯度为99.99%,衬底温度15~60℃,真空度为1~10×10-3Pa,溅射功率为80-180W,溅射压强为1-2Pa,溅射时间为5-50s;所述烘烤条件为:在真空腔原位150-300℃烘烤50-90min。
8.根据权利要求6所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器的制备方法,其特征在于:所述步骤5)中Ar等离子体处理的条件为:Ar通入量为0.1-0.3sccm,功率为80-100W,时间为1-2min。
9.根据权利要求6所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器的制备方法,其特征在于:所述步骤6)中采用三电极电化学脉冲沉积Cu2O薄膜(6),沉积参数为:温度60-80℃,沉积电流7.5-9mA,脉冲沉积周期为60-120s,中间停留时间30-60s,沉积后将Cu2O薄膜用去离子水冲洗干净,真空干燥10-30min。
10.根据权利要求6所述的基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器的制备方法,其特征在于:所述步骤7)采用直流溅射法溅射Au、Pt或者Ti/Au电极,电极厚度30-100nm。
CN202010161000.5A 2020-03-10 2020-03-10 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器 Pending CN111244194A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010161000.5A CN111244194A (zh) 2020-03-10 2020-03-10 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010161000.5A CN111244194A (zh) 2020-03-10 2020-03-10 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器

Publications (1)

Publication Number Publication Date
CN111244194A true CN111244194A (zh) 2020-06-05

Family

ID=70864323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010161000.5A Pending CN111244194A (zh) 2020-03-10 2020-03-10 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器

Country Status (1)

Country Link
CN (1) CN111244194A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804292A (zh) * 2021-07-13 2021-12-17 重庆师范大学 光电化学型自供电日盲深紫外光电探测器及其制备方法
CN115000232A (zh) * 2022-06-16 2022-09-02 太原理工大学 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法
CN116040573A (zh) * 2023-04-03 2023-05-02 三序光学科技(苏州)有限公司 一种二维纳米空腔阵列结构及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610687A (zh) * 2012-03-09 2012-07-25 天津理工大学 一种p-CuO-n-ZnO太阳能电池及其制备方法
CN105489669A (zh) * 2015-11-26 2016-04-13 新奥光伏能源有限公司 一种硅异质结太阳能电池及其界面处理方法
US9685567B2 (en) * 2012-07-20 2017-06-20 Nutech Ventures Nanocomposite photodetector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610687A (zh) * 2012-03-09 2012-07-25 天津理工大学 一种p-CuO-n-ZnO太阳能电池及其制备方法
US9685567B2 (en) * 2012-07-20 2017-06-20 Nutech Ventures Nanocomposite photodetector
CN105489669A (zh) * 2015-11-26 2016-04-13 新奥光伏能源有限公司 一种硅异质结太阳能电池及其界面处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IL-HAN YOO ET AL.: ""Plasmon-enhanced ZnO nanorod/Au NPs/Cu2O structure solar cells:Effects and limitations"", 《KOREAN JOURNAL OF CHEMICAL ENGINEERING》 *
WEI LI ET AL.: ""Enhancement of a Cu2O/ZnO photodetector via surface Plasmon resonance induced by Ag nanoparticles"", 《OPTICAL MATERIALS EXPRESS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804292A (zh) * 2021-07-13 2021-12-17 重庆师范大学 光电化学型自供电日盲深紫外光电探测器及其制备方法
CN113804292B (zh) * 2021-07-13 2023-06-09 重庆师范大学 光电化学型自供电日盲深紫外光电探测器及其制备方法
CN115000232A (zh) * 2022-06-16 2022-09-02 太原理工大学 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法
CN116040573A (zh) * 2023-04-03 2023-05-02 三序光学科技(苏州)有限公司 一种二维纳米空腔阵列结构及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111244194A (zh) 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器
CN105304747B (zh) 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法
CN110459640B (zh) 一种基于Cs3Cu2I5钙钛矿的自供能光电探测器及其制备方法
Dang et al. Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells
CN103887073B (zh) 一种基于表面等离子体增强原理的太阳能电池及其制备方法
CN109841703B (zh) 一种全无机钙钛矿光电探测器及其制备方法
CN111430483A (zh) 光电探测器及其制作方法、光电探测系统
CN101425553B (zh) MgZnO基光电导型紫外探测器的制作方法
WO2018172285A1 (en) Method for producing improved optoelectronic surface on a semiconductor substrate
CN109148635B (zh) CuAlO2/Ga2O3紫外光电二极管及制备方法
Wang et al. Structural, optical and photoelectrical properties of Cu 2 O films electrodeposited at different pH
CN109267097B (zh) 氧化钽保护的p型硅光解水制氢电极及其制备方法
Agarwal et al. Tailoring the physical properties of titania thin films with post deposition air and vacuum annealing
CN111525033A (zh) 一种反向介孔钙钛矿太阳能电池结构及其制备方法
Cai et al. Plasmonic Au-decorated hierarchical p-NiO/n-ZnO heterostructure arrays for enhanced photoelectrochemical water splitting
KR102425182B1 (ko) Al 및 ZnO의 이종구조를 포함하는 광검출기용 기판, 및 이를 포함하는 UV 광검출기
CN112054074B (zh) 光电探测器阵列及其制备方法、光电探测器及其制备方法
CN110136966B (zh) 一种Al2O3-Ag@TiO2纳米棒光阳极复合材料及其制备方法
KR101069066B1 (ko) 알루미늄이 도핑된 산화아연 나노로드 기반 실리콘 태양전지의 투명전도성기판 제조방법
CN110061137B (zh) 一种基于室温成膜制备氧化锡电子传输层的钙钛矿电池及其制备方法
Wang et al. Effect of surface texture on Al–Y codoped ZnO/n-Si heterojunction solar cells
Manjunatha et al. Stability study: Transparent conducting oxides in chemically reactive plasmas
CN106711288A (zh) 一种纳米晶硅薄膜太阳能电池的制备方法
CN110010770A (zh) 一种金双棱锥等离子增强的钙钛矿太阳能电池的制备
Roy et al. Cross-fertilized biomimetic structures achieved through nanosphere lithography on an ultrathin wafer for flexible black c-Si SHJ solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200605

RJ01 Rejection of invention patent application after publication