CN115000232A - 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法 - Google Patents

一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法 Download PDF

Info

Publication number
CN115000232A
CN115000232A CN202210687032.8A CN202210687032A CN115000232A CN 115000232 A CN115000232 A CN 115000232A CN 202210687032 A CN202210687032 A CN 202210687032A CN 115000232 A CN115000232 A CN 115000232A
Authority
CN
China
Prior art keywords
agbibr
tin
glass sheet
near infrared
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210687032.8A
Other languages
English (en)
Inventor
冯琳
曾文博
崔艳霞
李国辉
冀婷
王文艳
温荣
梁强兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202210687032.8A priority Critical patent/CN115000232A/zh
Publication of CN115000232A publication Critical patent/CN115000232A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供一种基于Cs2AgBiBr6的光电探测器及其制作方法,属于近红外光电探测器技术领域。本发明通过在玻璃衬底上采用成本较低的PS纳米球自助装技术和反应离子刻蚀法制备TiN纳米颗粒阵列,利用其表面等离激元效应和热载流子注入效应,使得Cs2AgBiBr6光电探测器在近红外波段具有响应。

Description

一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法
技术领域
本发明属于近红外光电探测器领域,具体涉及一种基于TiN纳米颗粒表面等离激元效应的可实现近红外探测的Cs2AgBiBr6光电探测器及其制作方法。
背景技术
光电探测器能够将入射光子转换为电信号。光电探测器可广泛用于图像传感、导弹制导、环境监测、夜视系统等不同领域。由于具有可调节的直接带隙、强的光吸收、长的载流子寿命和扩散强度、易于溶液制备、高的结构多样性等优点,铅基有机无机杂化钙钛矿在光电探测器领域引起了极大的关注。尽管铅基有机无机杂化钙钛矿光电探测器表现出很高的探测率,但是其仍然存一些问题,如缺乏稳定性,氧气、水和长时间的光照都会导致铅基有机无机杂化钙钛矿薄膜发生降解。尽管研究人员已经付出巨大的努力来提高光电探测器的稳定性,但它们的寿命(通常在数十到数百小时)仍然远远落后于商用光电探测器寿命(约25年)。此外,铅毒性问题是铅基有机无机杂化钙钛矿光电探测器未来商业化的另一大障碍。铅是一种重金属,有可能对人体造成不可逆转的损害,虽然实际使用中会对铅基有机无机杂化钙钛矿光电探测器进行封装,并且铅离子可被吸铅材料吸收并再利用,但依然存在铅泄露的隐患。
无铅双钙钛矿Cs2AgBiBr6是一种新兴的半导体材料,其具有优异的稳定性且无毒性。在520nm的光照下,基于Cs2AgBiBr6的光电探测器的最大响应率(R)和探测率(D*)分别为7.01A/W和5.66×1011Jones,在0.0143mW的光强下,亮暗电流比可达到2.16×104,可以实现弱光探测。但是Cs2AgBiBr6宽的间接带隙限制了其在近红外波段的应用等。
人们研究发现通过在光电探测器的活性层表面引入纳米结构的可以进一步改善或提高器件的探测性能。这是因为纳米结构在光照下激发表面等离激元(Surface PlasmonPolaritons,SPP)效应并生成热载流子,当热载流子越过肖特基势垒即可注入半导体活性层,从而拓宽响应波段。基于此,我们将TiN纳米颗粒阵列应用到Cs2AgBiBr6光电探测器中,以实现近红外探测。制备纳米结构的方法主要有人工构筑法、物理模板辅助自组装等。人工构筑技术又包括光刻技术、电子束曝光技术、STM/AFM加工技术、纳米压印技术等。这种技术可以按照人们的意愿把纳米级的物质进行排列组合从而形成一维、二维或三维的纳米结构。人工构筑技术的自主性较强,可以实现大面积的制备,但是这种技术成本较高。相比而言,物理模板辅助自主装技术的成本比较低,而且同样可以获得大面积的图案化纳米结构。物理模板辅助自组装技术包括PS纳米球自组装技术、多孔阳极氧化铝(AAO)技术等。其中PS纳米球自组装技术因成本较低、制备工艺简单、结构参数可调等优点,已被广泛应用于图案化技术。
发明内容
本发明所要解决的技术问题为:Cs2AgBiBr6光电探测器只能对紫外光或可见光做出响应。
本发明所采用的技术方案为:一种基于Cs2AgBiBr6的光电探测器,由玻璃基底、TiN纳米颗粒阵列、Al2O3钝化层、Cs2AgBiBr6活性层和TiN电极组成,其特征在于:TiN纳米颗粒层是高度为35±5nm的TiN颗粒阵列,活性层是厚度约为300nm的Cs2AgBiBr6,钝化层是厚度为0.8nm的Al2O3薄膜,对电极是厚度为80±0.2nm、间隔为100nm的TiN。
本发明还提供了上述一种基于Cs2AgBiBr6的近红外光电探测器的制作方法,按照如下步骤进行:
步骤一、Cs2AgBiBr6活性层前驱体溶液配制,分别将CsBr、AgBr和BiBr3粉末(比例为CsBr:AgBr:BiBr3=2mol:1mol:1mol)与1mL的二甲基亚砜(DMSO)混和,在70℃的热台上加热并搅拌4h,获得过饱和的Cs2AgBiBr6前驱体溶液;
步骤二、把玻璃片清洗干净并对其进行亲水性处理,用去离子水清洗干净后用氮气吹干备用。配置0.3mL的直径100nm的PS纳米球溶液,在玻璃片表面滴上70–80滴去离子水溶液,用微量注射泵将PS纳米球注入去离子水中,置于70℃的热台上蒸干水分,得到有序密排的直径为100nm的PS纳米球阵列;
步骤三、采用反应离子刻蚀机对直径100nm的PS纳米球阵列刻蚀,刻蚀机功率为30W,氧气流量为60sccm,刻蚀腔内压强为5Pa,刻蚀时间为12min。刻蚀后得到直径为40-50nm的有序但非密排的PS纳米球阵列;
步骤四、使用磁控溅射40nm厚的TiN,溅射后把玻璃片放入甲苯溶液中超声清洗15min,吹干玻璃片后得到高度为40nm的TiN纳米颗粒阵列;
步骤四、在TiN颗粒阵列上旋涂60mL的Cs2AgBiBr6钙钛矿前驱体溶液,旋涂结束前8s滴上250mL的甲苯溶液,在285℃的热台上退火10min,最后磁控溅射上80nm的TiN电极。
作为一种优选方式:TiN颗粒层的制备工艺使用直径100nm的PS纳米球为模板,PS纳米球模板的排布速率为0.025mL/min-0.05mL/min,热台温度为70℃,刻蚀条件为30W、60sccm、5Pa、12min。
作为一种优选方式:磁控溅射的厚度为40±5nm的TiN薄膜,磁控溅射的速率稳定在0.056-0.060nm/s。
作为一种优选方式:先以2000rpm的转速,再以5000rpm的转速旋涂Cs2AgBiBr6前驱体溶液,旋涂完成后置于加热台上,在280℃下退火10min,随后在Cs2AgBiBr6活性层上磁控溅射TiN电极。
本发明的有益效果是:本发明克服了Cs2AgBiBr6光电探测器只能对紫外光或可见光做出响应的问题。在玻璃衬底上采用成本较低的PS纳米球自助装技术和反应离子刻蚀法制备TiN纳米颗粒阵列,利用其表面等离激元效应和热载流子注入效应,使得Cs2AgBiBr6光电探测器在近红外波段具有响应。
本发明设计的一种基于Cs2AgBiBr6的近红外光电探测器,在1V偏压下,暗电流密度为1.75×10-8A/cm2;在505nm(10.19mW/cm2)光照1V偏压下,亮电流密度为1.50×10-4A/cm2,探测率为1.96×1011Jones;在850nm(10.19mW/cm2)光照1V偏压下,亮电流密度为4.09×10- 7A/cm2,探测率为5.13×108Jones;在提高了可见光探测能力的同时实现了近红外光的探测。
附图说明
图1:本发明电流密度-电压特性曲线;
图2:本发明在不同波长下的外量子效率曲线;
图3:本发明在不同波长下的响应率率曲线;
图4:本发明不同波长下的探测率曲线;
具体实施方式:
本发明所使用的材料有:TiN靶材、无水乙醇、去离子水、丙酮、异丙醇、溴化银、溴化铋、溴化铯、二甲基亚砜、氨水、直径100nm PS纳米球悬浊液、甲醇、过氧化氢、硫酸、玻璃片、潔而亮清洁乳(成分为表面活性剂、碳酸钙、有机酸、香精)、立白洗洁精(成分为软化水、表面活性剂、维生素E酯、柠檬精华)。其组合用量如下:
TiN靶材:10g±0.01g
无水乙醇:C2H5OH 60mL±5mL
去离子水:H2O 800mL±5mL
丙酮:CH3COCH360mL±5mL
异丙醇:CH3CHOHCH3 60mL±5mL
溴化银:AgBr 0.426g±0.01g
溴化铋:BiBr 0.188g±0.01g
溴化铯:CsBr 0.449g±0.01g
二甲基亚砜:DMSO 1mL±0.1mL
氨水:NH3·H20 30mL±5mL
PS纳米球悬浊液:2.5wt%0.1mL±0.01mL
甲醇:CH3OH 70mL±5mL
过氧化氢:H2O2 42mL±1mL
硫酸:H2SO4 48mL±1mL
玻璃片:19mm×19mm×1mm
潔而亮清洁乳:1±0.5mL
洗洁精:2±0.5mL
(1)精选化学物质
对制备所需的化学物质材料要进行精选,并进行质量、纯度、浓度、细度、精度控制:
AgBr:固态粉体,粉体粒径≤28μm纯度99.99%
BiBr:固态粉体,粉体粒径≤28μm纯度99.99%
CsBr;固态粉体,粉体粒径≤28μm纯度99.99%
TiN:固态圆盘,纯度99.999%
去离子水:液态液体,纯度99.99%
无水乙醇:液态液体,纯度99.5%
异丙醇:液态液体,纯度99.5%
丙酮:液态液体,纯度99.5%
二甲基亚砜:液态液体,纯度99.9%
甲醇:液态液体,纯度99.5%
氨水:液态液体,纯度30%
硫酸:液态液体,纯度98%
过氧化氢:液态液体,纯度99.5%
玻璃衬底:固态固体,19mm×19mm×1mm
(2)钙钛矿溶液配制
1)分别称取0.426g CsBr、0.188g AgBr和0.449g BiBr3粉末在一个棕色试剂瓶中;
2)把称取的药品粉末溶解在1mL的DMSO中;
3)溶液置于磁力搅拌器上,在70℃的热台上加热搅拌至少4h
(3)玻璃片清洗与亲水性处理
1)将玻璃片顺序垂直立在烧杯架上,注意不要将玻璃片堆叠水平,以免玻璃片表面清洗不干净,之后在玻璃烧杯中顺序加入去离子水(确保玻璃片能被去离子水完全浸没)、洗洁精,将烧杯盖上铝箔纸密封,超声清洗5min,以对玻璃表面的油污做简单清洗。超声完毕后,将玻璃片取出,用水和洗洁精将烧杯架清洗干净,以备放置清洗干净的玻璃片;
2)带上一次性手套,将取出的玻璃片表面倒上适量的洗洁精和玻璃清洁剂,用手反复轻搓玻璃片表面,冲洗干净后可以看到玻璃片表面可以形成一层连续的水膜,说明玻璃片已经清洗干净。用镊子将洗干净的玻璃片放入烧杯架上,在烧杯中加入适量的丙酮,之后用铝箔纸将烧杯口密封,超声清洗15min;
3)把烧杯中的丙酮倒掉,加入适量无水乙醇,超声震荡15min;
4)把烧杯中的无水乙醇倒掉,加入适量甲醇,超声震荡15min;
5)把烧杯中的甲醇倒掉,加入适量异丙醇,超声震荡15min;
6)将洗干净的玻璃片用去离子水清洗干净后放入NH3·H2O:H2O2:H2O(体积比10:10:1)混合液中静置10min;
7)再将玻璃片放入食人鱼溶液(98%H2SO4:H2O2=4:1体积比)中静置20min;
8)将玻璃片用去离子水冲洗干净,然后把玻璃片储存在去离子水中备用。使用时,将玻璃片用高纯氮气吹干。
(4)PS纳米球的排布与刻蚀
1)将买来的PS纳米球悬浊液(2.5wt%水溶液)与甲醇按体积比1:2混合后,在常温下超声5分钟;
2)将用氮气吹干的玻璃片置于倒扣的培养皿上,在玻璃片上滴适量的去离子水;
3)把注射器固定到泵注射器上,调整泵注射器的高度,使得注射器的注射头与玻璃片等高,设置泵的注射速率为0.5mL/min,把配置好的PS悬浊液从玻璃衬底的一角缓慢地注射到衬底上,由于张力水膜被推到对角,而PS纳米球也优先在对角自组装成单层薄膜,随着注入的PS悬浊液的增多,组装好的PS纳米球阵列不断向注射器的角落扩展,到最后调整泵的注射速率为0.25mL/min,使得注射的悬浊液的量变少,以保证PS纳米球单层排布的区域尽可能大;
4)待整个水膜基本都被单层PS纳米球阵列覆盖后,将倒扣的培养皿连同样品放到60℃的热盘上隔空对样品加热;
5)约2h后,水膜完全蒸干,在衬底上就留下六角密集排的PS纳米球阵列。
6)用干净的镊子将排布好PS纳米球的玻璃片从热台上取下,小心的放在干净的培养皿中备用(培养皿底部可以放置一层锡纸,方便用镊子夹起玻璃片);
7)打开PLASMAFLO PDC-FMG-2流量计与氧气流量开关,调节氧气流量至合适的大小。
8)打开PLASMA CLEANER PDC-002刻蚀机,将排布好PS纳米球的玻璃片放入刻蚀机舱门中,关闭舱门,打开真空泵。
9)当舱内压强达到5Pa时,打开刻蚀机开关,将功率旋钮调到30W,当舱内出现辉光,开始刻蚀。
10)刻蚀结束后,将功率旋钮调到OFF,关闭刻蚀机电源开关,关闭真空泵,打开舱门放气开关,等到舱内压力升到大气压时,打开舱门,取出刻蚀好的PS纳米球。
(5)磁控溅射TiN薄膜、清洗PS纳米球模板、旋涂钙钛矿、磁控溅射TiN电极
1)在进行溅射前确认循环水系统、机械泵、分子泵、石英晶体监控探头和流量计等仪器是否可以正常工作,然后查看直流/射频溅射电源能否接通,有无短路现象(靶材和靶材罩之间要留有足够的距离才能确保不会短路);
2)确认无误后将TiN靶材放在射频靶上,旋紧靶材罩;用手拧紧溅射室舱门,点击控制面板的一键启动,待真空计示数降低到5×10-4Pa以下,分子泵显示面板上示数到450;
3)打开氩气总开关,调节流量计使氩气流量保持在30sccm,之后调节分子泵插板阀使腔体压强维持在2Pa;
4)调节转盘位置,使玻璃基底能够正对靶材上方,降低转盘到最低位置,打开射频溅射电源,提前预热3分钟,调节溅射功率为150W,待靶材起辉后,调节插板阀使腔体内压强维持在0.5Pa,使溅射速率保持在0.056nm/s,之后预溅射1分钟,以便清除靶材表面的杂质;
5)待溅射速率稳定后,打开大挡板,当膜厚监测探头检测到需要的溅射厚度后,关闭大挡板,关闭射频电源开关;溅射完毕后,关闭氩气、一键停止、充气后打开舱门,取出样品;
6)把玻璃片有TiN的一面朝下放到装有甲苯溶液的烧杯中,超声清洗15min,取出吹干玻璃片;
7)把Cs2AgBiBr6前驱体溶液和吹干的玻璃片放到80℃热台上预热5min;
8)取60mL的前驱体溶液小心涂满玻璃片表面,采用2000rpm的转速旋转30s,然后再采用5000rpm的转速旋转30s,在旋涂结束前8秒在玻璃片上滴加250mL甲苯溶液用来去除溶剂;
最后在280℃的热台上退火10min完成薄膜的制备;
9)贴上100目的铜网掩膜,再次使用磁控溅射80nm厚的TiN,用镊子小心撕掉铜网掩膜,完成器件的制备。
(6)检测、分析、表征
对制备的基于TiN表面等离激元效应的Cs2AgBiBr6光电探测器进行检测、分析、表征;用XRD对Cs2AgBiBr6薄膜的结晶性进行表征;用SEM电子扫描显微镜对TiN颗粒的形貌进行表征;用F4透反射积分球对TiN颗粒的吸收进行表征,半导体分析仪B1500进行J-V与I-T测试。
结论:
我们将未加载TiN纳米颗粒阵列的Cs2AgBiBr6光电探测器称为标准器件,将该专利所制备的Cs2AgBiBr6光电探测器称为优化器件。从电流密度-电压特性曲线(图1)中看到,标准器件在1V偏压下的暗电流密度为4.13×10-9A/cm2在505nm光照下,其亮电流密度为5.23×10-5A/cm2,亮暗电流比为1.26×104,但其对660nm及以上波段无光响应。优化器件在1V偏压下的暗电流密度为1.75×10-8A/cm2;在505nm(10.19mW/cm2)光照,1V偏压下,亮电流密度为1.50×10-4A/cm2,亮暗电流比为8.58×103;在850nm(10.19mW/cm2)光照,1V偏压下,亮电流密度为4.09×10-7A/cm2,亮暗电流比为23;并且该器件在1310nm和1550nm波段仍有光响应,亮暗电流比分别为7.5和5.5。
在亮态下,标准器件和优化器件的外量子效率EQE、响应率R和探测率的变化如图2、3、4所示。从图中看到标准器件在505nm下的D*为4.46×1010Jones,而优化器件在505nm下的D*增加到1.96×1011Jones,即TiN纳米颗粒阵列可以增强其在可见光波段的探测性能,并且优化器件在850nm的近红外波段也有5.13×108Jones的探测率。
本发明与背景技术相比具有明显的先进性。我们将成本低廉、工艺可控、且可大面积制备纳米结构的PS纳米球自组装技术应用于掩膜版的制备,结合反应离子刻蚀法获得TiN纳米颗粒阵列,基于TiN纳米颗粒阵列在近红外和可见光照射下发生的等离激元效应和热空穴注入效应,巧妙的实现了近红外光的探测,增加了器件的使用场景,且用旋涂法制备活性层Cs2AgBiBr6,手段简单方便、成本低廉,获得了能够在近红外波段实现探测的双钙钛矿光电探测器,有潜在的应用价值。

Claims (6)

1.一种基于Cs2AgBiBr6的近红外光电探测器,由TiN纳米颗粒层、活性层、Al2O3缓冲层和TiN对电极组成,其特征在于:TiN纳米颗粒层是高度为35±5nm的TiN颗粒阵列,活性层是厚度为300nm的Cs2AgBiBr6,钝化层是厚度为0.8nm的Al2O3薄膜,对电极是厚度为80±0.2nm、间隔为100nm的TiN。
2.根据权利要求1所述的一种基于Cs2AgBiBr6的近红外光电探测器的制作方法,其特征在于:按照如下的步骤进行:
步骤一、活性层前驱体溶液配制,将CsBr、AgBr和BiBr3粉末按照摩尔比为2mol:1mol:1mol与1mL的二甲基亚砜(DMSO)混和,在70℃的热台上加热并搅拌4小时,获得过饱和的Cs2AgBiBr6前驱体溶液;
步骤二、将玻璃片清洗干净并对其进行亲水性处理,用去离子水清洗玻璃片表面,并用氮气吹干备用,配置0.3mL的直径为100nm的聚苯乙烯(PS)纳米球溶液,在玻璃片表面滴上70–80滴去离子水溶液,然后用微量注射泵将PS纳米球溶液注入去离子水溶液中,放在70℃的热台上蒸干水分后,得到有序且密排的直径为100nm的PS纳米球阵列;
步骤三、采用反应离子刻蚀机对直径为100nm的PS纳米球阵列进行刻蚀,刻蚀机功率为30W,氧气流量为60sccm,刻蚀压强为5Pa,刻蚀时间为12min,刻蚀后得到直径为35-50nm的有序但非密排PS纳米球阵列;
步骤四、使用磁控溅射在有序非密排的PS纳米球阵列表面镀40nm厚的TiN,溅射后将玻璃片放入甲苯溶液中超声清洗15min,吹干玻璃片后得到高度为40nm的TiN纳米颗粒阵列;
步骤五、在TiN纳米颗粒阵列表面镀0.8nm的Al2O3薄膜;
步骤六、在Al2O3薄膜上旋涂60mL的Cs2AgBiBr6钙钛矿前驱体溶液,旋涂结束前8s滴上250L的甲苯溶液,旋涂结束后将玻璃片在285℃的热台上退火10min;
步骤七、使用磁控溅射在Cs2AgBiBr6薄膜表面镀厚度为80nm的TiN电极。
3.根据权利要求2所述的一种基于Cs2AgBiBr6的近红外光电探测器的制作方法,其特征在于:TiN纳米颗粒阵列的制备工艺使用直径为100nm的PS纳米球,PS纳米球阵列的排布速率为0.025mL/min-0.05mL/min,热台温度为70℃,刻蚀功率、氧气流速、刻蚀压强和刻蚀时间分别为30W、60sccm、5Pa和12min。
4.根据权利要求2所述的一种基于Cs2AgBiBr6的近红外光电探测器的制作方法,其特征在于:磁控溅射厚度为35±5nm的TiN薄膜,磁控溅射的速率稳定在0.056-0.060nm/s,溅射时间为30-40分钟。
5.根据权利要求2所述的一种基于Cs2AgBiBr6的近红外光电探测器的制作方法,其特征在于:在Al2O3薄膜上先以转速2000rpm,再以5000rpm旋涂Cs2AgBiBr6钙钛矿前驱体溶液,旋涂完成后置于加热台上,在280℃下退火10min。
6.根据权利要求2所述的一种基于Cs2AgBiBr6的近红外光电探测器的制作方法,其特征在于:在Cs2AgBiBr6薄膜表面镀厚度为80nm,间隔为100nm的TiN电极。
CN202210687032.8A 2022-06-16 2022-06-16 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法 Pending CN115000232A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210687032.8A CN115000232A (zh) 2022-06-16 2022-06-16 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210687032.8A CN115000232A (zh) 2022-06-16 2022-06-16 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法

Publications (1)

Publication Number Publication Date
CN115000232A true CN115000232A (zh) 2022-09-02

Family

ID=83034860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210687032.8A Pending CN115000232A (zh) 2022-06-16 2022-06-16 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN115000232A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115753704A (zh) * 2022-10-24 2023-03-07 吉林大学 无铅双钙钛矿气敏传感器的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918713A (zh) * 2004-02-24 2007-02-21 国际商业机器公司 用于与高速CMOS兼容的绝缘体上Ge光电探测器的结构及其制造方法
CN102173376A (zh) * 2011-02-25 2011-09-07 复旦大学 高度有序的小尺寸硅基纳米坑阵列的制备方法
CN105655434A (zh) * 2016-03-13 2016-06-08 金旺康 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法
CN105806487A (zh) * 2016-03-13 2016-07-27 金旺康 基于表面等离激元增强Ga2O3薄膜的紫外火焰探测器及其制备方法
CN106711272A (zh) * 2016-11-29 2017-05-24 华中科技大学 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法
CN110444618A (zh) * 2019-08-09 2019-11-12 南京大学 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN110927769A (zh) * 2019-11-13 2020-03-27 南昌大学 一种双钙钛矿粒子探测器及其制备方法
CN110931576A (zh) * 2019-12-06 2020-03-27 中国科学院长春光学精密机械与物理研究所 一种日盲紫外探测器及其制备方法
CN111244194A (zh) * 2020-03-10 2020-06-05 天津理工大学 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器
CN113013278A (zh) * 2021-03-12 2021-06-22 太原理工大学 一种碳化硅基全谱响应光电探测器及其制备方法
CN113544086A (zh) * 2019-03-29 2021-10-22 松下知识产权经营株式会社 光器件、光电转换装置以及燃料生成装置
FR3111919A1 (fr) * 2020-06-30 2021-12-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de depot d’une couche de perovskite inorganique
US20220127156A1 (en) * 2020-10-26 2022-04-28 Technion Research & Development Foundation Ltd. Two-dimensional lead-free double perovskite and uses thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918713A (zh) * 2004-02-24 2007-02-21 国际商业机器公司 用于与高速CMOS兼容的绝缘体上Ge光电探测器的结构及其制造方法
CN102173376A (zh) * 2011-02-25 2011-09-07 复旦大学 高度有序的小尺寸硅基纳米坑阵列的制备方法
CN105655434A (zh) * 2016-03-13 2016-06-08 金旺康 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法
CN105806487A (zh) * 2016-03-13 2016-07-27 金旺康 基于表面等离激元增强Ga2O3薄膜的紫外火焰探测器及其制备方法
CN106711272A (zh) * 2016-11-29 2017-05-24 华中科技大学 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法
CN113544086A (zh) * 2019-03-29 2021-10-22 松下知识产权经营株式会社 光器件、光电转换装置以及燃料生成装置
CN110444618A (zh) * 2019-08-09 2019-11-12 南京大学 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN110927769A (zh) * 2019-11-13 2020-03-27 南昌大学 一种双钙钛矿粒子探测器及其制备方法
CN110931576A (zh) * 2019-12-06 2020-03-27 中国科学院长春光学精密机械与物理研究所 一种日盲紫外探测器及其制备方法
CN111244194A (zh) * 2020-03-10 2020-06-05 天津理工大学 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器
FR3111919A1 (fr) * 2020-06-30 2021-12-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de depot d’une couche de perovskite inorganique
US20220127156A1 (en) * 2020-10-26 2022-04-28 Technion Research & Development Foundation Ltd. Two-dimensional lead-free double perovskite and uses thereof
CN113013278A (zh) * 2021-03-12 2021-06-22 太原理工大学 一种碳化硅基全谱响应光电探测器及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115753704A (zh) * 2022-10-24 2023-03-07 吉林大学 无铅双钙钛矿气敏传感器的制备方法

Similar Documents

Publication Publication Date Title
Lim et al. A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells
Marchuk et al. Localized surface plasmons and hot electrons
Wang et al. High efficient perovskite whispering-gallery solar cells
Jwied et al. Synthesis of C: Se (core: shell) nanoparticles via laser ablation on porous silicon for photodetector application
Kamel et al. Synthesis of Bi2O3 nanoparticles by laser ablation on porous silicon for photoconversion application
Khudiar et al. Improvement of spectral responsivity of ZnO nanoparticles deposited on porous silicon via laser ablation in liquid
Yang et al. Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles
Nayef et al. Ultraviolet photodetector based on TiO2 nanoparticles/porous silicon hetrojunction
Han et al. Highly efficient ultraviolet photodetectors based on TiO2 nanocrystal–polymer composites via wet processing
CN109065726B (zh) 一种基于表面等离激元共振的二维层状钙钛矿光电探测器及其制作方法
Patra et al. ZnO polymer composite based visible blind UV photo detector
CN115000232A (zh) 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法
Salim et al. Photo-activation of Ag chemicals for enhanced Nb2O5 optoelectronic device employing plasmonic effects
Safa et al. The effects of measuring atmosphere on ultraviolet photodetection performance of ZnO nanostructures
Selman et al. Fabrication of high sensitivity and fast response IR photodetector based on VO2 nanocrystalline thin films prepared on the silicon substrate
Han et al. Cu2O quantum dots modified α-Ga2O3 nanorod arrays as a heterojunction for improved sensitivity of self-powered photoelectrochemical detectors
Zhang et al. Ytterbium doping reduces the dark current of UV photoelectric detector based on TiO2
CN107119252B (zh) 一种硅基表面增强拉曼基底的制备方法
CN108649120A (zh) 一种具有陷光结构的钙钛矿光电探测器及制作方法
Hu et al. High performance ultraviolet photodetector based on CsPbCl3/ZTO heterostructure film enabled by effective separation of photocarriers
Gorzkowska–Sobas et al. Visible photocurrent response of TiO2 anode
Hu et al. ZnSn (OH) 6 nanocube/Zn2SnO4 nanowires yolk–shell hierarchical structure with tunable band gap for deep-UV photodetection
CN106168567A (zh) 一种基于红外光照射调控含氧半导体材料表面润湿性的方法
KR102507617B1 (ko) 플라즈모닉 하이브리드 나노입자, 이산화티타늄 및 그래핀 양자점을 포함하는 uv 광검출기용 기판 및 이를 이용하는 uv 광검출기
CN113054111B (zh) 基于双电子陷阱辅助的有机光电倍增探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination