CN110444618A - 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法 - Google Patents

基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN110444618A
CN110444618A CN201910732617.5A CN201910732617A CN110444618A CN 110444618 A CN110444618 A CN 110444618A CN 201910732617 A CN201910732617 A CN 201910732617A CN 110444618 A CN110444618 A CN 110444618A
Authority
CN
China
Prior art keywords
film
electrode
solar blind
detector
amorphous oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910732617.5A
Other languages
English (en)
Other versions
CN110444618B (zh
Inventor
张彦芳
程东
叶建东
巩贺贺
陈选虎
任芳芳
朱顺明
顾书林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CECT DEQING HUAYING ELECTRONICS Co Ltd
Shenzhen Institute Of Nanjing University
Nanjing University
Original Assignee
CECT DEQING HUAYING ELECTRONICS Co Ltd
Shenzhen Institute Of Nanjing University
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CECT DEQING HUAYING ELECTRONICS Co Ltd, Shenzhen Institute Of Nanjing University, Nanjing University filed Critical CECT DEQING HUAYING ELECTRONICS Co Ltd
Priority to CN201910732617.5A priority Critical patent/CN110444618B/zh
Publication of CN110444618A publication Critical patent/CN110444618A/zh
Application granted granted Critical
Publication of CN110444618B publication Critical patent/CN110444618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于非晶氧化镓薄膜的柔性日盲紫外探测器,探测器以高分子(如PET、聚酰亚胺)薄膜或织物为柔性衬底,使用超宽禁带半导体氧化镓(Ga2O3)(半导体层)为光探测材料,使用金属或氮化钛(TiN)半导体作为电极材料,通过光刻、刻蚀和薄膜沉积等半导体工艺制备肖特基接触电极层,形成金属电极‑半导体层‑金属电极(MSM)结构探测器,可实现对波长小于280nm的日盲紫外光的有效探测。

Description

基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
技术领域
本发明涉及一种日盲紫外探测器,具体涉及一种基于非晶氧化镓薄膜的柔性日盲紫外探测器及制备,属于光电探测技术领域。
背景技术
日盲紫外光通常是指波段为240-280nm的电磁辐射。由于臭氧层对日盲紫外波段的强烈吸收,到达近地表的该波段紫外光很微弱,为日盲紫外信号的检测提供了天然的低背景窗口。日盲紫外探测器是指对日盲紫外波段有明显光响应的紫外探测器。日盲紫外探测器具有高的信噪比和低的误报率,且在检测微弱信号方面具有显著优势。目前,紫外光探测器在国防安全和民用技术领域发挥着重要作用,可广泛应用于空间通讯、导弹跟踪、臭氧层监测,火焰探测、生物化学传感等领域。
如今,由于硅(Si)材料成本较低且工艺成熟,商业化的紫外光电探测主要使用硅基探测器,但由于Si的带隙较小,Si基紫外光探测器紫外探测效率较低,且需要昂贵的滤波器对其他波段的环境光干扰源进行处理。因此,为了制备响应截止波长小于280nm的日盲紫外探测器,寻求适用于日盲紫外区域的新型半导体材料是当务之急。氧化镓(Ga2O3)是一种新兴的超宽禁带半导体材料,禁带宽度可达4.4-5.3eV,对应的截止波长约为234~280nm,是天然的日盲紫外吸收材料。同时,Ga2O3具有高的化学和热稳定性、高的击穿场强和强的抗辐射特性等优点,使得Ga2O3探测器可以在恶劣环境中正常工作。近年来,研究人员开展了基于Ga2O3日盲紫外探测器的大量研究,其中大多数探测器是基于Ga2O3体单晶、单晶外延和纳米结构。这些材料的制备一般需要很高的温度和较复杂的工艺,并且,基于纳米结构的Ga2O3紫外探测器的制备及性能的重复性较差。与以上结构相比,非晶Ga2O3材料以其低温制备、成本低、大面积均匀和易于与CMOS工艺兼容等优点,为实现高性能日盲紫外探测器提供了新的材料平台。
从探测器工作模式分析,光导型和光伏型是半导体探测器的两种主要类型。光导型是需要外加电场分离光生电子-空穴对,而光伏型是利用p-n结,Schottky结或MIS结构中的内建电场分离光生电子-空穴对。由于Ga2O3半导体难以实现p型导电,现有Ga2O3基日盲紫外探测器大都采用肖特基接触的金属-半导体-金属(MSM)结构,这种结构的探测器具有暗电流低、电容小、响应速度快和制备简便等优点。
随着科技的发展,传统紫外光探测器已经满足不了人们的需求,具有特定功能或者多功能的新型紫外探测器已被迫切需要。柔性电子器件因具有轻薄便携、电子性能优异和集成度高等特点,可用于便携、可穿戴、超轻和可植入式的电子器件。当前,刚性电子产品向柔性和智能化方向发展,也为发展新一代光探测器提供了机会,目前已有很多基于ZnO、SnO2和TiO2纳米材料的柔性紫外探测器的报道。当前基于非晶Ga2O3薄膜的柔性紫外探测器的研究还处于初始阶段,其性能还有很大的提升空间。柔性、便携的设计理念和新型半导体材料的应用,会使更多新型紫外光探测器走出实验室服务于人们的生活。
发明内容
本发明目的在于,提出基于非晶氧化镓薄膜的柔性日盲紫外探测器及制备,探测器以PET塑料薄膜为柔性衬底,使用超宽禁带半导体Ga2O3为光探测材料,使用TiN作为肖特基电极材料,形成MSM结构探测器。该探测器对波长小于280nm的日盲紫外光有明显响应,响应峰值位于220nm,响应强度为20.7A/W,5V偏压下,器件在254nm光照射下可实现约106的光暗电流比,且具有快的响应速率,为0.18ms。该类探测器器使用超宽禁带半导体氧化镓材料,可工作于高温条件或恶劣环境下;非晶氧化镓薄膜制备容易,成本低,且可实现大面积低温生长,在日盲紫外探测领域有着广泛的应用前景,也为日盲紫外成像奠定了基础;该类传感器属于薄膜型传感器,且具有优良的柔性特征,为可穿戴和可植入电子设备提供了新的途径。
本发明是通过以下技术方案来解决问题的:基于非晶氧化镓薄膜的柔性日盲紫外探测器,探测器以高分子(如PET薄膜、聚酰亚胺)薄膜或织物为柔性衬底,使用超宽禁带半导体氧化镓(Ga2O3)(半导体层)为光探测材料,使用氮化钛(TiN)半导体作为电极材料,通过光刻、刻蚀和薄膜沉积等半导体工艺制备肖特基接触电极层,形成金属电极-半导体层-金属电极(MSM)结构探测器,可实现对波长小于280nm的日盲紫外光的有效探测。
探测器使用Ga2O3非晶薄膜为光吸收和光探测材料,日盲紫外光照射下薄膜的导电特性发生改变;Ga2O3非晶薄膜采用磁控溅射方法于常温下制备,可实现低成本、大面积均匀制备,且与CMOS工艺相兼容等。
传感器使用TiN为电极材料,Ga2O3非晶薄膜上制备一对金属或TiN电极,无紫外光照射时TiN电极与Ga2O3非晶薄膜形成肖特基接触,日盲紫外光照射下TiN电极与Ga2O3非晶薄膜的接触特性发生改变。
通过光刻、刻蚀和薄膜沉积等半导体工艺形成TiN叉指状电极,探测器为金属-半导体-金属(MSM)结构,此结构探测器具有暗电流低、电容小、响应速度快和制备简便等优点。
探测器选用的PET柔性衬底厚度约为20-180μm,Ga2O3薄膜为非晶结构,厚度为10-200nm,TiN电极膜厚约为20-200nm。MSM电极的总面积为440±200×500±200μm,叉指状电极的间距为5-20μm。
柔性衬底可以是其他聚合物柔性材料,如PEN塑料、高分子或其它织物或纸张等。
电极可选用其它材料,如Ti/Au、Ni/Au双层金属、ITO或Al等。
基于非晶氧化镓薄膜的柔性日盲紫外探测器的制备,具体实现步骤为:
(1)选用高分子(如PET薄膜、聚酰亚胺)薄膜或织物为柔性衬底,并进行剪裁和清洗;也可采用PE、聚氟或偏氟高分子薄膜;
(2)使用磁控溅射方法沉积Ga2O3非晶薄膜;
(3)使用光刻、刻蚀以及磁控溅射工艺沉积TiN电极,形成MSM结构光探测器;
(4)引线键合至芯片电路。
有益效果:该探测器以PET塑料薄膜为柔性衬底,使用新型超宽禁带半导体氧化镓(Ga2O3)为光探测材料,尤其是使用氮化钛(TiN)作为电极材料,形成金属-半导体-金属(MSM)结构探测器。在无光照和光照条件下,探测器电极间电流有显著变化,可实现对日盲紫外光的有效探测。实验表明由上述方法制备的柔性日盲紫外探测器,结构和工艺简单,可实现对日盲紫外光的有效探测,且器件具有良好的柔性性能。
附图说明
图1是本发明所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器的结构图(a)和实物图(b)。如图,该探测器以Ga2O3非晶薄膜为光吸收和探测材料,TiN为电极材料,MSM电极的面积约为440×500μm,叉指电极长约为400μm,宽度为5μm,间距约为5μm。
图2所示是本发明所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器的相关性能曲线。图2(a)所示是器件的暗电流和在254nm紫外光照射下的光电流曲线,由图可知,5V偏压下,探测器的光暗电流比接近106;图2(b)是探测器的光响应曲线,器件对<280nm的日盲紫外光有明显的光响应,响应峰值位于220nm左右,5V偏压下器件对220nm和400nm的紫外光的探测抑制比达104;图2(c)为探测器的时间响应,测试使用266nm脉冲激光为光源,光响应的下降沿用I(t)=I0+A1exp[(-t/τ1)+A2exp(-t/τ2)]双指数函数进行拟合,式中τ12,τ1和τ2分别代表载流子的直接复合和与缺陷相关的间接复合时间,结果显示器件具有较快的响应速率,τ1和τ2分别为0.18ms和1.25ms;图2(d)是探测器的柔性性能测试,由图可知,探测器的光暗电流的大小在弯曲状态下(曲率半径分别为4、3、2和1cm时)与非弯曲状态下相比没有明显变化,即使在曲率半径为1cm时,5V偏压下,器件的光暗电流比仍可达近105,器件弯曲200次后,性能保持不变,表明器件具有良好的柔性和探测稳定性。由上测试结果可知,本发明提出的基于非晶氧化镓薄膜的柔性日盲紫外探测器可实现对日盲紫外光的有效探测,且具有较快的探测速率,其整体性能可与基于β-Ga2O3单晶的探测器相比拟。
具体实施方式
本发明提出了一种基于非晶氧化镓薄膜的柔性日盲紫外探测器,下面通过具体工艺步骤进一步描述本发明:
(1)选用聚酰亚胺或PET作为柔性衬底,使用剪刀裁至成边长为1-2cm,并依次使用无水乙醇和去离子水进行超声清洗;
(2)使用磁控溅射方法沉积Ga2O3非晶薄膜,实验选用99.999%高纯度的Ga2O3靶材在柔性衬底PET上于室温条件下制备Ga2O3非晶薄膜,用于制备紫外探测器。薄膜制备过程中,可通过溅射时间实现不同的薄膜厚度,通过控制O2流量、生长压强等条件改变调控薄膜的导电特性和光吸收性能,进而调控光探测器件性能;
(3)使用光刻、刻蚀以及磁控溅射工艺沉积TiN薄膜,电极经过剥离后,形成MSM叉指状结构电极,该结构包括25对叉指,叉指电极长约为400μm,宽度为5μm,间距约为5μm,电极面积约为440×500μm,可改变电极的尺寸改进器件的探测性能,如缩小电极间距有可能使器件实现更快的响应速度;
(4)引线键合至芯片电路。
电极可选用其它材料:Ti/Au、Ni/Au、ITO或Al均可成就探测器,但性能上略会有差别。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明。本发明并不局限于上述实施方式,如果这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也包含这些改动和变形。

Claims (9)

1.基于非晶氧化镓薄膜的柔性日盲紫外探测器,其特征在于,探测器以高分子(如PET、聚酰亚胺)薄膜或织物为柔性衬底,使用超宽禁带半导体氧化镓(Ga2O3)(半导体层)为光探测材料,使用金属或氮化钛(TiN)半导体作为电极材料,通过光刻、刻蚀和薄膜沉积等半导体工艺制备肖特基接触电极层,形成金属电极-半导体层-金属电极(MSM)结构探测器,可实现对波长小于280nm的日盲紫外光的有效探测。
2.根据权利要求1所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器,其特征在于:Ga2O3非晶薄膜上制备一对金属或TiN电极,探测器使用Ga2O3非晶薄膜为光吸收和光探测材料,日盲紫外光照射下薄膜的导电特性发生改变;Ga2O3非晶薄膜采用磁控溅射方法制备。
3.根据权利要求2所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器,其特征在于:传感器使用TiN为电极材料,无紫外光照射时TiN电极与Ga2O3非晶薄膜形成肖特基接触,日盲紫外光照射下TiN电极与Ga2O3非晶薄膜的接触特性发生改变。
4.根据权利要求2所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器,其特征在于:通过光刻、刻蚀和薄膜沉积等半导体工艺形成TiN叉指状一对电极,探测器为金属-半导体-金属(MSM)结构。
5.根据权利要求1-4之一所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器,其特征在于:探测器选用的PET或聚酰亚胺柔性衬底厚度为20-180μm,Ga2O3薄膜为非晶结构,厚度为10-200nm,TiN电极膜厚约为20-200nm。
6.根据权利要求1所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器,其特征在于:柔性衬底是其他柔性材料,如PEN塑料、织物或纸张。
7.根据权利要求1所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器,其特征在于:电极可选用其它材料,如Ti/Au、Ni/Au、ITO或Al等。
8.根据权利要求1所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器,其特征在于:MSM电极的总面积为440±200×500±200μm,叉指状电极的间距为5-20μm。
9.根据权利要求1所述的基于非晶氧化镓薄膜的柔性日盲紫外探测器的制备方法,具体实现步骤为:
(1)选用高分子薄膜或织物为柔性衬底,并进行剪裁和清洗;
(2)使用磁控溅射方法沉积Ga2O3非晶薄膜;
(3)使用光刻、刻蚀以及磁控溅射工艺沉积TiN电极,形成MSM结构光探测器;
(4)引线键合至芯片电路。
CN201910732617.5A 2019-08-09 2019-08-09 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法 Active CN110444618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910732617.5A CN110444618B (zh) 2019-08-09 2019-08-09 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910732617.5A CN110444618B (zh) 2019-08-09 2019-08-09 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110444618A true CN110444618A (zh) 2019-11-12
CN110444618B CN110444618B (zh) 2021-10-22

Family

ID=68434190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910732617.5A Active CN110444618B (zh) 2019-08-09 2019-08-09 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110444618B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111962153A (zh) * 2020-07-03 2020-11-20 华南师范大学 一种单晶TiN电极薄膜及其制备方法
CN111994866A (zh) * 2020-09-08 2020-11-27 中国石油大学(华东) 一种弯曲应变增强的紫外光电位置传感器及其制备方法
CN113380906A (zh) * 2021-05-26 2021-09-10 浙江大学 基于金属-半导体-金属结构的透明紫外光电探测器
CN113410330A (zh) * 2021-06-22 2021-09-17 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN113659020A (zh) * 2021-02-26 2021-11-16 松山湖材料实验室 日盲紫外探测器及其制备方法、以及日盲紫外探测方法
CN114744059A (zh) * 2022-04-08 2022-07-12 中国科学院半导体研究所 基于氧化镓单晶的日盲偏振探测器及其制备方法
CN114914312A (zh) * 2022-06-07 2022-08-16 中国人民解放军国防科技大学 一种日盲紫外探测器及其制备方法
CN115000232A (zh) * 2022-06-16 2022-09-02 太原理工大学 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法
CN115377129A (zh) * 2021-05-20 2022-11-22 松山湖材料实验室 深紫外面阵成像系统及其像素结构和制作方法
CN116581182A (zh) * 2023-07-12 2023-08-11 长春理工大学 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121386A1 (en) * 2009-04-23 2010-10-28 Karim Karim S Method and apparatus for a lateral radiation detector
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN108735826A (zh) * 2018-05-30 2018-11-02 陈谦 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN109920857A (zh) * 2019-03-19 2019-06-21 南方科技大学 一种肖特基二极管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121386A1 (en) * 2009-04-23 2010-10-28 Karim Karim S Method and apparatus for a lateral radiation detector
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN108735826A (zh) * 2018-05-30 2018-11-02 陈谦 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN109920857A (zh) * 2019-03-19 2019-06-21 南方科技大学 一种肖特基二极管及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111962153A (zh) * 2020-07-03 2020-11-20 华南师范大学 一种单晶TiN电极薄膜及其制备方法
CN111994866A (zh) * 2020-09-08 2020-11-27 中国石油大学(华东) 一种弯曲应变增强的紫外光电位置传感器及其制备方法
CN113659020A (zh) * 2021-02-26 2021-11-16 松山湖材料实验室 日盲紫外探测器及其制备方法、以及日盲紫外探测方法
CN113659020B (zh) * 2021-02-26 2023-06-02 松山湖材料实验室 日盲紫外探测器及其制备方法、以及日盲紫外探测方法
CN115377129A (zh) * 2021-05-20 2022-11-22 松山湖材料实验室 深紫外面阵成像系统及其像素结构和制作方法
CN113380906A (zh) * 2021-05-26 2021-09-10 浙江大学 基于金属-半导体-金属结构的透明紫外光电探测器
CN113410330A (zh) * 2021-06-22 2021-09-17 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN113410330B (zh) * 2021-06-22 2022-07-22 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN114744059A (zh) * 2022-04-08 2022-07-12 中国科学院半导体研究所 基于氧化镓单晶的日盲偏振探测器及其制备方法
CN114914312A (zh) * 2022-06-07 2022-08-16 中国人民解放军国防科技大学 一种日盲紫外探测器及其制备方法
CN114914312B (zh) * 2022-06-07 2024-04-26 中国人民解放军国防科技大学 一种日盲紫外探测器及其制备方法
CN115000232A (zh) * 2022-06-16 2022-09-02 太原理工大学 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法
CN116581182A (zh) * 2023-07-12 2023-08-11 长春理工大学 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法
CN116581182B (zh) * 2023-07-12 2023-09-29 长春理工大学 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法

Also Published As

Publication number Publication date
CN110444618B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN110444618A (zh) 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
Vyas A short review on properties and applications of zinc oxide based thin films and devices: ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors
Wang et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN108470675B (zh) 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN106169516B (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
CN108376716A (zh) 一种新型氧化镓基pin结构紫外光电探测器及其制备方法
CN107507876A (zh) 一种β‑Ga2O3基日盲紫外光电探测器阵列及其制备方法
CN101853894B (zh) 一种纳米线异质结阵列基紫外光探测器及其制备方法
CN110085688A (zh) 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法
CN109004057B (zh) 基于非晶氮化物薄膜的宽谱光电探测器件及其制备方法
CN101533868B (zh) 一种异质pn结型日盲紫外探测器
CN109686844B (zh) 一种基于钙钛矿自供电行为的光敏传感器
Hakkoum et al. Effect of the source solution quantity on optical characteristics of ZnO and NiO thin films grown by spray pyrolysis for the design NiO/ZnO photodetectors
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN109449225A (zh) 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法
CN110289335A (zh) 基于In2Se3/Si垂直结构异质结的自驱动近红外长波光电探测器及其制作方法
Zhang et al. Self-powered solar-blind photodetectors based on α-Ga2O3 nanorod arrays
Wang et al. Pt/(InGa) 2O3/n-Si heterojunction-based solar-blind ultraviolet photovoltaic detectors with an ideal absorption cutoff edge of 280 nm
Fei et al. Improved responsivity of MgZnO film ultraviolet photodetectors modified with vertical arrays ZnO nanowires by light trapping effect
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN107968135B (zh) 非制冷型红外光探测器及其制备方法
Zhao et al. Pyramidal island for enhance response in ZnO/Cu2O heterojunction self-powered photodetector
CN201638834U (zh) 一种纳米线异质结阵列基紫外光探测器
Lin et al. Nanoscale-Thick a-Ga2O3 Films on GaN for High-Performance Self-Powered Ultraviolet Photodetectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant