CN116581182A - 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法 - Google Patents

一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法 Download PDF

Info

Publication number
CN116581182A
CN116581182A CN202310847106.4A CN202310847106A CN116581182A CN 116581182 A CN116581182 A CN 116581182A CN 202310847106 A CN202310847106 A CN 202310847106A CN 116581182 A CN116581182 A CN 116581182A
Authority
CN
China
Prior art keywords
tin oxide
cadmium
superlattice
oxide
interdigital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310847106.4A
Other languages
English (en)
Other versions
CN116581182B (zh
Inventor
王治洋
李金华
陈泽磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN202310847106.4A priority Critical patent/CN116581182B/zh
Publication of CN116581182A publication Critical patent/CN116581182A/zh
Application granted granted Critical
Publication of CN116581182B publication Critical patent/CN116581182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明属于光电探测技术领域,具体涉及一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法。结构包括叉指电极,叉指电极之间为氧化锡氧化镉超晶格材料薄膜,厚度为100~200nm。制备方法包括如下步骤:步骤Ⅰ:通过光刻的方法,经过涂胶、曝光、显影和刻蚀后在硅片衬底上形成叉指电极;步骤Ⅱ:将所制备的氧化锡氧化镉超晶格材料分散于适量的乙醇溶液中,超声处理直至粘稠状,然后通过旋涂的方式涂抹于步骤Ⅰ中制备的叉指电极上,之后于80°C的环境下老化0.5h,即制得目标器件。本发明利用量子尺寸效应,实现了电子在紫外波段的能级跃迁方式,且制备的光电探测器具有较好的响应速度。

Description

一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法
技术领域
本发明属于光电探测技术领域,具体涉及一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法。
背景技术
由于大气层中臭氧层对紫外光的强吸收作用,使得地表空间少于300nm波长的紫外光很少,此波段范围的电磁波称为“日盲紫外区”。由于自然界中太阳光的干扰很小,因此利用紫外进行光通讯传输时背景噪声很少,使得日盲紫外探测器在军用和民用方面表现出巨大的应用价值。对于利用光电探测器进行日盲紫外探测,其中所需的半导体材料通常需要较大的带隙宽度来满足电子发生紫外跃迁的能级。随着半导体工艺的日益发展,一些第三代宽禁带半导体材料,如Ga2O3,金刚石等已用于制备日盲紫外探测器,然而这些材料的制备需要的工艺要求复杂,使得制备成本很高,且器件的应用场合有限。目前对利用不同材料周期分布的超晶格结构用于日盲紫外探测的研究从未报导。
发明内容
本发明提出了一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法,其通过利用制备氧化锡氧化镉周期排列分布的周期性超晶格结构,具有较小的尺寸厚度。利用量子尺寸效应,实现了电子在紫外波段的能级跃迁方式,且制备的光电探测器具有较好的响应速度。
本发明采用如下技术方案:
一种氧化锡氧化镉超晶格日盲探测器结构,包括金属电极,金属电极为叉指电极,叉指电极之间为氧化锡氧化镉超晶格材料薄膜,厚度为100~200nm;
氧化锡氧化超晶格材料的制备方法包括如下步骤:
步骤一:将醋酸锌,氢氧化钠,五水四氯化锡,四水硝酸镉粉末加入去离子水中混合均匀,将混合物在室温中不断搅拌直至完全溶解,获得所需前驱液;
步骤二:将步骤一制备的前驱液转至反应釜中高温加热,等待反应釜冷却致室温后得到初始白色沉淀产物;
步骤三:将步骤二中所得的初始白色沉淀产物通过酒精和去离子水洗涤离心后干燥得到氧化锡氧化镉纳米结构超晶格前驱物粉末;
步骤四:将氧化锡氧化镉纳米结构超晶格前驱物粉末放置于管式炉中高温煅烧,得到目标产物。
进一步地,叉指电极的金属材料为金、银或铂。
进一步地,步骤一中,加入分析纯的醋酸锌,氢氧化钠,五水四氯化锡,四水硝酸镉的摩尔比为1:53~55:10~12:4~6。
进一步地,步骤四中,在管式炉中通入氮气,使氧化锡氧化镉纳米结构超晶格前驱物粉末在氮气环境下完成高温煅烧。
一种氧化锡氧化镉超晶格日盲探测器结构的制备方法,包括如下步骤:
步骤Ⅰ:通过光刻的方法,经过涂胶、曝光、显影和刻蚀后在硅片衬底上形成叉指电极;
步骤Ⅱ:将所制备的氧化锡氧化镉超晶格材料分散于适量的乙醇溶液中,超声处理直至粘稠状,然后通过旋涂的方式涂抹于步骤Ⅰ中制备的叉指电极上,之后于80°C的环境下老化0.5h,即制得目标器件。
进一步地,步骤Ⅰ中,叉指电极的叉指长度为500µm,叉指间距与叉指宽度为10µm。
本发明的有益效果体现在:
1、本发明提供了利用制备周期性超晶格结构用于日盲紫外探测器的制备方法,实现了利用量子尺寸效应使得电子具有紫外波段的能级跃迁方式。
2、本发明提出的紫外探测器中所用的氧化锡氧化镉异质结制备方法成本低廉,制备方法简单高效。
3、本发明提出的一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法,由于电子在量子阱中的束缚作用,使得在外界激发下具有较小的弛豫时间,因此所制备的紫外探测器件具有较好的响应速度及其较高的灵敏度。
附图说明
图1为本发明制备的氧化锡氧化镉超晶格材料的透射电子显微镜图;
图2为本发明制备的氧化锡氧化镉超晶格材料的透射电子显微镜电子衍射图;
图3为本发明制备的氧化锡氧化镉超晶格材料的紫外-可见波段的吸收谱线;
图4为本发明制备的氧化锡氧化镉超晶格日盲探测器在紫外光照射下的响应曲线。
具体实施方式
一种氧化锡氧化镉超晶格日盲探测器结构,所用金属电极为叉指电极,金属电极之间为氧化锡氧化镉超晶格材料薄膜,厚度为100~200nm。
氧化锡氧化镉超晶格材料的制备包括以下步骤:
步骤一、前驱液制备:
在量筒中称取去离子水,使用电子天平称取分析纯的醋酸锌,加入至去离子水中,室温下磁力搅拌至充分溶解。
使用电子天平称取分析纯氢氧化钠固体,加入至上述溶液,室温磁力搅拌至其完全溶解。
使用电子天平称取分析纯五水四氯化锡,加入至上述溶液,室温磁力搅拌至充分溶解。
使用电子天平称取分析纯四水硝酸镉,加入至上述溶液,室温下充分磁力搅拌至充分溶解。
称取的分析纯的醋酸锌,氢氧化钠,五水四氯化锡,四水硝酸镉的摩尔比为1:53~55:10~12:4~6。
将上述所得溶液超声10分钟,使得溶液分散均匀,得到反应所需的前驱液。
步骤二、自组装氧化锡氧化镉纳米结构超晶格前驱物粉末制备:
将步骤一所制备的前驱液转移到100ml的聚四氟乙烯反应釜中,将反应釜放置于马弗炉中,之后设置马弗炉的升温速率为2℃/min至180℃下加热16h,等待水热反应釜冷却致室温后得到白色沉淀产物。
将上述所得的白色沉淀产物先通过去离子水洗涤离心三次,而后通过乙醇离心三次,离心时需在6000-9000rpm/min的速度下保持5-10min,后转移至烘箱中干燥2h,保持干燥的温度为60℃,得到自组装氧化锡氧化镉纳米结构超晶格前驱物粉末。
步骤三、自组装氧化锡氧化镉纳米结构超晶格制备:
将前驱物粉末研磨后放置于坩埚中,将坩埚转移至管式炉中,向管式炉中通入氮气,设置管式炉升温速率为2℃/min至400℃后高温煅烧1h,后自然降温冷却至室温,得到自组装氧化锡氧化镉纳米结构超晶格。
氧化锡氧化镉超晶格日盲探测器结构的制备方法包括如下步骤:
步骤Ⅰ:叉指电极的制备:
使用气相沉积法在硅片上生长一层二氧化硅薄膜作为光刻的底层。
将PMMA光刻胶旋涂在二氧化硅薄膜上,旋转速度为2000±200rpm,时间为30±1秒,热板在160度下前烘10min,后将硅片放于紫外光刻机进行曝光,形成长度为500µm,叉指间距与叉指宽度为10µm的叉指电极光刻胶图案。
将曝光后的硅片放入显影液中,显影后可看出叉指电极轮廓,其长度为500µm,叉指间距与叉指宽度为10µm。
将硅片放入电子束蒸发镀膜设备中,在硅片表面沉积一层金电极层。
使用lift-off工艺,通过有机溶剂,如丙酮,将光刻胶及光刻胶上的金属去掉,得出叉指电极的叉指长度为500µm,叉指间距与叉指宽度为10µm。
将已制备好的叉指电极用丙酮、异丙醇、乙醇以及去离子水清洗干净,后于氮气环境中干燥。
步骤Ⅱ:日盲紫外探测器制备:
将已制备的氧化锡氧化镉超晶格材料放置于乙醇溶液中,配置浓度为40mg/ml的乙醇溶液,在步骤Ⅰ制备的叉指电极上旋涂氧化锡氧化镉超晶格薄膜,旋涂分两段进行,第一段转速设置为1000rmp,旋涂时间为10秒,第二段设置转速为3000rpm,旋涂时间为30秒,旋涂结束后,将所制备的涂有氧化锡氧化镉超晶格材料的叉指电极放置于80°的环境下退化0.5h,即可制备目标器件。
从图1、图2中可以看出,所制备的氧化锡氧化镉具有周期分布的超晶格结构,且具有较小的尺寸厚度。
从图3中可以看出,所制备的氧化锡氧化镉超晶格材料具有在紫外波段的吸收特性,其原因在于通过利用量子尺寸效应,所制备的氧化锡氧化镉超晶格材料具有很小的尺寸厚度,使得电子能级出现了紫外波段的跃迁行为。
从图4可以看出,所制备的氧化锡氧化镉超晶格日盲探测器,在紫外光的照射下具有较好的响应速度。
本发明的一种利用氧化锡氧化镉超晶格进行日盲探测的光电检测,通过利用晶格失配度较小的氧化锡氧化镉两种材料构成人工周期超晶格材料,由于量子阱中的量子尺寸效应,在较小的尺寸厚度下,材料中电子被束缚在较深的量子阱中,同时在垂直于生长方向具备二维的自由电子特性,这些特性使得所制备的超晶格材料中的电子具有紫外跃迁的能级越前方式同时具有较小的弛豫时间,使得所制备的日盲紫外探测器件具有较好的灵敏度,这将在高频的日盲紫外探测具有很大的应用前景。
以上仅为本发明的实施方式而已,并不用于限制本发明。凡在本发明的精神和原理之内的,所做的任何修改、等同替换、改进等,均应包括在本发明的权利要求范围之内。

Claims (6)

1.一种氧化锡氧化镉超晶格日盲探测器结构,包括金属电极,其特征在于,所述金属电极为叉指电极,所述叉指电极之间为氧化锡氧化镉超晶格材料薄膜,厚度为100~200nm;
所述氧化锡氧化超晶格材料的制备方法包括如下步骤:
步骤一:将醋酸锌,氢氧化钠,五水四氯化锡,四水硝酸镉粉末加入去离子水中混合均匀,将混合物在室温中不断搅拌直至完全溶解,获得所需前驱液;
步骤二:将步骤一制备的前驱液转至反应釜中高温加热,等待反应釜冷却致室温后得到初始白色沉淀产物;
步骤三:将步骤二中所得的初始白色沉淀产物通过酒精和去离子水洗涤离心后干燥得到氧化锡氧化镉纳米结构超晶格前驱物粉末;
步骤四:将氧化锡氧化镉纳米结构超晶格前驱物粉末放置于管式炉中高温煅烧,得到目标产物。
2.根据权利要求1所述的一种氧化锡氧化镉超晶格日盲探测器结构,其特征在于,所述叉指电极的金属材料为金、银或铂。
3.根据权利要求1所述的一种氧化锡氧化镉超晶格日盲探测器结构,其特征在于,所述步骤一中,加入分析纯的醋酸锌,氢氧化钠,五水四氯化锡,四水硝酸镉的摩尔比为1:53~55:10~12:4~6。
4.根据权利要求1所述的一种氧化锡氧化镉超晶格日盲探测器结构,其特征在于,所述步骤四中,在管式炉中通入氮气,使氧化锡氧化镉纳米结构超晶格前驱物粉末在氮气环境下完成高温煅烧。
5.如权利要求1至4中任意一项所述的一种氧化锡氧化镉超晶格日盲探测器结构的制备方法,其特征在于,包括如下步骤:
步骤Ⅰ:通过光刻的方法,经过涂胶、曝光、显影和刻蚀后在硅片衬底上形成叉指电极;
步骤Ⅱ:将所制备的氧化锡氧化镉超晶格材料分散于适量的乙醇溶液中,超声处理直至粘稠状,然后通过旋涂的方式涂抹于步骤Ⅰ中制备的叉指电极上,之后于80°C的环境下老化0.5h,即制得目标器件。
6.根据权利要求5所述的一种氧化锡氧化镉超晶格日盲探测器结构的制备方法,其特征在于,所述步骤Ⅰ中,所述叉指电极的叉指长度为500µm,叉指间距与叉指宽度为10µm。
CN202310847106.4A 2023-07-12 2023-07-12 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法 Active CN116581182B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310847106.4A CN116581182B (zh) 2023-07-12 2023-07-12 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310847106.4A CN116581182B (zh) 2023-07-12 2023-07-12 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法

Publications (2)

Publication Number Publication Date
CN116581182A true CN116581182A (zh) 2023-08-11
CN116581182B CN116581182B (zh) 2023-09-29

Family

ID=87539962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310847106.4A Active CN116581182B (zh) 2023-07-12 2023-07-12 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法

Country Status (1)

Country Link
CN (1) CN116581182B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411728A (en) * 1981-03-30 1983-10-25 Agency Of Industrial Science & Technology Method for manufacture of interdigital periodic structure device
JP2010080481A (ja) * 2008-09-24 2010-04-08 Ngk Insulators Ltd 受光素子および受光素子の作製方法
US20150280045A1 (en) * 2014-03-26 2015-10-01 The University Of Houston System Radiation and temperature hard multi-pixel avalanche photodiodes
CN108511591A (zh) * 2018-03-14 2018-09-07 东南大学 多晶硅纳米线矩形阵列和超晶格光电结构微型能量收集器
CN110444618A (zh) * 2019-08-09 2019-11-12 南京大学 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN111584674A (zh) * 2020-05-27 2020-08-25 中国科学院长春光学精密机械与物理研究所 单片集成日盲紫外及近红外双色光电探测器及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411728A (en) * 1981-03-30 1983-10-25 Agency Of Industrial Science & Technology Method for manufacture of interdigital periodic structure device
JP2010080481A (ja) * 2008-09-24 2010-04-08 Ngk Insulators Ltd 受光素子および受光素子の作製方法
US20150280045A1 (en) * 2014-03-26 2015-10-01 The University Of Houston System Radiation and temperature hard multi-pixel avalanche photodiodes
CN108511591A (zh) * 2018-03-14 2018-09-07 东南大学 多晶硅纳米线矩形阵列和超晶格光电结构微型能量收集器
CN110444618A (zh) * 2019-08-09 2019-11-12 南京大学 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN111584674A (zh) * 2020-05-27 2020-08-25 中国科学院长春光学精密机械与物理研究所 单片集成日盲紫外及近红外双色光电探测器及其制作方法

Also Published As

Publication number Publication date
CN116581182B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
Zhu et al. Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators
Shafi et al. Effect of deposition cycles on the properties of ZnO thin films deposited by spin coating method for CZTS-based solar cells
Gayen et al. Effect of series and shunt resistance on the photovoltaic properties of solution-processed zinc oxide nanowire based CZTS solar cell in superstrate configuration
Saikia et al. Synthesis, characterization and photovoltaic application of silver doped CdS/PVA nanocomposite thin films
Sun et al. SbSI whisker/PbI 2 flake mixed-dimensional van der Waals heterostructure for photodetection
Wang et al. Highly controllable synthesis of MAPbI3 perovskite nanocrystals with long carrier lifetimes and narrow band gap for application in photodetectors
Pandi et al. C-axis oriented ZnO nanorods based quantum dot solar cells
CN113130769A (zh) 二维层状钙钛矿单晶、宽光谱光电探测器及其制备方法
Esakki et al. Influence on the efficiency of dye-sensitized solar cell using Cd doped ZnO via solvothermal method
Zhu et al. Synthesis of water-soluble antimony sulfide quantum dots and their photoelectric properties
CN110416333B (zh) 一种紫外光电探测器及其制备方法
Khalef et al. Photo detector fabrication based ZnO nanostructure on silicon substrate
CN111525033A (zh) 一种反向介孔钙钛矿太阳能电池结构及其制备方法
CN110660914B (zh) 一种低温原位控制合成碘铋铜三元化合物半导体光电薄膜材料的化学方法
CN104282440A (zh) 一种硫族量子点敏化氧化物半导体光阳极的制备方法
CN116581182B (zh) 一种氧化锡氧化镉超晶格日盲探测器结构及其制备方法
CN211295123U (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器
Kim et al. Morphology changes of In-doped ZnO nanosheets via ZnCl2 and InCl3 vapor formation during thermal dissipation annealing process and improved UV photoresponse properties
CN111952383A (zh) 一种CsPbBr3-CsPb2Br5全无机混合钙钛矿薄膜的自驱动可见光光电探测器
Mahmoud et al. Elaboration of ZnO nanowires by solution based method, characterization and solar cell applications
CN106701084A (zh) 一种铜铟硫硒量子点的制备方法
CN114685555B (zh) 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用
CN116581183B (zh) 一种氧化锡氧化镉超晶格日盲四象限探测器
CN110690316B (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器及其制备方法
CN114597317A (zh) 基于β-Ga2O3/Au/MAPbBr3三明治结构的紫外-可见光探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant