CN110085688A - 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法 - Google Patents

基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法 Download PDF

Info

Publication number
CN110085688A
CN110085688A CN201910393485.8A CN201910393485A CN110085688A CN 110085688 A CN110085688 A CN 110085688A CN 201910393485 A CN201910393485 A CN 201910393485A CN 110085688 A CN110085688 A CN 110085688A
Authority
CN
China
Prior art keywords
nano
gallium oxide
pillar
mutually
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910393485.8A
Other languages
English (en)
Inventor
郭道友
刘琦
王顺利
李培刚
唐为华
Original Assignee
Beijing Gallium Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Gallium Science And Technology Co Ltd filed Critical Beijing Gallium Science And Technology Co Ltd
Priority to CN201910393485.8A priority Critical patent/CN110085688A/zh
Publication of CN110085688A publication Critical patent/CN110085688A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种基于石墨烯‑氧化镓相结的自供电型光电探测结构及相应的制备方法,以及光电探测器。所述结构包括:衬底、形成于所述衬底上的氧化镓相结纳米柱、形成于所述氧化镓相结纳米柱上的石墨烯薄膜。所述方法包括在衬底上通过水热、退火和高温退火生成氧化镓相结纳米柱,在所述氧化镓相结纳米柱上转移形成石墨烯薄膜。本发明具有制备工艺简单、成本低廉、易大规模生产等优点。本发明的光电探测器具有自供电、光谱选择性好的特点,对日盲紫外光具有响应度大、灵敏度高等特性。

Description

基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制 备方法
技术领域
本发明属于光电探测技术领域,具体涉及一种基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法。本发明可应用于日盲深紫外探测器。
背景技术
近年来出现了碳化硅、氮化镓、氮化铝、硒化锌、氧化锌、氧化镓等禁带宽度Eg大于2.3eV的第三代半导体材料,相比前两代半导体材料,这类材料的带隙大、击穿电场强度高、饱和电子漂移速度快、热导率大、介电常数小、抗辐射能力强,具有良好的化学稳定性,非常适合用来研制抗辐射、高频、大功率与高密度集成的半导体器件。氧化镓(Ga2O3)的禁带宽度为4.2-5.3eV(不同晶体结构,光学各向异性表现为不同的带隙),是一种直接带隙的Ⅲ-VI族宽带隙半导体材料,具有优良的化学和热稳定性,是颇为看好的一种新型第三代半导体材料。
基于氧化镓的日盲紫外探测器已有一些报道,研究内容广泛,从材料形态上包含纳米、单晶、薄膜,从器件结构上包括金属-半导体-金属(MSM) 结构、肖特基结、异质结、雪崩光电二极管(APD)等,并取得了一些重要的研究成果。基于结效应的氧化镓日盲紫外探测器往往具有更快的响应速度、更高的灵敏度,并伴有自供电的特性。
石墨烯是一种由碳原子紧密堆积成的单原子层的晶体,自2004年由英国曼彻斯特大学首次成功制备并报道后,以其新奇的结构和性能引起了科学家的广泛关注,其独特的二维平面结构赋予了它优良的力学、热学、电学、光学性质。石墨烯良好的透过率及电导率使得其作为透明电极的潜力非常巨大,石墨烯的吸收谱除在270nm处有一明显的吸收峰外,在其余波段透过率都很好,大波段的高透光率使得石墨烯可满足透明电极对光耦合的需求。并且基于石墨烯特殊的晶体结构,石墨烯片层内亚微米量级的电子传输无散射,载流子迁移率比金属银还要高。石墨烯用作透明电极的应用除了考虑到其高的电导率与透光率外,其与半导体层的相容性较好也是很重要的一点,这与石墨烯中载流子种类有关,在石墨烯片层中载流子电子和空穴的迁移率是相等的,即石墨烯既可以作为n型材料又可以作为p型材料。
最近发现的石墨烯薄膜在导电性、透光性和平整度方面都体现了与 ITO可比拟的性能。并且石墨烯薄膜具有很好的化学稳定性和低成本的优势。另外一个优势是石墨烯具有高的功函数,与p型的GaN有可能形成欧姆接触。石墨烯的大量制备也取得了一些重要进展,化学还原的氧化石墨可以通过静电作用稳定分散在水溶液中。直接用CVD方法合成单层和若干层的石墨烯透明导电薄膜也已经获得成功。这些进展为石墨烯 LCD、OLED、太阳能电池以及光电探测器等方面的应用提供了可能。
使用石墨烯透明电极可以解决传统金属电极阻挡紫外线的入射,减少有效探测面积,以及金属对紫外线的吸收都使得紫外探测器对的响应度与外量子效应受到影响。
发明内容
(一)要解决的技术问题
针对本领域存在的问题,本发明旨在解决现有氧化镓光电探测器因为使用不透光的金属作为正电极导致的光电探测率降低的问题。
(二)技术方案
为解决上述技术问题,本发明一方面提出一种基于石墨烯-氧化镓相结的自供电型光电探测结构,该结构包括:衬底;氧化镓相结纳米柱,形成于所述衬底上;石墨烯薄膜,形成于所述氧化镓相结纳米柱上。
根据本发明的优选实施方式,所述的氧化镓相结纳米柱为α/β-Ga2O3相结纳米柱阵列。
根据本发明的优选实施方式,所述衬底为透明衬底。
本发明另一方面提出一种基于石墨烯-氧化镓相结的自供电型光电探测结构的制备方法,包括如下步骤:在衬底上生成氧化镓相结纳米柱;在所述氧化镓相结纳米柱上转移形成石墨烯薄膜。
根据本发明的优选实施方式,在衬底上生成氧化镓相结纳米柱的步骤包括:在衬底上生长GaOOH纳米柱阵列;对所述GaOOH纳米柱阵列进行退火和高温退火生成α/β-Ga2O3纳米柱阵列。
根据本发明的优选实施方式,在所述氧化镓相结纳米柱上转移形成石墨烯薄膜的步骤包括:通过化学气相沉积法生长石墨烯并将其通过湿法转移至纳米柱上方形成石墨烯薄膜。
根据本发明的优选实施方式,还包括在石墨烯薄膜上形成金属电极的步骤。
根据本发明的优选实施方式,所述衬底为透明衬底。
本发明第三方面提出一种光电探测器,包括前面所述的光电探测结构。
根据本发明的优选实施方式,其探测波长位于紫外光波长范围内。
(三)有益效果
本发明具有制备工艺简单、成本低廉、易大规模生产等优点。基于此结构的紫外探测器具有自供电、光谱选择性好的特点,对日盲紫外光具有响应度大、灵敏度高等特性。
附图说明
图1为本发明的包括石墨烯-氧化镓相结的自供电型光电探测结构的日盲紫外光电探测器的结构示意图。
图2是本发明的方法制得的石墨烯薄膜的扫描电镜图。
图3是本发明方法制得的包括石墨烯-氧化镓相结纳米柱阵列的扫描电镜图。
图4是本发明方法制得的基于石墨烯-氧化镓相结结构日盲紫外探测器在工作电压为0V,不同功率254nm激光照射下测得的I-T曲线。
具体实施方式
本发明的发明人注意到,紫外全透过的石墨烯材料能够避免传统金属电极对紫外线的阻挡及吸收问题,增加入射至吸收层的光强度。相比于其他透明导电材料,石墨烯材料层内导电能力极强,避免了电流在金属电极周围的集中现象,使得紫外线在光吸收层产生的电子空穴对能较高效率地被电极俘获。
此外,本发明的发明人的研究发现,纳米柱相结因能级差在界面处会形成势垒,产生内建电场,在无需外加偏压的情况下实现对光生载流子的分离,基于纳米柱相结的紫外探测器具有自供电的特性。所述的氧化镓相结纳米柱优选为α/β-Ga2O3相结纳米柱。因为经研究发现,α-Ga2O3的导带和价带位置分别比β-Ga2O3高0.07eV和0.35eV,在α/β-Ga2O3相结界面处形成第二类型的能级势垒,有利于光生载流子的分离。所述的α/β-Ga2O3相结纳米柱的横截面为四边形或近似四边形,本发明中,经实验测试,纳米柱高优选为1~2μm,横截面对角线长度优选为80~500nm。
为此,本发明提出一种光电探测结构,其将氧化镓相结纳米柱形成于衬底上,然后将石墨烯薄膜形成于氧化镓相结纳米柱上。石墨烯薄膜形成的可能过在所述氧化镓相结纳米柱上转移形成。
图1为本发明的包括石墨烯-氧化镓相结纳米柱的光电探测结构的日盲紫外光电探测器的结构示意图,其中衬底1上形成为四棱柱形的氧化镓相结纳米柱2,其上形成为石墨烯薄膜3,薄膜3上形成金属电极4。
氧化镓相结纳米柱2为石墨烯层为单层或多层石墨烯薄膜,其覆盖在α/β-Ga2O3相结纳米柱上端,与α/β-Ga2O3相结纳米柱紧密接触。
本发明中的衬底优选为透明衬底,例如掺氟的SnO2透明导电FTO衬底、掺铟的SnO2透明导电ITO电极、掺铝的ZnO透明导电AZO电极。衬底的厚度优选为300~400nm,透光率85~95%。
在衬底上生成氧化镓纳米柱的步骤优选为在衬底上通过水热法生长 GaOOH纳米柱阵列,并利用退火法和高温退火法制备α/β-Ga2O3相结纳米柱阵列。
在所述氧化镓纳米柱上形成石墨烯薄膜的步骤优选为通过化学气相沉积法生长石墨烯并将其通过湿法转移至纳米柱上方形成石墨烯薄膜。
本发明提出的光电探测器,包括前面所述的光电探测结构。其探测波长位于紫外光波长范围内。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。在下述实施例中,所用的衬底是FTO导电玻璃,即掺杂氟的SnO2透明导电玻璃(SnO2:F),厚度约为350nm,电阻为14欧姆,透光率90%。
实施例1:
一种基于石墨烯-α/β-Ga2O3相结纳米柱日盲紫外探测器,其制备方法如下:
(1)FTO导电玻璃基底预处理:分别用丙酮、无水乙醇、去离子水超声清洗10min,然后在烘箱中干燥。
(2)水热法和退火法制备α/β-Ga2O3纳米柱阵列:将FTO导电玻璃倚靠在不锈钢高压反应釜内壁,加入5~10mL的0.5g/30mL的Ga(NO3)3生长溶液(没过衬底80%),拧紧反应釜,置于烘箱中150℃加热6~12个小时,可得到沿着(110)晶面生长的GaOOH纳米柱阵列。反应完成后,取出FTO基底,用去离子水冲洗干净,并在50℃下烘干。然后将羟基氧化镓纳米柱阵列在500℃退火4个小时制备成α-Ga2O3纳米柱阵列。将α-Ga2O3纳米柱阵列在700℃下退火5min,制得α/β-Ga2O3纳米柱阵列。如图3所示,为所得材料的X射线衍射图。图2为α/β-Ga2O3相结纳米柱阵列的扫描电镜图。
(3)在25um厚的铜箔表面通过化学气相沉积法生长得到连续石墨烯,用匀胶机在石墨烯表面旋涂浓度为100mg/ml PMMA,旋涂完之后,放在恒温台上于170℃下烘烤5min;烤干后,将未旋涂PMMA那面放入等离子体清洗机中处理1min,去除背面铜箔上的石墨烯,然后将PMMA/ 石墨烯/铜箔放入浓度为5mol/L的FeCl3溶液中刻蚀铜箔,刻蚀30min后,再转移至去离子水中浸泡10min,接着再转移至新的5mol/L的FeCl3溶液中刻蚀残余的铜箔,刻蚀2h,去除铜箔上的絮状物,铜箔完全刻蚀之后转移至去离子水中清洗残留的FeCl3刻蚀液,之后再转移至稀盐酸中进一步清洗其表面残留的FeCl3刻蚀液及其他杂质,最后将石墨烯薄膜转移至去离子水中清洗其表面的残留盐酸,清洗完毕后,用等离子体清洗机打过15min的SiO2/Si捞PMMA/石墨烯,得到样品PMMA/石墨烯/SiO2/Si;
(4)将PMMA/石墨烯/α/β-Ga2O3纳米柱/FTO样品风干8h后,放恒温台上将样品完全烤干,之后放进40℃的二氯甲烷溶液中去除PMMA胶;
(5)利用掩膜版并通过射频磁控溅射技术在石墨烯薄膜面沉积Ti/Au 点电极作为测量电极。
(6)本实施例基于α/β-Ga2O3相结日盲紫外探测器的性能特征:图4 是本发明方法制得的基于α/β-Ga2O3相结日盲紫外探测器在工作电压为0V,不同功率254nm激光照射下,测得I-T曲线。可以看出:在不同功率254 nm波长光照下,α/β-Ga2O3相结纳米柱阵列探测器表现出明显的响应并且响应度随着254nm激光的功率增大而增大
实施例2
步骤(1)、(2)、(3)和(4)均与实施例1相同,步骤(4)结束后,用所得到的石墨烯/纳米柱/FTO样品再捞一片刻蚀完全并清洗干净的石墨烯。将PMMA/双层石墨烯/α/β-Ga2O3纳米柱/FTO样品风干8h后,放恒温台上将样品完全烤干,之后放进40℃的二氯甲烷溶液中去除PMMA胶;得到样品双层石墨烯/α/β-Ga2O3纳米柱/FTO。
所得双层石墨烯/α/β-Ga2O3纳米柱/FTO结构与实例1类似。在基于双层石墨烯/α/β-Ga2O3纳米柱/FTO的日盲型紫外探测器的电极两端施加电压进行光电性能测量,I-t曲线是在0伏特的电压下测量的,发现控制紫外灯开关,电流瞬时发生变化,表明探测器在日盲区254nm紫外光照射下具有高灵敏度。测试结果均与实施例1类似。
本发明结构利用石墨烯超高的面内电导特性和其对紫外光的全透过特性,以及α/β-Ga2O3相结纳米柱阵列对深紫外光的灵敏性,提高了α/β-Ga2O3相结日盲探测器的响应度及外量子效率。本发明所制备的α/β-Ga2O3纳米柱阵列形貌可控、尺寸均匀,且制备工艺简单、成本低廉、易大规模生产等优点。基于此结构的紫外探测器具有自供电、光谱选择性好的特点,对日盲紫外光具有响应度大、灵敏度高等特性。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于石墨烯-氧化镓相结的自供电型光电探测结构,其特征在于,该结构包括:
衬底;
氧化镓相结纳米柱,形成于所述衬底上;
石墨烯薄膜,形成于所述氧化镓相结纳米柱上。
2.如权利要求1所述的自供电型光电探测结构,其特征在于,所述的氧化镓相结纳米柱为α/β-Ga2O3相结纳米柱阵列。
3.如权利要求1所述的自供电型光电探测结构,其特征在于,所述衬底为透明衬底。
4.一种基于石墨烯-氧化镓相结的自供电型光电探测结构的制备方法,其特征在于,包括如下步骤:
在衬底上生成氧化镓相结纳米柱;
在所述氧化镓相结纳米柱上转移形成石墨烯薄膜。
5.如权利要求4所述的制备方法,其特征在于,在衬底上生成氧化镓相结纳米柱的步骤包括:
在衬底上生长GaOOH纳米柱阵列;
对所述GaOOH纳米柱阵列进行退火和高温退火生成α/β-Ga2O3纳米柱阵列。
6.如权利要求4所述的制备方法,其特征在于,在所述氧化镓相结纳米柱上转移形成石墨烯薄膜的步骤包括:
通过化学气相沉积法生长石墨烯并将其通过湿法转移至纳米柱上方形成石墨烯薄膜。
7.如权利要求4所述的制备方法,其特征在于,还包括在石墨烯薄膜上形成金属电极的步骤。
8.如权利要求4至7中任一项所述的制备方法,其特征在于,所述衬底为透明衬底。
9.一种光电探测器,其特征在于,包括权利要求1-3中任一项所述的自供电型光电探测结构。
10.如权利要求9所述的光电探测器,其特征在于,其探测波长位于紫外光波长范围内。
CN201910393485.8A 2019-05-13 2019-05-13 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法 Pending CN110085688A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910393485.8A CN110085688A (zh) 2019-05-13 2019-05-13 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910393485.8A CN110085688A (zh) 2019-05-13 2019-05-13 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法

Publications (1)

Publication Number Publication Date
CN110085688A true CN110085688A (zh) 2019-08-02

Family

ID=67419734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910393485.8A Pending CN110085688A (zh) 2019-05-13 2019-05-13 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法

Country Status (1)

Country Link
CN (1) CN110085688A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690317A (zh) * 2019-10-31 2020-01-14 华南理工大学 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器及其制备方法
CN112382691A (zh) * 2020-10-16 2021-02-19 华南师范大学 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
CN113097336A (zh) * 2021-03-22 2021-07-09 西安邮电大学 一种非对称电极msm结构氧化镓紫外探测器
CN113314628A (zh) * 2021-05-20 2021-08-27 西安电子科技大学 一种新型导电沟道日盲光电探测器
CN113410330A (zh) * 2021-06-22 2021-09-17 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN113517366A (zh) * 2021-05-20 2021-10-19 西安电子科技大学 一种新型异质结光电探测器及其制备方法
CN113555466A (zh) * 2021-06-09 2021-10-26 浙江芯国半导体有限公司 一种SiC基氧化镓微米线的光电探测器及其制备方法
CN114497277A (zh) * 2021-12-30 2022-05-13 昆明物理研究所 基于石墨烯/氧化镓异质结的二极管及其制备方法
CN114725235A (zh) * 2022-04-06 2022-07-08 中国科学院苏州纳米技术与纳米仿生研究所 双极性响应多波长光电探测器、其制作方法及应用
CN115621344A (zh) * 2022-12-19 2023-01-17 无锡麟力科技有限公司 异质结日盲探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150279498A1 (en) * 2014-03-27 2015-10-01 Samsung Electronics Co., Ltd. Transparent conductive thin film electrodes, electronic devices and methods of producing the same
CN107195725A (zh) * 2016-06-03 2017-09-22 合肥工业大学 石墨烯/TiO2纳米柱阵列肖特基结紫外光电探测器及其制备方法
CN107841785A (zh) * 2017-10-27 2018-03-27 浙江理工大学 一种氧化镓相结纳米柱阵列及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150279498A1 (en) * 2014-03-27 2015-10-01 Samsung Electronics Co., Ltd. Transparent conductive thin film electrodes, electronic devices and methods of producing the same
CN107195725A (zh) * 2016-06-03 2017-09-22 合肥工业大学 石墨烯/TiO2纳米柱阵列肖特基结紫外光电探测器及其制备方法
CN107841785A (zh) * 2017-10-27 2018-03-27 浙江理工大学 一种氧化镓相结纳米柱阵列及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINGZHU CHEN等: "Zero-biased deep ultraviolet photodetectors based on graphene/cleaved (100) Ga2O3 heterojunction", 《OPTICS EXPRESS》 *
WILLIAM REGAN等: "A direct transfer of layer-area graphene", 《APPLIED PHYSICS LETTERS》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690317A (zh) * 2019-10-31 2020-01-14 华南理工大学 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器及其制备方法
CN112382691A (zh) * 2020-10-16 2021-02-19 华南师范大学 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
CN113097336A (zh) * 2021-03-22 2021-07-09 西安邮电大学 一种非对称电极msm结构氧化镓紫外探测器
CN113097336B (zh) * 2021-03-22 2022-09-06 西安邮电大学 一种非对称电极msm结构氧化镓紫外探测器
CN113314628A (zh) * 2021-05-20 2021-08-27 西安电子科技大学 一种新型导电沟道日盲光电探测器
CN113517366A (zh) * 2021-05-20 2021-10-19 西安电子科技大学 一种新型异质结光电探测器及其制备方法
CN113555466A (zh) * 2021-06-09 2021-10-26 浙江芯国半导体有限公司 一种SiC基氧化镓微米线的光电探测器及其制备方法
CN113410330B (zh) * 2021-06-22 2022-07-22 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN113410330A (zh) * 2021-06-22 2021-09-17 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN114497277A (zh) * 2021-12-30 2022-05-13 昆明物理研究所 基于石墨烯/氧化镓异质结的二极管及其制备方法
CN114725235A (zh) * 2022-04-06 2022-07-08 中国科学院苏州纳米技术与纳米仿生研究所 双极性响应多波长光电探测器、其制作方法及应用
CN115621344A (zh) * 2022-12-19 2023-01-17 无锡麟力科技有限公司 异质结日盲探测器及其制备方法
CN115621344B (zh) * 2022-12-19 2023-03-17 无锡麟力科技有限公司 异质结日盲探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN110085688A (zh) 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
Liu et al. Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction
Li et al. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets
Luo et al. Near‐infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky junction
Xie et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays
CN104638049B (zh) 一种p型石墨烯/n型锗纳米锥阵列肖特基结红外光电探测器及其制备方法
CN111554757A (zh) 一种基于等离激元增强的石墨烯中红外光探测器及制备方法
Kamel et al. Synthesis of Bi2O3 nanoparticles by laser ablation on porous silicon for photoconversion application
Hadi et al. Rapid laser fabrication of Nickel oxide nanoparticles for UV detector
Yin et al. Piezo-phototronic effect enhanced self-powered and broadband photodetectors based on Si/ZnO/CdO three-component heterojunctions
Purica et al. ZnO thin films on semiconductor substrate for large area photodetector applications
Zhao et al. Self-driven visible-near infrared photodetector with vertical CsPbBr3/PbS quantum dots heterojunction structure
Chen et al. Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottky-junction photodetector
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN110112233A (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN110289335A (zh) 基于In2Se3/Si垂直结构异质结的自驱动近红外长波光电探测器及其制作方法
CN103887073A (zh) 一种基于表面等离子体增强原理的太阳能电池及其制备方法
CN105280749A (zh) 基于石墨烯薄膜的光电探测器及其制备方法
Liu et al. Effects of growth substrates on the morphologies of TiO2 nanowire arrays and the performance of assembled UV detectors
CN109888051A (zh) 一种x射线探测器及其制造方法
CN104810426A (zh) 自驱动光探测器及其制备方法
Yin et al. Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer
Farag et al. Electrical, dielectric characterizations and optoelectronic applications of epitaxially grown Co/n-CuO/p-Si heterojunctions
Wang et al. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210819

Address after: Room 2707, building 1, Bixing garden, Xili, Luozhuang, Haidian District, Beijing 100088

Applicant after: Tang Weihua

Address before: 101300 West and north of floor 2, plant 2, building 1, shunqiang Road, Renhe Town, Shunyi District, Beijing

Applicant before: BEIJING JIAZU TECHNOLOGY Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802