CN105304747B - 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法 - Google Patents

基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法 Download PDF

Info

Publication number
CN105304747B
CN105304747B CN201510585551.3A CN201510585551A CN105304747B CN 105304747 B CN105304747 B CN 105304747B CN 201510585551 A CN201510585551 A CN 201510585551A CN 105304747 B CN105304747 B CN 105304747B
Authority
CN
China
Prior art keywords
pbi
evaporation
preparation
moo
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510585551.3A
Other languages
English (en)
Other versions
CN105304747A (zh
Inventor
王浩
喻继超
周海
张军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201510585551.3A priority Critical patent/CN105304747B/zh
Publication of CN105304747A publication Critical patent/CN105304747A/zh
Application granted granted Critical
Publication of CN105304747B publication Critical patent/CN105304747B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提出了一种FTO/ZnO纳米棒/CH3NH3PbI3/MoO3/Au结构的自驱动光电探测器及其制备方法,其具体结构为FTO层,ZnO纳米棒电子传输层,也是空穴阻挡层,CH3NH3PbI3为钙钛矿吸光层,半导体氧化物MoO3为空穴传输层,也是电子阻挡层,金属电极是由Au膜组成。采用旋涂、水浴、两步法合成、蒸镀等方法制备。本发明利用了ZnO纳米棒/CH3NH3PbI3形成的有机无机杂化异质结结构及以半导体氧化物MoO3为空穴传输层,使本发明具有较高的响应度和探测器灵敏度,响应率和探测率都分别高达24.3A/W和3.56×1014cmHz1/2/W,同时有一定的自驱动能力,不需要外部偏压来驱动,有利于节约能源。其各项性能远远超过目前所报道的Si基探测器,同时还可以实现近紫外和可见红外的双重探测。本发明操作步骤简单,实验成本低廉,具有较好的应用前景。

Description

基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及 其制备方法
【技术领域】
本发明涉及半导体纳米材料以及自驱动光电探测器技术领域,尤其是涉及将ZnO纳米棒和钙钛矿材料结合起来形成异质结以制作高性能光电探测器。
【背景技术】
氧化锌(ZnO)是一种短波长、宽带隙的光电材料,其结晶温度较低、易刻蚀、加工方便,且具有很高的化学稳定性和耐高温性质,来源丰富,使得其在发光二极管、激光器、紫外探测器等领域有着非常广泛的应用。尤其是在1996年Tang等人在室温下实现了ZnO的微晶光泵浦紫外激光发射[1],随后曹慧等人在同样条件下也观测到了ZnO多晶粉末薄膜的自谐振腔随机紫外激光发射的现象[2],与此同时,《Nature》和《Science》杂志也相继刊登了类似的成果并对其高度评价。[3,4]近年来,基于ZnO纳米结构的发光和探测已受到越来越多的关注。[5-11]
最近,有机无机杂化钙钛矿材料在光伏电池上的应用发展非常迅速,其光伏电池的效率已达到了20%以上。[12-13]钙钛矿材料具有长的电荷载流子寿命和扩散长度,因而在合成的薄膜中载流子复合率非常低。同时,钙钛矿材料在300-800nm的光谱范围内具有很强捕获光的能力,特别是在500nm左右,它对光的吸收达到了90%以上。此外,钙钛矿类的材料能带内的缺陷密度非常低,因而基于钙钛矿材料的二极管将会有非常低的饱和电流。[14]这些优点说明了钙钛矿材料将是应用于探测器的理想材料。最近,Yang Yang课题组就以钙钛矿半导体材料制作探测器,他们的探测器结构为ITO/PEDOT:PSS/CH3NH3PbI3-xClx/PCBM/PFN/Al,得到的探测器性能优异,其探测度高达41014cmHz1/2/W。[15]
【参考文献】
[1]P.Yu,Z.K.Tang,G.K.L.Wong,et al.Solid State Commum.,1997,103,459.
[2]H.Cao,Y.G.Zhao,H.C.Ong,et al.Appl.Phys.Lett.,1998,73,3656.
[3]R.F.Service,Science,1997,276,895.
[4]M.Shim,P.Guyot-Sionnest,Nature,2000,407,981.
[5]C.Soci,A.Zhang,B.Xiang,S.A.Dayeh,D.P.R.Aplin,J.Park,X.Y.Bao,Y.H.Lo,and D.Wang*,Nano Lett.,2007,7,1003.
[6]D.Guo,C.Shan,S.Qu&D.Shen,Sci.REP-UK.,2014,12,07469.
[7]H.Zhou,P.Gui,Q.Yu,J.Mei,H.Wang and G.Fang,J.Mater.Chem.C,2015,3,990.
[8]X.Liu,L.Gu,Q.Zhang,J.Wu,Y.Long&Z.Fan,Nat.Commun.,2014,5,4007,DOI:10.1038/ncomms5007.
[9]C.Tian,D.Jiang,*B.Li,J.Lin,Y.Zhao,W.Yuan,J.Zhao,Q.Liang,S.Gao,J.Hou,and J.Qin,ACS Appl.Mater.Interfaces,2014,dx.doi.org/10.1021/am405292p.
[10]J.Hwang,M.Lai,H.Chen,and M.Kao,IEEE PHOTONICS TECHNOLOGY LETTERS,2014,26,1023.
[11]M.Ghusoon,A.Muneer,and W.Mohammed,IEEE,2015,ISBN:978-1-4799-5680-7/15,212.
[12]W.Nie,H.Tsai,R.Asadpour,J.-C.Blancon,A.J.Neukirch,G.Gupta,J.J.Crochet,M.Chhowalla,S.Tretiak,M.A.Alam,H.-L.Wang,A.D.Mohite,Science,2015,347,522.
[13]National Renewable Energy Laboratory.Best Research-CellEfficiencies,2015; www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[14]W.-J.Yin,T.Shi&Y.Yan,Adv.Mater.,2014,26,4653.
[15]L.Dou*,Y.(Micheal)Yang*,J.You*,Z.Hong,W.-H.Chang,G.Li&Y.Yang,Nat.Commun.,2014,5,5404,DOI:10.1038.
【发明内容】
基于上述技术背景,本发明提供一种FTO/ZnO纳米棒/CH3NH3PbI3/MoO3/Au 有机无机杂化结构的自驱动光电探测器及其制备方法,该方法操作步骤简单,实验成本低廉,且所制备的ZnO纳米棒/CH3NH3PbI3杂化结构的整体结构清晰,ZnO纳米棒均匀,而且长度可控。此外,我们制作的探测器具有较高的响应度和探测灵敏度,远远超过目前所报道的Si基探测器,同时还可以实现近紫外和可见红外的双重探测。
本发明是这样实现的。它主要由透明导电玻璃、电子传输层、钙钛矿吸光层、空穴传输层、金属电极组成,其中电子传输层由在ZnO种子层上生成的ZnO纳米棒构成,同时也是空穴阻挡层,钙钛矿吸光层是通过两步法合成的CH3NH3PbI3构成,空穴传输层是由半导体氧化物MoO3构成,同时也是电子阻挡层,金属电极是由Au膜组成。
本发明的具体制备流程和工艺如下:
(1)FTO的预处理:将FTO玻璃片切成面积为2cm*2cm的正方形玻璃样片,依次用去离子水,丙酮,酒精进行超声清洗,再用紫外臭氧剂(UV)清洗15min;
(2)ZnO种子层的制备:以甲醇为溶剂,配制5mmol/L的醋酸锌(Zn(CH3COO)2)溶液,搅拌5分钟,然后开始在FTO玻璃样片上旋涂,旋涂的转速为3000r/min,时间为15s,在100℃条件下烘干10分钟,然后转移到马弗炉中退火2h。
(3)ZnO纳米棒的制备:在生长有ZnO种子层FTO玻璃样片上,用水浴法生长ZnO纳米棒,水浴溶液成分为50mmol/L的六水硝酸锌(Zn(NO3)2·6H2O)、30mmol/L的六次甲基四铵(C6H12N4)和0.6g的PEI(聚醚酰亚胺),同时利用氨水将溶液的PH值控制在10.6-10.8范围内,水浴的温度为85℃-90℃,根据不同棒长需求来控制水浴的时间。水浴结束后,先后用去离子水和酒精冲洗,去除表面的杂物,最后转移到马弗炉中退火处理2h。
(4)两步法合成钙钛矿层(CH3NH3PbI3):第一步是旋涂PbI2,即以DMF(N,N-二甲基甲酰胺)为溶剂,配制1mmol/L(0.462g)的PbI2溶液,在70℃的恒温条件下搅拌4h,然后采用旋涂法将PbI2甩在ZnO纳米棒上,旋涂转速为3000r/min,时间为15s,旋涂好后放置在烘干台上烘烤5min;第二步是PbI2与碘甲胺反应合成钙钛矿,即以甲胺和氢碘酸、或氢氯酸、或氢溴酸为原料在低温下采用旋转蒸发法制备CH3NH3X(X为I、Br、Cl等卤素)晶体,并在乙醇与乙醚 溶剂中进行重结晶。以异丙醇为溶剂,配制0.1g/10ml的CH3NHI溶液,然后将烘干后FTO样片(上面已经旋有PbI2)放在溶液中浸泡40s,然后再在烘干台上烘烤10min;
(5)制备空穴传输层:采用蒸镀的方法,将半导体氧化物MoO3镀到钙钛矿层上面,蒸镀时保持10-4的真空度,蒸镀的速率控制在蒸镀的厚度为5--20nm,其中以蒸镀厚度为12nm效果最好。
(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,在空穴传输层上蒸镀一层Au,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整光电探测器。
所述的ZnO薄膜的厚度为100---150nm,其中以120nm为佳;
所述的ZnO纳米棒长度为0.5—2μm,其中以1μm为佳;
所述的MoO3层厚度为5---20nm,其中以12n为佳;
将所制备得到的ZnO纳米棒和CH3NH3PbI3分别进行了X射线衍射(XRD)、扫描电子显微镜(SEM)表征分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的光电探测器测试其I-V特性曲线,光电响应曲线和响应的快慢。这些测试分析结果分别列于附图中。
本发明是将优异的ZnO纳米结构和钙钛矿材料有机结合起来,同时以MoO3为空穴传输层和电子阻挡层,提出了一种新颖的溶液法制备杂化钙钛矿光电探测器,其结构为FTO/ZnO纳米棒/CH3NH3PbI3/MoO3/Au(如图1所示)。该探测器结构独特,响应率和探测率都分别高达24.3A/W和3.561014cmHz1/2/W,响应速率也比较快,同时不需要外部偏压来驱动,有利于节约能源。此外,我们的探测器可同时实现紫外光和可见光的双重探测,拓宽了其应用范围。在此器件中,我们以MoO3为空穴传输层和电子阻挡层,当MoO3的厚度为12nm时,可以得到性能最优的探测器。ZnO/钙钛矿异质结器件在低成本、低能耗、高性能光电探测器领域有着较好的应用前景,这种独特的结构为制备高性能探测器的发展提供一条新的途径。
本发明的优点和特色之处在于:
(1)本发明中制作的光电探测器结构新颖,首次提出将ZnO纳米棒和钙钛 矿材料结合起来制作探测器,而且制作工艺简单,实验原料成本低廉,环境友好,这种独特的结构为制备高性能探测器的发展提供一条新的途径。
(2)本发明中制作的光电探测器性能优异,探测响应度高达24.3A/W,探测灵敏度高达3.56×1014cmHz1/2/W,其性能远高于目前的Si基探测器。
(3)本发明制作的光电探测器不仅可以探测近紫外光,同时对可见红外光具有比较强的探测能力,实现了对近紫外光和可见红外光的双重探测。
附图说明
图1是本发明的探测器结构图。
图2是本发明的ZnO纳米棒和钙钛矿层的SEM图。(a)、(b)分别为ZnO纳米棒的平面图和截面图;(c)、(d)分别为钙钛矿层的平面和截面图。
图3是本发明的探测器的不同MoO3厚度的I-V特性曲线。
图4是12nm厚度MoO3的探测器的明暗I-V特性曲线。
图5是12nm厚度MoO3的探测器的响应度曲线。
图6是12nm厚度MoO3的探测器的探测灵敏度曲线。
其中1---FTO层,2---ZnO纳米棒层,3---CH3NH3PbI3钙钛矿层,4---MoO3层,5---Au膜电极。
具体实施方式
下面通过实施例将能够更好地理解本发明。
实施例1:5nm厚度MoO3的探测器的制备:
(1)FTO的预处理:将FTO玻璃片切成面积为2cm*2cm的正方形玻璃样片,然后依次采用用去离子水,丙酮,酒精,去离子水进行超声清洗20分钟,将玻璃片表面的杂质清洗干净,再用紫外臭氧(UV)清洗15min,除去表面附着的有机物。
(2)ZnO种子层的制备:以甲醇为溶剂,配制5mmol/L的醋酸锌(Zn(CH3COO)2)溶液,搅拌5分钟,然后开始在FTO玻璃样片上旋涂,旋涂的转速为3000r/min,时间为15s,在100℃条件下烘干15分钟,然后转移到马 弗炉中退火1h。
(3)ZnO纳米棒的制备:在生长有ZnO种子层FTO玻璃样片上,用水浴法生长ZnO纳米棒,水浴溶液成分为50mmol/L的六水硝酸锌(Zn(NO3)2·6H2O)、30mmol/L的六次甲基四铵(C6H12N4)和0.6g的PEI(聚醚酰亚胺),同时利用氨水将溶液的PH值控制在10.6-10.8范围内,水浴的温度为85℃-90℃,根据不同棒长需求来控制水浴的时间。水浴结束后,先后用去离子水和酒精冲洗,去除表面的杂物,最后将其放入马弗炉中退火2h。
(4)两步法合成钙钛矿层(CH3NH3PbI3):第一步是旋涂PbI2,即以DMF(N,N-二甲基甲酰胺)为溶剂,配制1mmol/L(0.462g)的PbI2溶液,在70℃的恒温条件下搅拌4h,然后采用旋涂法将PbI2甩在PCBM层上,旋涂转速为3000r/min,时间为15s,旋涂好后放置在烘干台上烘烤5min;第二步是PbI2与碘甲胺反应合成钙钛矿,即以甲胺和氢碘酸、或氢氯酸、或氢溴酸为原料在低温下采用旋转蒸发法制备CH3NH3X(X为I、Br、Cl等卤素)晶体,并在乙醇与乙醚溶剂中进行重结晶。以异丙醇为溶剂,配制0.1g/10ml的CH3NHI溶液,然后将烘干后FTO样片(上面已经旋有PbI2)的放在溶液中浸泡40s,然后再在烘干台上烘烤10min;
(5)制备空穴传输层:采用蒸镀的方法,将半导体氧化物MoO3镀到钙钛矿层上面,蒸镀时保持10-4的真空度,蒸镀的速率控制在蒸镀的厚度为5nm。
(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整光电探测器。
将所制备得到的ZnO纳米棒和CH3NH3PbI3分别进行了X射线衍射(XRD)、扫描电子显微镜(SEM)表征分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的光电探测器测试其I-V特性曲线,光电响应曲线和响应的快慢。这些测试分析结果分别列于附图中。
实施例2:8nm厚度MoO3的探测器的制备:
(1)、(2)、(3)、(4)步骤与实施例1相同;
(5)制备空穴传输层:采用蒸镀的方法,将半导体氧化物MoO3镀到钙钛矿层上面,蒸镀时保持10-4的真空度,蒸镀的速率控制在蒸镀的厚度为8nm。
(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整光电探测器。
将所制备得到的ZnO纳米棒和CH3NH3PbI3分别进行了X射线衍射(XRD)、扫描电子显微镜(SEM)表征分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的光电探测器测试其I-V特性曲线,光电响应曲线和响应的快慢。这些测试分析结果分别列于附图中。
实施例3:12nm厚度MoO3的探测器的制备:
(1)、(2)、(3)、(4)步骤与实施例1相同;
(5)制备空穴传输层:采用蒸镀的方法,将半导体氧化物MoO3镀到钙钛矿层上面,蒸镀时保持10-4的真空度,蒸镀的速率控制在蒸镀的厚度为12nm。
(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整光电探测器。
将所制备得到的ZnO纳米棒和CH3NH3PbI3分别进行了X射线衍射(XRD)、扫描电子显微镜(SEM)表征分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的光电探测器测试其I-V特性曲线,光电响应曲线和响应的快慢。这些测试分析结果分别列于附图中。
实施例4:16nm厚度MoO3的探测器的制备:
(1)、(2)、(3)、(4)步骤与实施例1相同;
(5)制备空穴传输层:采用蒸镀的方法,将半导体氧化物MoO3镀到钙钛矿层上面,蒸镀时保持10-4的真空度,蒸镀的速率控制在蒸镀的厚度为16nm。
(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整光电探测器。
将所制备得到的ZnO纳米棒和CH3NH3PbI3分别进行了X射线衍射(XRD)、扫描电子显微镜(SEM)表征分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的光电探测器测试其I-V特性曲线,光电响应曲线和响应的快慢。这些测试分析结果分别列于附图中。
实施例5:20nm厚度MoO3的探测器的制备:
(1)、(2)、(3)、(4)步骤与实施例1相同;
(5)制备空穴传输层:采用蒸镀的方法,将半导体氧化物MoO3镀到钙钛矿层上面,蒸镀时保持10-4的真空度,蒸镀的速率控制在蒸镀的厚度为20nm。
(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整光电探测器。
将所制备得到的ZnO纳米棒和CH3NH3PbI3分别进行了X射线衍射(XRD)、扫描电子显微镜(SEM)表征分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的光电探测器测试其I-V特性曲线,光电响应曲线和响应的快慢。这些测试分析结果分别列于附图中。

Claims (1)

1.一种基于ZnO纳米棒/CH3NH3PbI3结构的自驱动光电探测器的制备方法,其特征在于步骤为:
(1)FTO的预处理:将FTO玻璃片切成面积为2cm×2cm的正方形玻璃样片,依次用去离子水,丙酮,酒精,去离子水进行超声清洗,再用紫外臭氧剂UV清洗15min;
(2)ZnO种子层的制备:以甲醇为溶剂,配制5mmol/L的醋酸锌Zn(CH3COO)2溶液,搅拌5分钟,然后开始在FTO玻璃样片上旋涂,旋涂的转速为3000r/min,时间为15s,在100℃条件下烘干10分钟,然后转移到马弗炉中退火2h;
(3)ZnO纳米棒的制备:在生长有ZnO种子层FTO玻璃样片上,用水浴法生长ZnO纳米棒,水浴溶液成分为50mmol/L的六水硝酸锌Zn(NO3)2·6H2O、30mmol/L的六次甲基四铵C6H12N4和0.6g的聚醚酰亚胺PEI,同时利用氨水将溶液的PH值控制在10.6-10.8范围内,水浴的温度为85℃-90℃,根据不同棒长需求来控制水浴的时间,水浴结束后,先后用去离子水和酒精冲洗,去除表面的杂物,最后转移到马弗炉中退火处理2h;
(4)两步法合成钙钛矿层CH3NH3PbI3
第一步是旋涂PbI2,即以N,N-二甲基甲酰胺DMF为溶剂,配制1mmol/L的PbI2溶液,在70℃的恒温条件下搅拌4h,然后采用旋涂法将PbI2甩在ZnO纳米棒上,旋涂转速为3000r/min,时间为15s,旋涂好后放置在烘干台上烘烤5min;
第二步是PbI2与碘甲胺反应合成钙钛矿,即以甲胺和氢碘酸为原料在低温下采用旋转蒸发法制备CH3NH3I晶体,并在乙醇与乙醚溶剂中进行重结晶;再以异丙醇为溶剂,配制0.1g/10ml的CH3NHI溶液,然后将烘干后上面已经旋有PbI2的FTO样片放在溶液中浸泡40s,然后再在烘干台上烘烤10min;
(5)制备空穴传输层:采用蒸镀的方法,将半导体氧化物MoO3镀到钙钛矿层上面,蒸镀时保持10-4的真空度,蒸镀的速率控制在0.1埃/秒,蒸镀的MoO3厚度为12nm;
(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,在空穴传输层上蒸镀一层Au,蒸镀的速率控制在0.8埃/秒,蒸镀的Au的厚度为40nm;
至此,即可制作成一个完整光电探测器。
CN201510585551.3A 2015-09-15 2015-09-15 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法 Expired - Fee Related CN105304747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510585551.3A CN105304747B (zh) 2015-09-15 2015-09-15 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510585551.3A CN105304747B (zh) 2015-09-15 2015-09-15 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN105304747A CN105304747A (zh) 2016-02-03
CN105304747B true CN105304747B (zh) 2018-02-06

Family

ID=55201752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510585551.3A Expired - Fee Related CN105304747B (zh) 2015-09-15 2015-09-15 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN105304747B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784808B (zh) * 2016-03-04 2017-11-21 济南大学 一种TiO2‑CH3NH3PbI3光电M2巨噬细胞传感器的应用
CN106064831B (zh) * 2016-05-13 2017-11-03 南京工业大学 一种纳米颗粒嵌入钙钛矿纳米线形成复合材料的制备方法
CN105887465B (zh) * 2016-05-30 2019-01-18 大连民族大学 同型(n-n)异质结构的SnO2/ZnO纳米复合纤维材料及其制备方法和应用
CN106571425B (zh) * 2016-09-29 2019-07-19 湖北大学 一种基于ZnO-钙钛矿结构的紫外-可见可调光电探测器及其制备方法
CN106847955B (zh) * 2017-02-17 2018-06-05 重庆大学 氧化锌纳米颗粒修饰的钙钛矿CsPbBr3薄膜及其应用
CN107046098B (zh) * 2017-03-30 2019-04-16 南京理工大学 一种大晶粒碘化物钙钛矿薄膜的制备方法
CN107275434B (zh) * 2017-04-20 2018-11-20 湖北大学 一种基于ZnO/CsPbBr3/MoO3结构的纯无机光电探测器
CN107876087B (zh) * 2017-11-03 2019-12-17 山东大学 甲胺铅碘-还原氧化石墨烯复合光催化材料的制备及其光催化制氢的应用
CN108346745B (zh) * 2018-01-18 2019-08-16 中国科学院金属研究所 碳纳米管/氧化锌纳米棒复合柔性透明导电电极的制备与应用
CN108615782B (zh) * 2018-04-19 2020-04-03 中芯集成电路(宁波)有限公司 一种紫外探测器及其制造方法
CN108493345B (zh) * 2018-04-23 2020-02-18 电子科技大学 基于介孔导电层衬底的钙钛矿太阳能电池及其制备方法
CN111009613A (zh) * 2019-11-29 2020-04-14 武汉大学苏州研究院 一种钙钛矿量子点掺杂的有机紫外探测器及其制备方法
EP3863054A1 (de) * 2020-02-04 2021-08-11 Siemens Healthcare GmbH Multiple spektrale detektoren mittels strukturierter perowskite
CN114583055B (zh) * 2022-02-18 2023-09-15 电子科技大学 一种喷涂MoO3薄膜的有机光电探测器及其制备方法
CN115763615A (zh) * 2022-12-13 2023-03-07 常熟理工学院 一种基于量子点的自驱动光电探测器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441216B (zh) * 2013-08-29 2016-03-23 吉林大学 一种基于TiO2纳米碗阵列的紫外光探测器及其制备方法
CN103456888B (zh) * 2013-09-26 2015-09-30 天津理工大学 一种Cs掺杂ZnO为电子传输层的杂化太阳能电池
CN104465804A (zh) * 2014-11-24 2015-03-25 华东师范大学 一种可提高太阳能电池效率和稳定性的合金电极

Also Published As

Publication number Publication date
CN105304747A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
CN105304747B (zh) 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法
Sun et al. Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air
Yu et al. A high-performance self-powered broadband photodetector based on a CH 3 NH 3 PbI 3 perovskite/ZnO nanorod array heterostructure
Song et al. HC (NH 2) 2 PbI 3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells
CN103872248B (zh) 一种钙钛矿薄膜光伏电池及其制备方法
CN106571425B (zh) 一种基于ZnO-钙钛矿结构的紫外-可见可调光电探测器及其制备方法
CN107919409B (zh) 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法
CN106025067B (zh) 一种溶液法生成钙钛矿薄膜的成膜方法及其器件应用
Liu et al. Dimethyl-sulfoxide-assisted improvement in the crystallization of lead-acetate-based perovskites for high-performance solar cells
CN103078014B (zh) 铁酸铋/钛酸铋钠-钛酸钡异质结构铁电薄膜太阳能电池的制备方法
CN105552236A (zh) 一种钙钛矿太阳电池及其制备方法
CN101777429A (zh) 基于石墨烯的染料敏化太阳能电池复合光阳极及制备方法
CN102723208B (zh) 一维氧化锌-二氧化钛核壳结构复合纳米线阵列的制备方法
CN104900810A (zh) 一种均匀有机-无机钙钛矿薄膜太阳能电池的制备方法
CN105957966A (zh) 稀土氧化物下转换材料钙钛矿太阳电池及制备方法
CN109148635B (zh) CuAlO2/Ga2O3紫外光电二极管及制备方法
CN105870339B (zh) 一种提高纯度、减少针孔的钙钛矿薄膜的制备方法
CN108281550B (zh) 基于镁掺杂二氧化钛的钙钛矿太阳能电池及其制备方法
CN103107242B (zh) 在玻璃基板上制备钒酸铋太阳能电池的方法
CN106450007A (zh) 一种基于碘化亚铜/钙钛矿体异质结的太阳能电池及制备方法
Tseng et al. The effects of interfacial dipole caused by annealing-free Al-doped NiOx in efficient perovskite solar cells
CN106449978A (zh) 基于甲氨基氯化铅薄膜的可见光盲紫外探测器的制备方法
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
CN103950966A (zh) 去角八面体结构的Cu2O、制备方法及在制备太阳能电池光阴极中的应用
CN108682743B (zh) 一种钬镱镁掺杂二氧化钛的量子点的制备方法及其在钙钛矿电池中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180206

Termination date: 20210915