CN111446324A - 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法 - Google Patents

一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法 Download PDF

Info

Publication number
CN111446324A
CN111446324A CN202010260273.5A CN202010260273A CN111446324A CN 111446324 A CN111446324 A CN 111446324A CN 202010260273 A CN202010260273 A CN 202010260273A CN 111446324 A CN111446324 A CN 111446324A
Authority
CN
China
Prior art keywords
metal
zinc oxide
nitrogen
silicon substrate
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010260273.5A
Other languages
English (en)
Inventor
凌翠翠
侯志栋
郭天超
张拓
冯冰心
曹敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202010260273.5A priority Critical patent/CN111446324A/zh
Publication of CN111446324A publication Critical patent/CN111446324A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光探测技术领域,具体涉及一种自驱动光电探测器,该光电探测器由上至下依次包括金属In点电极、金属Pd顶电极、掺杂氮的氧化锌纳米棒阵列薄膜层、p型单晶硅基底和金属In底电极,其中p型单晶硅层与掺杂氮的氧化锌纳米棒阵列薄膜层构成异质结。掺杂氮的氧化锌纳米棒阵列薄膜层是利用磁控溅射法和水热法制备的。测试结果显示,所制备的器件可以实现对从紫外到近红外波长范围内光的自驱动光电探测,且具有良好的稳定性和重复性等优点。

Description

一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电 探测器及其制备方法
技术领域
本发明属于光探测技术领域,具体涉及一种自驱动光电探测器及其制备方法。
背景技术
光电探测器通过光电效应将光信号转换为电信号。基于异质结的自驱动光电探测器,不仅能够对入射光产生响应,还能够吸收入射光为自身工作提供能量,由于其重量轻、适用于极端环境、无需外部电源工作等优点,在环境检测、红外成像、图像传感和远程控制等方面具有重要的应用价值,有利于促进光电探测器向微型化、智能化、节能化方向转变,拓展了光电探测器在实际生活中的应用。[Adv.Mater.2018,30,1706262]开发高性能、成本低的自驱动光电探测器具有重要的意义。
宽禁带的金属氧化物纳米结构在窄带隙半导体硅(1.1eV)上的集成以独特的物理特性在新一代电子与光电元件上有巨大的应用前景。氧化锌(ZnO)是一种直接带隙的无毒半导体,具有很高的化学稳定性和耐高温性质,但是利用水热法制备的氧化锌纳米棒阵列中存在大量的氧空位,不利于载流子的传输。[J.Mater.Chem.C,2019,7,5172--5183]因此,减少氧化锌纳米棒中氧空位的数量,将对于氧化锌纳米棒阵列/硅异质结光响应性能的提高的有重要的意义。
发明内容
本发明的目的在于提供一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及该探测器的制备方法。
本发明为实现上述目的所要解决的技术问题是,通过磁控溅射、水热法在单晶硅基底上制备氮掺杂氧化锌纳米棒阵列薄膜层;即通过磁控溅射、水热法获得氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器。
本发明为实现上述目的所采用的技术方案是,一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器,其特征在于:电探测器由上至下依次包括金属In点电极、金属Pd顶电极、掺杂氮的氧化锌纳米棒阵列薄膜层、p型单晶硅基底和金属In底电极,其中p型单晶硅层与掺杂氮的氧化锌纳米棒阵列薄膜层构成异质结;其中掺杂氮的氧化锌纳米棒阵列薄膜的厚度为300~900纳米,优选700纳米,金属层的厚度为5~15纳米,优选10纳米。
一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器的制备方法,其特征在于:其包括以下步骤:
(1)选取p型硅基底,清洗去除表面污染物并进行干燥;
(2)将干燥完成的硅基底放入真空腔,采用射频磁控溅射技术,在氩气环境下,利用电离出的氩离子轰击氧化锌靶材,在硅基底表面沉积氧化锌薄膜层;所述氧化锌靶材为99.9%纯度的氧化锌陶瓷靶,所述氩气气压维持1.2帕斯卡不变,靶基距为40~60毫米,薄膜的沉积温度为20~25摄氏度,薄膜层厚度为40~100纳米;
(3)将步骤(2)中获得的样品放入管式电阻炉,在温度为300~400摄氏度下空气气氛中热处理,温度上升速率为2摄氏度每分钟,至300~400摄氏度时保持60~180分钟,然后自然冷却至室温;
(4)将0.3~0.5克六水合硝酸锌、0.15~0.25克乌洛托品和0.5~1毫升25%的氨水溶解于60~70毫升蒸馏水水中,充分搅拌5~10分钟,所得生长液倒入80~100毫升带有特氟龙内衬的高温反应釜中,将步骤(3)得到的样品放入溶液中,在80~100摄氏度环境下反应1~2小时,从溶液中取出后将样品用无水乙醇洗涤并充分干燥;
(5)将步骤(4)得到的样品放入管式电阻炉,在温度为300~400摄氏度下空气气氛中热处理,温度上升速率为2摄氏度每分钟,至300~400摄氏度时保持60~180分钟,后自然冷却至室温;
(6)将步骤(5)得到的样品放入装有40~80毫升三乙胺的80~100毫升的带有特氟龙内衬的高温反应釜中,在180~220摄氏度环境下反应2~5小时,将样品从溶液中取出后用乙醇清洗,室温下氮气环境下干燥;
(7)将步骤(6)中得到的样品在表面覆盖掩膜片后放入溅射室,利用抽真空系统使溅射室处于真空状态,直到背景真空达到目标真空度10-3~10-5帕斯卡,向溅射室中通入氩气,待气压到达5帕斯卡稳定后,采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在样品表面沉积金属Pd顶电极;靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd顶电极厚度为5~15纳米;
(8)将步骤(7)中得到的样品分别在金属Pd顶电极和p型硅基底上完成金属In电极的压制,并引出金属Cu导线。
优选的,步骤(1)中,所述p型硅基底,尺寸为10毫米×10毫米,电阻率为0.1~1欧姆·厘米。
优选的,步骤(3)、(5)中,所述热处理温度为360摄氏度,热处理时间为120分钟。
优选的,步骤(4)中,所述水热反应温度为90摄氏度,反应时间为90分钟,特氟龙内衬的容积为100毫升。
优选的,步骤(7)中,所述金属In电极大小和厚度分别为1毫米×1.5毫米和1毫米,硅基底上金属In电极大小和厚度均分别为10毫米×10毫米和2毫米,Cu导线直径为0.1毫米。
由上述过程即可获得氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器。该器件在室温空气下,无外加偏压下具有光响应,可以实现从紫外到近红外的自驱动光探测,且具有优秀的稳定性和重复性。本发明所提供的光电探测器光响应性能优异,所提供制备方法无毒、成本低廉,可广泛应用于光电探测器领域。
附图说明
图1为氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器光探测性能测量的结构示意图。
图2为氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器的伏安特性曲线。
图3为氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器在无外加偏压时器件对不同波长单色光的周期响应性能。
图4为氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器在无外加偏压时器件对不同光功率密度光的周期响应性能
具体实施方式
本发明利用磁控溅射、水热法制备氧化锌纳米棒阵列/硅异质结,利用水热法获得氮掺杂氧化锌纳米棒阵列/硅异质结,利用直流磁控溅射技术沉积金属Pd前电极并压制金属In电极和连接金属导线制备自驱动光电探测器。当有光照射器件表面时,由于光电效应以及内建电场的存在,器件可以在无外加偏压条件下对光表现出明显的响应性能。
上述器件的制备方法,具体包括以下步骤:
(1)选取p型硅基底,清洗去除表面污染物并进行干燥;
(2)将干燥完成的硅基底放入真空腔,采用射频磁控溅射技术,在氩气环境下,利用电离出的氩离子轰击氧化锌靶材,在硅基底表面沉积氧化锌薄膜层;所述氧化锌靶材为99.9%纯度的氧化锌陶瓷靶,所述氩气气压维持1.2帕斯卡不变,靶基距为40~60毫米,薄膜的沉积温度为20~25摄氏度,薄膜层厚度为40~100纳米;
(3)将步骤(2)中获得的样品放入管式电阻炉,在温度为300~400摄氏度下空气气氛中热处理,温度上升速率为2摄氏度每分钟,至300~400摄氏度时保持60~180分钟,后自然冷却至室温;
(4)将0.3~0.5克六水合硝酸锌、0.15~0.25克乌洛托品和0.5~1毫升25%的氨水溶解于60~70毫升蒸馏水水中,充分搅拌5~10分钟,所得生长液倒入80~100毫升带有特氟龙内衬的高温反应釜中,将步骤(3)中得到的样品放入溶液中,在80~100摄氏度环境下反应1~2小时,从溶液中取出后将样品用无水乙醇洗涤并充分干燥;
(5)将步骤(4)得到的样品放入管式电阻炉,在温度为300~400摄氏度下空气气氛中热处理,温度上升速率为2摄氏度每分钟,至300~400摄氏度时保持60~180分钟,然后自然冷却至室温;
(6)将步骤(5)得到的样品放入装有40~80毫升三乙胺的80~100毫升的带有特氟龙内衬的高温反应釜中,在180~220摄氏度环境下反应2~5小时,将样品从溶液中取出后用乙醇清洗,室温下氮气环境下干燥;
(7)将步骤(6)中得到的样品在表面覆盖掩膜片后放入溅射室,利用抽真空系统使溅射室处于真空状态,直到背景真空达到目标真空度10-3~10-5帕斯卡,向溅射室中通入氩气,待气压到达5帕斯卡稳定后,采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在样品表面沉积金属Pd顶电极;靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd顶电极厚度为5~15纳米;
(8)将步骤(7)中得到的样品分别在金属Pd顶电极和硅基底上完成金属In电极的压制,并引出金属Cu导线。
下面结合实施例和附图,对本发明进行详细说明。
图1为氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器光探测性能测量的结构示意图。
图2为氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器的伏安特性曲线。结果表明器件表现出明显的异质结特性和光伏效应。
图3为氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器在无外加偏压时器件对不同波长单色光的周期响应性能。结果表明,器件对从紫外到近红外波长范围内的光具有光响应能力,说明该器件可以进行宽光带光探测。
图4为氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器在无外加偏压时器件对不同光功率密度光的周期响应性能。结果表明,在无外加偏压的条件下,器件随光的有无表现出稳定的开关特性,光电流随光功率密度的增大而增大,该器件的自驱动性能优异。

Claims (8)

1.一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器,其特征在于:由上至下依次包括金属In点电极、金属Pd顶电极、约1微米厚的掺杂氮的氧化锌纳米棒阵列薄膜层、p型单晶硅基底和金属In底电极,所述p型单晶硅层与掺杂氮的氧化锌纳米棒阵列薄膜层构成异质结。
2.根据权利要求1所述光电探测器件,其特征在于:掺杂氮的氧化锌纳米棒阵列薄膜层在p型硅基底表面,金属Pd顶电极在掺杂氮的氧化锌纳米棒阵列薄膜层表面,金属In底电极压制于硅基底背表面。
3.根据权利要求1-2任一所述光电探测器件,其特征在于:所述顶电极为Al、Au、Ag、Pd或Pt;所述p型硅单晶基底电阻率为0.1~1欧姆·厘米。
4.一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器,其特征在于:氧化锌纳米棒中有氮元素的存在,所述光电探测器件在无外加偏压下对紫外到近红外波长范围的光具有光响应。
5.一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器的制备方法,其特征在于:其包括以下步骤:
(1)选取p型硅基底,清洗去除表面污染物并进行干燥;
(2)将干燥完成的硅基底放入真空腔,采用射频磁控溅射技术,在氩气环境下,利用电离出的氩离子轰击氧化锌靶材,在硅基底表面沉积氧化锌薄膜层;所述氧化锌靶材为99.9%纯度的氧化锌陶瓷靶,所述氩气气压维持1.2帕斯卡不变,靶基距为40~60毫米,薄膜的沉积温度为20~25摄氏度,薄膜层厚度为40~100纳米;
(3)将步骤(2)中获得的样品放入管式电阻炉,在温度为300~400摄氏度下空气气氛中热处理,温度上升速率为2摄氏度每分钟,至300~400摄氏度时保持60~180分钟,然后自然冷却至室温;
(4)将0.3~0.5克六水合硝酸锌、0.15~0.25克乌洛托品和0.5~1毫升25%的氨水溶解于60~70毫升蒸馏水水中,充分搅拌5~10分钟,所得生长液倒入80~100毫升的带有特氟龙内衬的高温反应釜中,将步骤(3)得到的样品放入反应釜中,在80~100摄氏度环境下反应1~2小时,样品从溶液中取出后用无水乙醇洗涤并充分干燥;
(5)将步骤(4)得到的样品放入管式电阻炉,在温度为300~400摄氏度下空气气氛中热处理,温度上升速率为2摄氏度每分钟,至300~400摄氏度时保持60~180分钟,自然冷却至室温;
(6)将步骤(5)得到的样品放入装有40~80毫升三乙胺的80~100毫升的带有特氟龙内衬的高温反应釜中,在180~220摄氏度环境下反应2~5小时,将样品从溶液中取出后用乙醇清洗,室温下氮气环境中干燥;
(7)将步骤(6)中得到的样品在表面覆盖掩膜片后放入溅射室,利用抽真空系统使溅射室处于真空状态,直到背景真空达到目标真空度10-3~10-5帕斯卡,向溅射室中通入氩气,待气压到达5帕斯卡稳定后,采用直流磁控溅射技术,利用电离出的氩离子轰击金属Pd靶材,在样品表面沉积金属Pd顶电极;靶基距为50毫米,金属Pd薄膜的沉积温度为20~25摄氏度,金属Pd顶电极厚度为5~15纳米;
(8)将步骤(7)中得到的样品分别在金属Pd顶电极和p型硅基底上完成金属In电极的压制,并引出金属Cu导线。
6.根据权利要求5所述的一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器的制备方法,其特征在于:步骤(1)中,所述硅基底为p型单晶硅基底,尺寸为10毫米×10毫米,电阻率为0.1~1欧姆·厘米。
7.根据权利要求5所述的一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器的制备方法,其特征在于:步骤(7)中,所述Pd靶材为纯度99.9%的Pd金属靶,所述溅射功率为10~50瓦,沉积温度为30~50摄氏度。
8.根据权利要求5所述的一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器的制备方法,其特征在于:步骤(8)中,所述金属In电极所用原料In的纯度为99.5%,金属Pd顶电极上金属In电极大小和厚度分别为1毫米×1.5毫米和1毫米,硅基底上金属In电极大小和厚度均分别为10毫米×10毫米和2毫米,Cu导线直径为0.1毫米。
CN202010260273.5A 2020-04-03 2020-04-03 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法 Withdrawn CN111446324A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010260273.5A CN111446324A (zh) 2020-04-03 2020-04-03 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010260273.5A CN111446324A (zh) 2020-04-03 2020-04-03 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN111446324A true CN111446324A (zh) 2020-07-24

Family

ID=71649906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010260273.5A Withdrawn CN111446324A (zh) 2020-04-03 2020-04-03 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111446324A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299834A (zh) * 2021-05-18 2021-08-24 西北工业大学 基于纳米管复合结构的自驱动宽波段光电探测器
CN114512569A (zh) * 2021-11-25 2022-05-17 北京师范大学 一种梯度掺杂的宽光谱自供能光电探测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979323A (zh) * 2010-10-29 2011-02-23 哈尔滨工业大学 氮掺杂改性ZnO的制备方法
US20130009143A1 (en) * 2011-07-07 2013-01-10 Chih Chen Photo sensor and method of fabricating the same
CN105489694A (zh) * 2016-01-14 2016-04-13 中国石油大学(华东) 氧化锌/硅p-n异质结紫外光探测器及其制备方法
CN106684201A (zh) * 2017-01-13 2017-05-17 合肥工业大学 一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法
CN108054233A (zh) * 2017-12-11 2018-05-18 中国石油大学(华东) 一种具有纳米复合异质结构的红外光探测器及其制备方法
CN109360862A (zh) * 2018-10-26 2019-02-19 中国石油大学(华东) 一种基于ZnO纳米棒/Si异质结的自驱动光电探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101979323A (zh) * 2010-10-29 2011-02-23 哈尔滨工业大学 氮掺杂改性ZnO的制备方法
US20130009143A1 (en) * 2011-07-07 2013-01-10 Chih Chen Photo sensor and method of fabricating the same
CN105489694A (zh) * 2016-01-14 2016-04-13 中国石油大学(华东) 氧化锌/硅p-n异质结紫外光探测器及其制备方法
CN106684201A (zh) * 2017-01-13 2017-05-17 合肥工业大学 一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法
CN108054233A (zh) * 2017-12-11 2018-05-18 中国石油大学(华东) 一种具有纳米复合异质结构的红外光探测器及其制备方法
CN109360862A (zh) * 2018-10-26 2019-02-19 中国石油大学(华东) 一种基于ZnO纳米棒/Si异质结的自驱动光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.S. ISMAIL: "Structural and Optical Properties of N-doped Zn0 Nanorod Arrays Prepared Using Sol-Gel Immersion Method", 《2016 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299834A (zh) * 2021-05-18 2021-08-24 西北工业大学 基于纳米管复合结构的自驱动宽波段光电探测器
CN114512569A (zh) * 2021-11-25 2022-05-17 北京师范大学 一种梯度掺杂的宽光谱自供能光电探测器
CN114512569B (zh) * 2021-11-25 2023-06-02 北京师范大学 一种梯度掺杂的宽光谱自供能光电探测器

Similar Documents

Publication Publication Date Title
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN112382691B (zh) 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
CN109360862B (zh) 基于ZnO纳米棒/Si异质结的自驱动光电探测器及制备方法
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN109000790B (zh) 一种氧化镓基柔性日盲紫外火焰探测器及其制备方法
CN105720197B (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN111446324A (zh) 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法
CN108767050A (zh) 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN108735833B (zh) 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法
CN110323294A (zh) 一种氧化锌/铯铅溴核壳微米线及其制备方法以及一种光探测器
CN109411562A (zh) 二硒化铂薄膜/n-型锗异质结近红外光探测器及其制备方法
CN109841703A (zh) 一种高稳定、低暗电流全无机钙钛矿光电探测器及其制备方法
CN104183665A (zh) 基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法
CN110491966B (zh) 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法
CN110828589B (zh) 一种柔性日盲紫外光电探测器及其制备方法
CN112635587A (zh) 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法
CN115295675B (zh) 一种基于二维材料Te/MoS2异质结的光探测器的制备方法
CN113066888A (zh) 一种基于In2S3纳米片阵列/Si金字塔阵列异质结的自驱动光电探测器
CN111162181A (zh) 一种铪掺杂氧化锌的光电探测器及其制备方法
CN106206829A (zh) 一种基于锰掺杂氮化铜薄膜的可见光探测器
CN112071652B (zh) 一种三维刺猬状ZnO/SnO2异质结构及其制备方法与其在紫外探测器中的应用
CN113804292B (zh) 光电化学型自供电日盲深紫外光电探测器及其制备方法
CN111564561B (zh) 一种PPy/SnO2异质结、其应用、其制备方法及光电探测器
CN113054055A (zh) 一种基于SnSe/SnO2多层球壳/Si异质结的自驱动光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200724

WW01 Invention patent application withdrawn after publication