CN108735833B - 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法 - Google Patents

一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法 Download PDF

Info

Publication number
CN108735833B
CN108735833B CN201810535319.2A CN201810535319A CN108735833B CN 108735833 B CN108735833 B CN 108735833B CN 201810535319 A CN201810535319 A CN 201810535319A CN 108735833 B CN108735833 B CN 108735833B
Authority
CN
China
Prior art keywords
film
pfh
nano
array
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810535319.2A
Other languages
English (en)
Other versions
CN108735833A (zh
Inventor
张权岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongying Ruigang Investment Promotion Service Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810535319.2A priority Critical patent/CN108735833B/zh
Publication of CN108735833A publication Critical patent/CN108735833A/zh
Application granted granted Critical
Publication of CN108735833B publication Critical patent/CN108735833B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法,依次包括玻璃纤维布衬底,设置于玻璃纤维布衬底上的β‑Ga2O3薄膜,设置于β‑Ga2O3薄膜上的β‑Ga2O3纳米柱阵列,设置于β‑Ga2O3纳米柱阵列上方及间隙的PFH薄膜,设置于PFH薄膜内的CdSe量子点,设置于PFH薄膜上方的第一Au薄膜电极,设置于β‑Ga2O3薄膜上方的第二Au薄膜电极;内部设置CdSe量子点的PFH薄膜为p型PFH@CdSe量子点有机蓝光混合薄膜,p型PFH@CdSe量子点有机蓝光混合薄膜与β‑Ga2O3纳米柱阵列形成pn结结构。发明的柔性广谱光电探测器对深紫外区至近红外区光谱均有响应,具有高响应度的广谱探测能力和零功耗特性,并且性能稳定,反应灵敏,在可穿戴设备、智能纺织品和广谱光电探测领域具有很大的应用前景。

Description

一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制 备方法
技术领域
本发明涉及一种柔性光电探测器及其制备方法,具体是指一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法。
技术背景
半导体基光探测器多数在短波范围响应度低,而覆盖紫外到近红外的光谱范围的宽谱响应光电探测器,在工业自动控制、光通信、射线探测、传感监测等领域用途广泛,具有重要的社会经济价值。β-Ga2O3是一种n型的超宽禁带半导体材料,具有良好的透光性,在紫外光区域能达到80%以上的透过率。由于β-Ga2O3禁带宽度较大,只能吸收深紫外光,为了提高其对宽光谱的吸收范围,提高光的利用效率,常与窄带隙半导体材料进行复合构成复合材料或异质结。
随着人们对可穿戴电子设备需求的提升,可弯曲、可折叠柔性器件的应用越来越广泛。常用的紫外光电探测器件都是在刚性衬底上生长半导体薄膜,比如硅片、蓝宝石和石英衬底等,这些器件都无法弯曲,限制了器件的应用范围。而且,目前大部分的柔性衬底都是高分子类化合物,无法承受高温,因此,选择一种可耐高温的柔性衬底制备氧化镓材料,以实现氧化镓基光电探测器的柔性可弯曲特性,具有重要的意义。
发明内容
本发明的目的是提供一种灵敏度高、稳定性好、响应时间短的有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法。
本发明提供的技术方案为:一种有机/无机pn结纳米阵列的柔性广谱光电探测器,其特征在于,依次包括玻璃纤维布衬底,设置于玻璃纤维布衬底上的β-Ga2O3薄膜,设置于β-Ga2O3薄膜上的β-Ga2O3纳米柱阵列,设置于β-Ga2O3纳米柱阵列上方及间隙的PFH薄膜(PFH为聚9,9一二己基芴),设置于PFH薄膜内的CdSe量子点,设置于PFH薄膜上方的第一Au薄膜电极,设置于β-Ga2O3薄膜上方的第二Au薄膜电极;内部设置CdSe量子点的PFH薄膜为p型PFH@CdSe量子点有机蓝光混合薄膜,p型PFH@CdSe量子点有机蓝光混合薄膜与β-Ga2O3纳米柱阵列形成pn结结构。
优选地,所述β-Ga2O3薄膜作为β-Ga2O3纳米柱阵列的生长基底,位于玻璃纤维布衬底和β-Ga2O3纳米柱阵列之间,所述β-Ga2O3纳米柱阵列的分布面积小于β-Ga2O3薄膜的面积,所述β-Ga2O3纳米柱阵列和第二Au薄膜电极位于β-Ga2O3薄膜的同一侧。
优选地,本发明的一种技术方案为,所述CdSe量子点包含在PFH薄膜中,并均匀嵌入于β-Ga2O3纳米柱阵列之间。
优选地,本发明的另一种技术方案为,所述CdSe量子点包含在PFH薄膜中,并均匀嵌入于β-Ga2O3纳米柱阵列之间和均匀的分布于β-Ga2O3纳米柱阵列上方。
优选地,所述β-Ga2O3纳米柱的直径为100-200nm,高度为0.8-1.5μm;所述PFH薄膜的厚度为1.0-1.5μm,CdSe量子点的直径为4-5nm,β-Ga2O3薄膜的厚度为0.2-0.5μm。
本发明的探测器,PFH是一种p型有机蓝光聚合物材料,在300-450nm光谱范围具有很强的吸收,CdSe是一种天然的p型的半导体化合物,在可见光区具有良好的光学性能,而且β-Ga2O3与PFH及CdSe能形成pn结,使电子空穴对实现快速、有效地分离,从而提高对广谱光的吸收效率。
具体地,所述的一种有机/无机pn结纳米阵列的柔性广谱光电探测器,对深紫外区至近红外区光谱均有响应,具有高响应度的广谱探测能力和零功耗特性,并且可弯曲和折叠,可应用于便捷式可穿戴广谱光检测设备。
本发明还包括一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,其特征在于,包括以下步骤:
步骤一,对玻璃纤维布衬底进行清洗,清洗过程如下:将衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2气吹干,待用;
步骤二,将玻璃纤维布衬底放置于加热台,设置加热台的温度为100℃,将一粒Ga金属放置于玻璃纤维布衬底上方,待镓金属融化,利用载玻片将液体Ga金属压印成片,冷却后,形成Ga金属片/玻璃纤维布衬底待用;
步骤三,把Ga2O3靶材放置在磁控溅射沉积系统的靶台位置,将步骤二所得的Ga金属片/玻璃纤维布衬底固定在样品托上,放进真空腔;
步骤四,β-Ga2O3纳米柱阵列的制备:将腔体抽真空,通入氩气,调整真空腔内的压强,再通入氧气,加热Ga金属片/玻璃纤维布衬底,开启Ga2O3靶射频电源,利用磁控溅射法在镓金属片表面的镓液滴上原位生长β-Ga2O3纳米柱阵列,其中,Ga2O3靶材与玻璃纤维布衬底的距离设定为5厘米,抽真空后腔体压强为1×10-4Pa,通入氩气后,真空腔的压强为0.8-1.0Pa,通入氧气后,真空腔的压强调整为103Pa;
步骤五,CdSe量子点的制备:称取0.25g CdO、4-5mL油酸和30-40mL十八烯放入100mL的三口烧瓶中,抽真空5min后开始加热,并快速升温至120-130℃,保温30min,然后通入氩气,降温至30℃以下,再称取0.05g Se粉,加入到三口烧瓶中,10min升温至220-240℃,保温60min后冷却至室温,最后利用环己烷和无水乙醇超声循环清洗,待用;
步骤六,将PFH溶解在氯仿中,制成溶液,再加入一定量步骤五所得的CdSe量子点,形成混合溶液,然后将配好的混合溶液旋凃在步骤四制备好的β-Ga2O3纳米柱阵列上方,制成有机/无机PFH@CdSe/β-Ga2O3pn结纳米阵列。
步骤七,利用掩膜版并通过射频磁控溅射技术在PFH薄膜和β-Ga2O3薄膜上方各沉积一层Au薄膜电极,其中,溅射工艺条件:抽真空后腔体压强为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8-1.0Pa,溅射功率为60-80W,溅射时间为5min。
具体地,所述的步骤四中加热Ga金属片/玻璃纤维布衬底的温度为700-800℃,溅射功率为60-80W,溅射时间为1-1.5小时。
进一步地,所述的步骤七中工作气压为0.8Pa,溅射功率为80W。
具体地,步骤四采用磁控溅射法制备β-Ga2O3纳米柱阵列,在700-800℃的高温加热下,镓金属薄膜表面形成镓金属液滴,通过磁控溅射在镓金属液滴上生长β-Ga2O3纳米柱阵列,同时,镓金属层在氧气氛围下缓慢氧化形成β-Ga2O3薄膜。其中,镓作为自催化剂可以催化镓金属层在高温下形成氧化镓纳米材料,缩短反应时间,另一方面镓金属层缓慢氧化形成氧化镓薄膜,可以作为阵列生长基底,使得形成的氧化镓纳米柱有序、分布均匀。
本发明的优点:
1、本发明所制备的PFH@CdSe/β-Ga2O3pn结纳米柱阵列是三维立体的,分布均匀且接触面积大,结的利用效率高,对光的吸收强、范围广,是一种宽光谱的光电探测器。
2、本发明的一种有机/无机pn结纳米阵列的柔性广谱光电探测器,所采用的β-Ga2O3纳米柱阵列均匀、有序,纳米柱尺寸可控,β-Ga2O3纳米柱的直径为100-200nm,PFH薄膜的厚度为1.0-1.5μm时,光电性能更佳。
3、本发明的一种有机/无机pn结纳米阵列的柔性广谱光电探测器,对深紫外区至近红外区光谱均有响应,具有高响应度的广谱探测能力和零功耗特性,性能稳定,反应灵敏,并且可弯曲和折叠,可应用于便捷式可穿戴广谱光检测设备。
4、本发明一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,采用磁控溅射法和旋凃法制备PFH@CdSe/β-Ga2O3pn结纳米柱阵列,具有成本低、工艺可控、可大面积制备、重复性好等优点。
5、本发明一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,通过在玻璃纤维柔性基底上直接制备β-Ga2O3薄膜,使得形成的器件结合紧密,稳定性强;制备获得的Au/PFH@CdSe/β-Ga2O3/Aupn结纳米阵列柔性紫外光电探测器件,易操作,厚度稳定均一、柔性可弯曲。
附图说明
图1是本发明的有机/无机pn结纳米阵列的柔性广谱光电探测器的结构示意图;
图2是本发明方法所得β-Ga2O3纳米柱阵列的SEM照片;
图3是本发明方法所得CdSe量子点的TEM照片;
图4是本发明方法在不同波长光照下测得有机/无机pn结纳米阵列的柔性广谱光电探测器的I-t曲线图。
具体实施方式
下面结合附图对本发明的内容进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。居于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
实施例1
一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,包括以下步骤:
(1)对玻璃纤维布衬底进行清洗,清洗过程如下:将衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2气吹干,待用;
(2)将玻璃纤维布衬底放置于加热台,设置加热台的温度为100℃,将一粒Ga金属放置于玻璃纤维布衬底上方,待镓金属融化,利用载玻片将液体Ga金属压印成片,冷却后,形成Ga金属片/玻璃纤维布衬底待用;
(3)把Ga2O3靶材放置在磁控溅射沉积系统的靶台位置,将步骤(2)所得的Ga金属片/玻璃纤维布衬底固定在样品托上,放进真空腔;
(4)β-Ga2O3纳米柱阵列的制备:将腔体抽真空,通入氩气,调整真空腔内的压强,再通入氧气,加热Ga金属片/玻璃纤维布衬底,开启Ga2O3靶射频电源,利用磁控溅射法在镓金属片表面的镓液滴上原位生长β-Ga2O3纳米柱阵列,其中,Ga2O3靶材与玻璃纤维布衬底的距离设定为5厘米,抽真空后腔体压强为1×10-4Pa,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,加热Ga金属片/玻璃纤维布衬底的温度为800℃,溅射功率为80W,溅射时间为1.5小时;
(5)CdSe量子点的制备:称取0.25g CdO、4mL油酸和30mL十八烯放入100mL的三口烧瓶中,抽真空5min后开始加热,并快速升温至130℃,保温30min,然后通入氩气,降温至30℃以下,再称取0.05g Se粉,加入到三口烧瓶中,10min升温至240℃,保温60min后冷却至室温,最后利用环己烷和无水乙醇超声循环清洗,待用;
(6)将PFH溶解在氯仿中,制成溶液,再加入一定量步骤(5)所得的CdSe量子点,形成混合溶液,然后将配好的混合溶液旋凃在步骤(4)制备好的β-Ga2O3纳米柱阵列上方,制成有机/无机PFH@CdSe/β-Ga2O3pn结纳米阵列。
(7)利用掩膜版并通过射频磁控溅射技术在PFH薄膜和β-Ga2O3薄膜上方各沉积一层Au薄膜电极,其中,溅射工艺条件:抽真空后腔体压强为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8Pa,溅射功率为80W,溅射时间为5min。
步骤(4)采用磁控溅射法制备β-Ga2O3纳米柱阵列。在700-800℃的高温加热下,镓金属薄膜表面形成镓金属液滴,通过磁控溅射在镓金属液滴上生长β-Ga2O3纳米柱阵列,同时,镓金属层在氧气氛围下缓慢氧化形成β-Ga2O3薄膜。其中,镓作为自催化剂可以催化镓金属层在高温下形成氧化镓纳米材料,另一方面镓金属层缓慢氧化形成氧化镓薄膜,可以作为阵列生长基底,使得形成的氧化镓纳米柱有序、分布均匀。
将步骤(4)所得的样品在扫描电镜中观察,发现纳米柱生长均匀,如图2所示,显示β-Ga2O3纳米柱的直径为100-200nm,高度为0.8-1.5μm,纳米柱阵列基底层β-Ga2O3薄膜的厚度为0.2-0.5μm。将步骤(5)所得的样品在透射电镜中观察,发现CdSe量子点的直径为4-5nm(图3)。
对步骤(7)中所得的Au/PFH@CdSe/β-Ga2O3/Aupn结纳米阵列器件进行光电性能测试。图4给出了在不同波长光照下测得有机/无机pn结纳米阵列的柔性广谱光电探测器的I-t曲线图。从图中可以看出,在不加电压下(0伏特)控制254nm、365nm、460nm、532nm和680nm不同波长灯的开关,电流瞬时发生变化,开关比达到160,表明该光电探测器对深紫外区至近红外区光谱均有响应,灵敏度高,而且随着波长的增大,其光电响应电流逐渐变大,具有零功耗和高响应度的广谱光探测能力,有望在可穿戴高性能夜视、工业生产监视和广谱光探测领域得到广泛应用。
实施例2
一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,包括以下步骤:
(1)对玻璃纤维布衬底进行清洗,清洗过程如下:将衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2气吹干,待用;
(2)将玻璃纤维布衬底放置于加热台,设置加热台的温度为100℃,将一粒Ga金属放置于玻璃纤维布衬底上方,待镓金属融化,利用载玻片将液体Ga金属压印成片,冷却后,形成Ga金属片/玻璃纤维布衬底待用;
(3)把Ga2O3靶材放置在磁控溅射沉积系统的靶台位置,将步骤(2)所得的Ga金属片/玻璃纤维布衬底固定在样品托上,放进真空腔;
(4)β-Ga2O3纳米柱阵列的制备:将腔体抽真空,通入氩气,调整真空腔内的压强,再通入氧气,加热Ga金属片/玻璃纤维布衬底,开启Ga2O3靶射频电源,利用磁控溅射法在镓金属片表面的镓液滴上原位生长β-Ga2O3纳米柱阵列,其中,Ga2O3靶材与玻璃纤维布衬底的距离设定为5厘米,抽真空后腔体压强为1×10-4Pa,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,加热Ga金属片/玻璃纤维布衬底的温度为800℃,溅射功率为70W,溅射时间为1.0小时;
(5)CdSe量子点的制备:称取0.25g CdO、5mL油酸和30mL十八烯放入100mL的三口烧瓶中,抽真空5min后开始加热,并快速升温至120℃,保温30min,然后通入氩气,降温至30℃以下,再称取0.05g Se粉,加入到三口烧瓶中,10min升温至240℃,保温60min后冷却至室温,最后利用环己烷和无水乙醇超声循环清洗,待用;
(6)将PFH溶解在氯仿中,制成溶液,再加入一定量步骤(5)所得的CdSe量子点,形成混合溶液,然后将配好的混合溶液旋凃在步骤(4)制备好的β-Ga2O3纳米柱阵列上方,制成有机/无机PFH@CdSe/β-Ga2O3pn结纳米阵列。
(7)利用掩膜版并通过射频磁控溅射技术在PFH薄膜和β-Ga2O3薄膜上方各沉积一层Au薄膜电极,其中,溅射工艺条件:抽真空后腔体压强为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8Pa,溅射功率为80W,溅射时间为5min。
实施例3
一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,包括以下步骤:
(1)对玻璃纤维布衬底进行清洗,清洗过程如下:将衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2气吹干,待用;
(2)将玻璃纤维布衬底放置于加热台,设置加热台的温度为100℃,将一粒Ga金属放置于玻璃纤维布衬底上方,待镓金属融化,利用载玻片将液体Ga金属压印成片,冷却后,形成Ga金属片/玻璃纤维布衬底待用;
(3)把Ga2O3靶材放置在磁控溅射沉积系统的靶台位置,将步骤(2)所得的Ga金属片/玻璃纤维布衬底固定在样品托上,放进真空腔;
(4)β-Ga2O3纳米柱阵列的制备:将腔体抽真空,通入氩气,调整真空腔内的压强,再通入氧气,加热Ga金属片/玻璃纤维布衬底,开启Ga2O3靶射频电源,利用磁控溅射法在镓金属片表面的镓液滴上原位生长β-Ga2O3纳米柱阵列,其中,Ga2O3靶材与玻璃纤维布衬底的距离设定为5厘米,抽真空后腔体压强为1×10-4Pa,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,加热Ga金属片/玻璃纤维布衬底的温度为700℃,溅射功率为70W,溅射时间为1.0小时;
(5)CdSe量子点的制备:称取0.25g CdO、5mL油酸和40mL十八烯放入100mL的三口烧瓶中,抽真空5min后开始加热,并快速升温至120℃,保温30min,然后通入氩气,降温至30℃以下,再称取0.05g Se粉,加入到三口烧瓶中,10min升温至230℃,保温60min后冷却至室温,最后利用环己烷和无水乙醇超声循环清洗,待用;
(6)将PFH溶解在氯仿中,制成溶液,再加入一定量步骤(5)所得的CdSe量子点,形成混合溶液,然后将配好的混合溶液旋凃在步骤(4)制备好的β-Ga2O3纳米柱阵列上方,制成有机/无机PFH@CdSe/β-Ga2O3pn结纳米阵列。
(7)利用掩膜版并通过射频磁控溅射技术在PFH薄膜和β-Ga2O3薄膜上方各沉积一层Au薄膜电极,其中,溅射工艺条件:抽真空后腔体压强为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8Pa,溅射功率为80W,溅射时间为5min。
实施例4
一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,包括以下步骤:
(1)对玻璃纤维布衬底进行清洗,清洗过程如下:将衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2气吹干,待用;
(2)将玻璃纤维布衬底放置于加热台,设置加热台的温度为100℃,将一粒Ga金属放置于玻璃纤维布衬底上方,待镓金属融化,利用载玻片将液体Ga金属压印成片,冷却后,形成Ga金属片/玻璃纤维布衬底待用;
(3)把Ga2O3靶材放置在磁控溅射沉积系统的靶台位置,将步骤(2)所得的Ga金属片/玻璃纤维布衬底固定在样品托上,放进真空腔;
(4)β-Ga2O3纳米柱阵列的制备:将腔体抽真空,通入氩气,调整真空腔内的压强,再通入氧气,加热Ga金属片/玻璃纤维布衬底,开启Ga2O3靶射频电源,利用磁控溅射法在镓金属片表面的镓液滴上原位生长β-Ga2O3纳米柱阵列,其中,Ga2O3靶材与玻璃纤维布衬底的距离设定为5厘米,抽真空后腔体压强为1×10-4Pa,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,加热Ga金属片/玻璃纤维布衬底的温度为750℃,溅射功率为80W,溅射时间为1.0小时;
(5)CdSe量子点的制备:称取0.25g CdO、3mL油酸和40mL十八烯放入100mL的三口烧瓶中,抽真空5min后开始加热,并快速升温至125℃,保温30min,然后通入氩气,降温至30℃以下,再称取0.05g Se粉,加入到三口烧瓶中,10min升温至230℃,保温60min后冷却至室温,最后利用环己烷和无水乙醇超声循环清洗,待用;
(6)将PFH溶解在氯仿中,制成溶液,再加入一定量步骤(5)所得的CdSe量子点,形成混合溶液,然后将配好的混合溶液旋凃在步骤(4)制备好的β-Ga2O3纳米柱阵列上方,制成有机/无机PFH@CdSe/β-Ga2O3pn结纳米阵列。
(7)利用掩膜版并通过射频磁控溅射技术在PFH薄膜和β-Ga2O3薄膜上方各沉积一层Au薄膜电极,其中,溅射工艺条件:抽真空后腔体压强为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8Pa,溅射功率为80W,溅射时间为5min。
实施例5
一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,包括以下步骤:
(1)对玻璃纤维布衬底进行清洗,清洗过程如下:将衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2气吹干,待用;
(2)将玻璃纤维布衬底放置于加热台,设置加热台的温度为100℃,将一粒Ga金属放置于玻璃纤维布衬底上方,待镓金属融化,利用载玻片将液体Ga金属压印成片,冷却后,形成Ga金属片/玻璃纤维布衬底待用;
(3)把Ga2O3靶材放置在磁控溅射沉积系统的靶台位置,将步骤(2)所得的Ga金属片/玻璃纤维布衬底固定在样品托上,放进真空腔;
(4)β-Ga2O3纳米柱阵列的制备:将腔体抽真空,通入氩气,调整真空腔内的压强,再通入氧气,加热Ga金属片/玻璃纤维布衬底,开启Ga2O3靶射频电源,利用磁控溅射法在镓金属片表面的镓液滴上原位生长β-Ga2O3纳米柱阵列,其中,Ga2O3靶材与玻璃纤维布衬底的距离设定为5厘米,抽真空后腔体压强为1×10-4Pa,通入氩气后,真空腔的压强为0.8Pa,通入氧气后,真空腔的压强调整为103Pa,加热Ga金属片/玻璃纤维布衬底的温度为800℃,溅射功率为60W,溅射时间为1.5小时;
(5)CdSe量子点的制备:称取0.25g CdO、3mL油酸和30mL十八烯放入100mL的三口烧瓶中,抽真空5min后开始加热,并快速升温至130℃,保温30min,然后通入氩气,降温至30℃以下,再称取0.05g Se粉,加入到三口烧瓶中,10min升温至220℃,保温60min后冷却至室温,最后利用环己烷和无水乙醇超声循环清洗,待用;
(6)将PFH溶解在氯仿中,制成溶液,再加入一定量步骤(5)所得的CdSe量子点,形成混合溶液,然后将配好的混合溶液旋凃在步骤(4)制备好的β-Ga2O3纳米柱阵列上方,制成有机/无机PFH@CdSe/β-Ga2O3pn结纳米阵列。
(7)利用掩膜版并通过射频磁控溅射技术在PFH薄膜和β-Ga2O3薄膜上方各沉积一层Au薄膜电极,其中,溅射工艺条件:抽真空后腔体压强为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8Pa,溅射功率为80W,溅射时间为5min。
实施例6
如图1所示,一种有机/无机pn结纳米阵列的柔性广谱光电探测器,依次包括玻璃纤维布衬底1,设置于玻璃纤维布衬底1上的β-Ga2O3薄膜2,设置于β-Ga2O3薄膜1上的β-Ga2O3纳米柱阵列3,设置于β-Ga2O3纳米柱阵列3上方及间隙的PFH薄膜4,设置于PFH薄膜4内的CdSe量子点5,设置于PFH薄膜4上方的第一Au薄膜电极6,设置于β-Ga2O3薄膜2上方的第二Au薄膜电极7;内部设置CdSe量子点5的PFH薄膜4为p型PFH@CdSe量子点有机蓝光混合薄膜,p型PFH@CdSe量子点有机蓝光混合薄膜与β-Ga2O3纳米柱阵列3形成pn结结构。
具体地,所述β-Ga2O3薄膜2作为β-Ga2O3纳米柱阵列3的生长基底,位于玻璃纤维布衬底1和β-Ga2O3纳米柱阵列3之间,所述β-Ga2O3纳米柱阵列3的分布面积小于β-Ga2O3薄膜2的面积,所述β-Ga2O3纳米柱阵列3和第二Au薄膜电极7位于β-Ga2O3薄膜2的同一侧。
优选地,所述CdSe量子点5包含在PFH薄膜4中,并均匀嵌入于β-Ga2O3纳米柱阵列3之间和均匀的分布于β-Ga2O3纳米柱阵列3上方。
优选地,β-Ga2O3纳米柱的直径为100-200nm,高度为0.8-1.5μm;所述PFH薄膜4的厚度为1.0-1.5μm,CdSe量子点5的直径为4-5nm,β-Ga2O3薄膜2的厚度为0.2-0.5μm。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上、在本发明的方法和原则之内,所作的任何修改等同替换、改进,均应包含在本发明的保护范围之内。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (8)

1.一种有机/无机pn结纳米阵列的柔性广谱光电探测器,其特征在于,依次包括玻璃纤维布衬底,设置于玻璃纤维布衬底上的β-Ga2O3薄膜,设置于β-Ga2O3薄膜上的β-Ga2O3纳米柱阵列,设置于β-Ga2O3纳米柱阵列上方及间隙的PFH薄膜,设置于PFH薄膜内的CdSe量子点,设置于PFH薄膜上方的第一Au薄膜电极,设置于β-Ga2O3薄膜上方的第二Au薄膜电极;内部设置CdSe量子点的PFH薄膜为p型PFH@CdSe量子点有机蓝光混合薄膜,p型PFH@CdSe量子点有机蓝光混合薄膜与β-Ga2O3纳米柱阵列形成pn结结构。
2.根据权利要求1所述的一种有机/无机pn结纳米阵列的柔性广谱光电探测器,其特征在于,所述β-Ga2O3薄膜作为β-Ga2O3纳米柱阵列的生长基底,位于玻璃纤维布衬底和β-Ga2O3纳米柱阵列之间,所述β-Ga2O3纳米柱阵列的分布面积小于β-Ga2O3薄膜的面积,所述β-Ga2O3纳米柱阵列和第二Au薄膜电极位于β-Ga2O3薄膜的同一侧。
3.根据权利要求1所述的一种有机/无机pn结纳米阵列的柔性广谱光电探测器,其特征在于,所述CdSe量子点包含在PFH薄膜中,并均匀嵌入于β-Ga2O3纳米柱阵列之间。
4.根据权利要求1所述的一种有机/无机pn结纳米阵列的柔性广谱光电探测器,其特征在于,所述CdSe量子点包含在PFH薄膜中,并均匀嵌入于β-Ga2O3纳米柱阵列之间和均匀的分布于β-Ga2O3纳米柱阵列上方。
5.根据权利要求1或2或3或4所述的一种有机/无机pn结纳米阵列的柔性广谱光电探测器,其特征在于,所述β-Ga2O3纳米柱的直径为100-200nm,高度为0.8-1.5μm;所述设置于β-Ga2O3纳米柱阵列上方及间隙的PFH薄膜的厚度为1.0-1.5μm,CdSe量子点的直径为4-5nm,β-Ga2O3薄膜的厚度为0.2-0.5μm。
6.一种有机/无机pn结纳米阵列的柔性广谱光电探测器的制备方法,其特征在于,包括以下步骤:
步骤一,对玻璃纤维布衬底进行清洗,清洗过程如下:将衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,最后用干燥的N2气吹干,待用;
步骤二,将玻璃纤维布衬底放置于加热台,设置加热台的温度为100℃,将一粒Ga金属放置于玻璃纤维布衬底上方,待镓金属融化,利用载玻片将液体Ga金属压印成片,冷却后,形成Ga金属片/玻璃纤维布衬底待用;
步骤三,把Ga2O3靶材放置在磁控溅射沉积系统的靶台位置,将步骤二所得的Ga金属片/玻璃纤维布衬底固定在样品托上,放进真空腔;
步骤四,β-Ga2O3纳米柱阵列的制备:将腔体抽真空,通入氩气,调整真空腔内的压强,再通入氧气,加热Ga金属片/玻璃纤维布衬底,开启Ga2O3靶射频电源,利用磁控溅射法在镓金属片表面的镓液滴上原位生长β-Ga2O3纳米柱阵列,其中,Ga2O3靶材与玻璃纤维布衬底的距离设定为5厘米,抽真空后腔体压强为1×10-4Pa,通入氩气后,真空腔的压强为0.8-1.0Pa,通入氧气后,真空腔的压强调整为103Pa;
步骤五,CdSe量子点的制备:称取0.25g CdO、4-5mL油酸和30-40mL十八烯放入100mL的三口烧瓶中,抽真空5min后开始加热,并快速升温至120-130℃,保温30min,然后通入氩气,降温至30℃以下,再称取0.05g Se粉,加入到三口烧瓶中,10min升温至220-240℃,保温60min后冷却至室温,最后利用环己烷和无水乙醇超声循环清洗,待用;
步骤六,将PFH溶解在氯仿中,制成溶液,再加入一定量步骤五所得的CdSe量子点,形成混合溶液,然后将配好的混合溶液旋凃在步骤四制备好的β-Ga2O3纳米柱阵列上方,制成有机/无机PFH@CdSe/β-Ga2O3pn结纳米阵列;
步骤七,利用掩膜版并通过射频磁控溅射技术在PFH薄膜和β-Ga2O3薄膜上方各沉积一层Au薄膜电极,其中,溅射工艺条件:抽真空后腔体压强为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8-1.0Pa,溅射功率为60-80W,溅射时间为5min。
7.根据权利要求6所述的制备方法,其特征在于所述的步骤四中加热Ga金属片/玻璃纤维布衬底的温度为700-800℃,溅射功率为60-80W,溅射时间为1-1.5小时。
8.根据权利要求6所述的制备方法,其特征在于所述的步骤七中工作气压为0.8Pa,溅射功率为80W。
CN201810535319.2A 2018-05-30 2018-05-30 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法 Active CN108735833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810535319.2A CN108735833B (zh) 2018-05-30 2018-05-30 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810535319.2A CN108735833B (zh) 2018-05-30 2018-05-30 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN108735833A CN108735833A (zh) 2018-11-02
CN108735833B true CN108735833B (zh) 2020-02-28

Family

ID=63936720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810535319.2A Active CN108735833B (zh) 2018-05-30 2018-05-30 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN108735833B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110400862B (zh) * 2019-07-29 2021-04-02 中国科学院长春光学精密机械与物理研究所 一种红外热辐射光源及红外传感器
CN110707177A (zh) * 2019-09-25 2020-01-17 江苏大学 一种金纳米棒-硫化铅量子点光探测器及其制备方法
CN112909185B (zh) * 2021-01-18 2022-08-26 西安工业大学 一种基于量子点和高分子聚合物的光导器件的制备方法
CN114990505B (zh) * 2022-04-08 2023-08-22 集美大学 一种基于光波导效应的氧化镓薄膜及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916827B (zh) * 2010-06-29 2012-05-02 浙江大学 有机/二氧化钛复合紫外光探测的制备方法
CN102222771A (zh) * 2011-06-30 2011-10-19 昆明物理研究所 一种有机与无机杂化半导体紫外光伏探测器
CN103682103B (zh) * 2013-12-13 2016-02-24 浙江大学 有机-无机复合日盲型紫外光探测器
CN107369763B (zh) * 2017-06-05 2020-02-18 西安电子科技大学 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
CN107331717A (zh) * 2017-06-26 2017-11-07 暨南大学 一种有机‑无机纳米线及其制备方法和有机‑无机光探测器及其制备方法
CN107611266A (zh) * 2017-09-06 2018-01-19 中南大学 一种柔性有机光电探测器及其制备方法
CN107658384B (zh) * 2017-10-27 2020-03-27 张香丽 基于有机-无机多异质结纳米阵列的广谱光电探测器及其制备方法

Also Published As

Publication number Publication date
CN108735833A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
CN108735833B (zh) 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法
Xue et al. Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure
CN108767050B (zh) 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN107919409B (zh) 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法
CN109000790B (zh) 一种氧化镓基柔性日盲紫外火焰探测器及其制备方法
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
Mridha et al. Thickness dependent photoconducting properties of ZnO films
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
Ameen et al. Solar light photodetectors based on nanocrystalline zinc oxide cadmium doped/p-Si heterojunctions
CN103441154B (zh) 一种ZnO纳米阵列紫外探测器及其制作方法
CN100428502C (zh) 一种a-b取向ZnO纳米线阵列的制备方法
CN105489694A (zh) 氧化锌/硅p-n异质结紫外光探测器及其制备方法
CN112563353A (zh) 一种异质结紫外探测器及其制备方法
CN109004057B (zh) 基于非晶氮化物薄膜的宽谱光电探测器件及其制备方法
CN107658384B (zh) 基于有机-无机多异质结纳米阵列的广谱光电探测器及其制备方法
Hamdaoui et al. Highly efficient, low cost, and stable self–powered UV photodetector based on Co2+: ZnO/Sn diluted magnetic semiconductor nanoparticles
CN110323294A (zh) 一种氧化锌/铯铅溴核壳微米线及其制备方法以及一种光探测器
CN108735826B (zh) 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN112201711B (zh) ZnO基同质结自驱动紫外光光电探测器及其制备方法
Zhu et al. ZnO nanoparticles as a luminescent down-shifting layer for photosensitive devices
CN106711288B (zh) 一种纳米晶硅薄膜太阳能电池的制备方法
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
CN107170853B (zh) 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221109

Address after: No. 99, Gangcheng Road, Administrative Committee of Dongying Port Economic Development Zone, Dongying City, Shandong Province 257237

Patentee after: Dongying Ruigang Investment Promotion Service Co.,Ltd.

Address before: No. 54, Puyang Village, Zhongyu Township, Pujiang County, Jinhua City, Zhejiang Province 322207

Patentee before: Zhang Quanyue

TR01 Transfer of patent right