CN112635587A - 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法 - Google Patents

基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN112635587A
CN112635587A CN202011629182.0A CN202011629182A CN112635587A CN 112635587 A CN112635587 A CN 112635587A CN 202011629182 A CN202011629182 A CN 202011629182A CN 112635587 A CN112635587 A CN 112635587A
Authority
CN
China
Prior art keywords
tio
nano
flexible
beta
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011629182.0A
Other languages
English (en)
Inventor
王顺利
陶江伟
张丽滢
徐金阳
郭道友
常裕鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Zixin Photoelectric Co ltd
Original Assignee
Hangzhou Zixin Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Zixin Photoelectric Co ltd filed Critical Hangzhou Zixin Photoelectric Co ltd
Publication of CN112635587A publication Critical patent/CN112635587A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法,探测器包括Ag上电极,柔性钛片下电极,位于所述Ag上电极和所述柔性钛片下电极之间的TiO2/α/β‑Ga2O3相结纳米柱阵列和石墨烯/Ag纳米线复合电极,其中,柔性钛片作为柔性钛片衬底;所述TiO2/α/β‑Ga2O3相结纳米柱阵列包括位于所述柔性钛片衬底上TiO2层,位于所述TiO2层上的α/β‑Ga2O3相结纳米柱阵列,所述α/β‑Ga2O3相结纳米柱阵列包括若干间隔设置的α/β‑Ga2O3相结纳米柱;所述石墨烯/Ag纳米线复合电极位于所述α/β‑Ga2O3相结纳米柱背离所述TiO2层一端,所述Ag上电极部分覆盖所述石墨烯/Ag纳米线复合电极。本发明的多异质结结构日盲紫外探测器,日盲特性稳定,具有优异的化学和热稳定性,有望在可穿戴、便捷式的紫外探测器领域广泛应用。

Description

基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备 方法
技术领域
本发明属于紫外光电探测器技术领域,具体涉及一种基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法。
技术背景
近些年,为了实现光电探测器的可穿戴化,柔性光电探测器的设计与制备受到了研究人员的广泛关注。柔性光电探测技术的快速发展对光敏材料的敏感性与柔韧性要求越来越高。一维无机纳米材料具有长径比高、电子传输速度快和各向异性等特点,其独特的电子限域作用有利于电子和空穴能态保持分离,能有效延长载流子寿命,展现出优秀的光电特性。同时,在外力作用下,线性的几何结构具有很好的弹性,当材料发生形变后,表面不会产生裂纹。这些特点使得一维无机纳米材料非常适合用于微型柔性光电器件的设计和制备。
氧化镓是一种直接带隙的Ⅲ-Ⅳ族宽带隙半导体材料,其禁带宽度为4.2-4.9 eV,对应的带边发射波长为295-254nm,在深紫外光电探测领域具有独特的优势,而且其化学和热稳定性好,是近年来第三代新型半导体材料的研究热门之一。与薄膜材料相比,氧化镓纳米材料由于具有高的表面和体积比,极大地提高了其对光谱和气体的探测灵敏度。柔性光电子产品有弹性,且具有一定曲率表面,而氧化镓基光电探测器件通常是在硅片、蓝宝石和石英衬底等刚性衬底上生长薄膜或纳米材料,这些器件都无法弯曲,限制了器件的应用范围。虽然已有文献报道了在PEN高分子柔性衬底上生长了非晶氧化镓薄膜,并制作了柔性日盲紫外探测器,而且目前大部分的柔性衬底都是高分子类化合物,无法承受高温,因此,选择一种可耐高温的柔性衬底制备单晶或多晶氧化镓材料,是实现高性能氧化镓基柔性紫外光电探测器件的关键。
到目前为止,已有相关实验(专利号:201710012296.2)基于柔性氧化镓纳米带的日盲紫外光电探测器的报道,但是此类探测器是将已经合成的氧化镓纳米带转移到柔性基底上,具有与基底贴合不牢固、稳定性差和电极制作难度大等缺点。
发明内容
本发明的目的是提供一种柔性可弯曲、灵敏度高、稳定性好、响应快速的基于TiO2/Ga2O3纳米相结的日盲紫外探测器及其制备方法。
本发明的技术方案为:一种基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,包括Ag上电极,柔性钛片下电极,位于所述Ag上电极和所述柔性钛片下电极之间的TiO2/α/β-Ga2O3相结纳米柱阵列和石墨烯/Ag纳米线复合电极,其中,柔性钛片作为柔性钛片衬底;所述TiO2/α/β-Ga2O3相结纳米柱阵列包括位于所述柔性钛片衬底上TiO2层,位于所述TiO2层上的α/β-Ga2O3相结纳米柱阵列,所述α/β-Ga2O3相结纳米柱阵列包括若干间隔设置的α/β-Ga2O3相结纳米柱;所述石墨烯/Ag纳米线复合电极位于所述α/β-Ga2O3相结纳米柱背离所述TiO2层一端,所述Ag上电极部分覆盖所述石墨烯/Ag纳米线复合电极。
其中,所述TiO2/α/β-Ga2O3相结纳米柱阵列包括p型TiO2层和n型α/β-Ga2O3纳米相结。
其中,所述α/β-Ga2O3纳米相结包括α-Ga2O3内核和包覆于α-Ga2O3内核侧壁和顶部的β-Ga2O3纳米相;所述TiO2层直接与α-Ga2O3内核的底部和β-Ga2O3纳米相的底部接触。
其中,所述TiO2层的厚度为200~300nm,所述α/β-Ga2O3相结纳米柱的直径为50-100nm,α/β-Ga2O3相结纳米柱的长度为1μm~1.3μm,β-Ga2O3的厚度为 10-30nm;所述柔性钛片衬底的厚度为0.1-0.2mm。
其中,所述石墨烯/Ag纳米线复合电极由石墨烯片和Ag纳米线复合而成,形成透明导电电极,并串联所述α/β-Ga2O3相结纳米柱阵列。
具体地,柔性可弯曲,性能稳定,可以检测200-280nm的日盲紫外光,可应用于便捷式可穿戴紫外线检测设备。
本发明还包括第二种技术方案,一种基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,包括以下步骤:
一、将金属钛片衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;将清洗干净的金属钛片置入氧等离子体中,使金属钛表面氧化,形成一层致密的TiO2层,即获得TiO2/Ti片衬底;
二,取浓度为0.5-1.0mol/L的异丙醇镓溶液置于反应釜内胆中,然后将步骤一所得的TiO2/Ti片衬底斜靠在反应釜内胆中,并浸没于异丙醇镓溶液中,其中TiO2层朝向所斜靠的反应釜内胆一侧;
三,将反应釜转移至烘箱中,在150℃下反应6-8h,随后取出样品,用去离子水和无水乙醇交替清洗次,烘干后在高温炉中400-500℃先退火1.0-2.0小时,得到TiO2/α-Ga2O3纳米柱阵列,然后将高温炉快速升温至700-800℃,并继续退火10-20分钟,获得TiO2/α/β-Ga2O3相结纳米柱阵列;
四,在步骤三得到的TiO2/α/β-Ga2O3相结纳米柱阵列上旋涂覆盖一层石墨烯和银纳米线混合溶液,并在80℃下真空干燥箱中烘干,制作石墨烯/Ag纳米线复合电极;
五,在步骤四所得的石墨烯/Ag纳米线复合电极上方沉积一滴银胶作为上电极,刮去样品边缘表面部分,露出金属钛表面,作为柔性探测器的下电极。
其中,所述步骤三中高温炉由400-500℃快速升温至700-800℃的快速升温时间为5-10分钟。
其中,所述步骤四中银纳米线溶液的浓度为0.5-1.0mol/L,石墨烯的浓度为 5-10g/L。
进一步地,所述步骤三的在150℃下反应6-8h,随后取出的样品为在TiO2/Ti 片衬底生长GaOOH纳米柱阵列,将GaOOH纳米柱阵列在不同的退火温度下分步转化为α/β-Ga2O3相结纳米柱阵列,最终形成多异质结结构的TiO2/α/β-Ga2O3相结纳米柱阵列。
本发明的有益效果:
1、本发明的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,柔性可弯曲,耐高温,性能稳定,反应灵敏,具有日盲光电特性。所采用的α/β-Ga2O3相结纳米柱阵列均匀、有序,纳米柱尺寸可控。
2、本发明的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,α/β-Ga2O3相结纳米柱的直径为50-100nm,光电性能更佳,Ga2O3相结的成分比例可控,β-Ga2O3的厚度控制在10-30nm范围内,石墨烯/Ag纳米线复合电极增强器件导电性和透光率,易获得加工,导电性良好,连接了电极下方的纳米柱阵列,提高了日盲紫外探测器整体的性能。
3、本发明的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,TiO2层的厚度为200~300nm可控,使得探测器光电性能更佳,柔性效果好。
4、本发明的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,具有三维空间多异质结界面结构,日盲特性稳定,具有优异的化学和热稳定性,柔性可弯曲,重复性良好,可以检测日盲波段的200-280nm的紫外光,可弯曲和折叠,可应用于便捷式可穿戴紫外线检测设备。
5、本发明基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,通过水热法在柔性钛片衬底上原位合成氧化钛/氧化镓相结纳米柱阵列,覆盖一层石墨烯/银纳米线复合透明导电电极,制作成多异质结结构的柔性日盲紫外探测器。该探测器的制备工艺可控性强,易操作,器件与衬底的结合力强,柔性可弯曲、便于大面积制备、重复性好,成本低,在可穿戴设备、紫外线检测等领域具有很大的应用前景。
6、本发明基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,采用氧等离子体法在柔性金属Ti片表面氧化生成一层TiO2薄膜,使得薄膜致密均匀。通过水热法在TiO2薄膜上方定向生长一层GaOOH纳米柱阵列,并退火生成TiO2/α/β-Ga2O3相结纳米柱阵列。生长方向、尺寸、结构可控。后在α/β-Ga2O3相结纳米柱阵列上方旋涂一层石墨烯/Ag纳米线复合电极,最后在其上方滴涂一圆形银胶作为上电极,未被氧化的Ti金属衬底作为下电极,制备获得具有 (Ti/TiO2/α/β-Ga2O3/C/Ag)多异质结结构的柔性日盲紫外探测器。
附图说明
图1是基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的结构示意图;
图2是α/β-Ga2O3相结纳米柱阵列的XRD图谱;
图3是α/β-Ga2O3相结纳米柱阵列的SEM照片;
图4是基于TiO2/Ga2O3不同结构纳米柱阵列的柔性日盲紫外探测器在254nm紫外光照下的I-t图。
具体实施方式
下面结合附图对本发明的内容进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。居于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
实施例1
基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,包括以下步骤:
(1)将柔性钛片衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;将清洗干净的金属钛片置入氧等离子体中,使金属钛表面氧化,形成一层致密的TiO2层,即获得TiO2/Ti片衬底; (2)取30mL浓度为0.5mol/L的异丙醇镓溶液置于反应釜内胆中,然后将步骤 (1)所得的TiO2/Ti片衬底斜靠在反应釜内胆中,并浸没于异丙醇镓溶液中,其中 TiO2此面朝下(即朝向所斜靠的反应釜内胆一侧);(3)将反应釜转移至烘箱中,在150℃下反应6h,随后取出样品,用去离子水和无水乙醇交替清洗3次,烘干后在高温炉中400℃先退火1.0小时,得到TiO2/α-Ga2O3纳米柱阵列,然后将高温炉快速升温至750℃,并继续退火10分钟,获得TiO2/α/β-Ga2O3相结纳米柱阵列;(4)在步骤(3)得到的TiO2/α/β-Ga2O3相结纳米柱阵列上旋涂覆盖一层石墨烯和银纳米线混合溶液,并在80℃下真空干燥箱中烘干,制作石墨烯 /Ag纳米线复合透明导电电极;
(5)在步骤(4)所得的石墨烯/Ag纳米线复合电极上方沉积一滴银胶作为上电极,刮去样品边缘表面部分,露出金属钛表面,作为柔性探测器的下电极。
具体地,所述步骤(1)中将清洗干净的金属钛片置入氧等离子体中,氧等离子体处理的放电功率为50W,氧气流量为30Sccm,处理时间为20分钟,形成的TiO2层的厚度为300nm。
本申请实施例中,柔性钛片衬底的厚度为0.2mm,在其它实施例中,柔性钛片衬底的厚度在0.1-0.2mm范围内均可,可以为0.1mm,0.12mm,0.15mm, 0.18mm,在此不再穷举。
其中,所述步骤(3)中高温炉由400℃快速升温至750℃的快速升温时间为10分钟。在其它实施例中,快速升温时间只要控制在5-10分钟内即可,例如在5分钟、6分钟、7分钟、8分钟或9分钟等。通过控制快速升温时间以控制αβ-Ga2O3相转化为β-Ga2O3相的相变。
所述的步骤(4)中银纳米线溶液的浓度为0.5mol/L,石墨烯分散液的浓度为5g/L。银纳米线溶液和石墨烯混合的比例可以为体积比1:1,在其他实施例中也可以为其他比例,并不做具体限定。通过将银纳米线溶液和石墨烯分散液混合后形成混合溶液,并将该混合溶液旋涂覆盖于α/β-Ga2O3相结纳米柱阵列上。
进一步地,所述的步骤(3)采用水热法制备α/β-Ga2O3相结纳米柱阵列。在 TiO2/Ti片衬底生长GaOOH纳米柱阵列,并进一步退火,将GaOOH纳米柱阵列在不同的退火温度下分步转化为α/β-Ga2O3相结纳米柱阵列,最终形成多异质结结构的TiO2/α/β-Ga2O3相结纳米柱阵列。
将步骤(3)中退火前和退火后所得样品分别进行XRD分析,从图2中可以看出,(021)、(002)、(070)衍射峰为GaOOH相的特征峰,表明水热法生成的产物为GaOOH。(110)、(300)衍射峰为α-Ga2O3相的特征峰,表明400℃退火后得到的是α-Ga2O3。(002)、(111)、(401)衍射峰均为β-Ga2O3相的特征峰(图2),没有发现其它杂质的特征峰,表明在750℃退火后得到的是β-Ga2O3材料。因此,在合适的退火时间下,可以获得α/β-Ga2O3相结材料,随着退火时间的增加,α-Ga2O3相将完全转变为β-Ga2O3相。将步骤(3)中所得样品在扫描电镜中观察,发现纳米柱生长均匀,如图3所示,图(a)为α/β-Ga2O3异质结纳米柱阵列端面的扫描电镜图,显示α/β-Ga2O3异质结纳米柱的直径为100-200nm,图(b)异质结纳米柱阵列的侧面扫描图,可以看出α/β-Ga2O3异质结纳米柱高度为1.0-1.3 μm,TiO2的厚度为300nm。
对步骤(5)中所得的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器进行光电性能测试。图4给出了基于TiO2/Ga2O3不同结构纳米柱阵列的柔性日盲紫外探测器在光强为5mW/cm2的254nm光照下通过不断开关光源测得的I-t曲线图,重复测试4个I-t循环,均表现出很好的重复性。其中TiO2/α-Ga2O3纳米柱阵列对应的最大光电流为25nA,TiO2/β-Ga2O3纳米柱阵列对应的最大光电流为 80nA,而TiO2/α/β-Ga2O3相结纳米柱阵列对应的最大光电流明显优于前两者,为230nA,这是由于Ga2O3相异质结在界面处能形成第二类型的能带排列,即某相的导带与价带位置均比另一相要高,对于光电器件来说,能使光照下产生的电子空穴对在界面处发生分离,电子流向能量低的一侧,而空穴则转移至能量高的一侧,实现光生载流子快速、有效地分离,提高光电器件的性能。而 TiO2/β-Ga2O3和TiO2/α-Ga2O3只有单一的pn结结构,相比TiO2/α/β-Ga2O3多异质结,分离电子空穴对的效率要相对低一些,氧化镓纳米柱阵列具有长径比高和电子传输速度快等特点,展现出优秀的光电特性。同时,在外力作用下,线性的几何结构具有很好的弹性,当材料发生形变后,表面不会产生裂纹,结合柔性钛金属衬底,非常适合柔性光电器件的设计和制作,有望在移动可穿戴等紫外探测等领域得到广泛应用。
实施例2
步骤(1)、(4)和(5)均与实施例1相同。步骤(2)中异丙醇镓溶液的浓度为 0.5mol/L,步骤(3)中在150℃下反应7h,水热生长羟基氧化镓,随后将GaOOH 转移到高温炉中退火,先400℃退火1.5小时,得到TiO2/α-Ga2O3纳米柱阵列,然后将高温炉快速升温至700℃,并继续退火20分钟,获得TiO2/α/β-Ga2O3相结纳米柱阵列。所得TiO2/α/β-Ga2O3相结纳米柱阵列的晶体结构、化学成分以及基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的光电特性均与实例1类似。
实施例3
步骤(1)、(4)和(5)均与实施例1相同。步骤(2)中异丙醇镓溶液的浓度为 1.0mol/L,步骤(3)中在150℃下反应8h,水热生长羟基氧化镓,随后将GaOOH 转移到高温炉中退火,先500℃退火2.0小时,得到TiO2/α-Ga2O3纳米柱阵列,然后将高温炉快速升温至800℃,并继续退火10分钟,获得TiO2/α/β-Ga2O3相结纳米柱阵列。所得TiO2/α/β-Ga2O3相结纳米柱阵列的晶体结构、化学成分以及基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的光电特性均与实例1类似。
实施例4
步骤(1)、(4)和(5)均与实施例1相同。步骤(2)中异丙醇镓溶液的浓度为 1.0mol/L,步骤(3)中在150℃下反应7h,水热生长羟基氧化镓,随后将GaOOH 转移到高温炉中退火,在500℃退火2.0小时,得到TiO2/α-Ga2O3纳米柱阵列,所得TiO2/α-Ga2O3纳米柱阵列的晶体结构、化学成分与实例1第一次退火后所得的样品类似,基于TiO2/α-Ga2O3纳米柱阵列柔性日盲紫外探测器的光电性能明显低于TiO2/Ga2O3纳米相结的光电性能(图4)。
实施例5
步骤(1)、(4)和(5)均与实施例1相同。步骤(2)中异丙醇镓溶液的浓度为 1.0mol/L,步骤(3)中在150℃下反应7h,水热生长羟基氧化镓,随后将GaOOH 转移到高温炉中退火,在800℃退火2.0小时,得到TiO2/β-Ga2O3纳米柱阵列,所得TiO2/β-Ga2O3纳米柱阵列的晶体结构、化学成分与实例1第二次退火后所得的样品类似,基于TiO2/β-Ga2O3纳米柱阵列纳米柱阵列柔性日盲紫外探测器的光电性能略低于TiO2/Ga2O3纳米相结的光电性能(图4)。
实施例6
一种基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,结构如图1所示,包括Ag上电极6,柔性钛片1下电极,位于所述Ag上电极6和所述柔性钛片1 下电极之间的TiO2/α/β-Ga2O3相结纳米柱阵列和石墨烯/Ag纳米线复合电极5,其中,柔性钛片1作为柔性钛片1衬底;所述TiO2/α/β-Ga2O3相结纳米柱阵列包括位于所述柔性钛片1衬底上TiO2层2,位于所述TiO2层2上的α/β-Ga2O3相结纳米柱阵列,所述α/β-Ga2O3相结纳米柱阵列包括若干间隔设置的α/β-Ga2O3相结纳米柱;所述石墨烯/Ag纳米线复合电极5位于所述α/β-Ga2O3相结纳米柱背离所述TiO2层2一端,所述Ag上电极6部分覆盖所述石墨烯/Ag纳米线复合电极5。
其中,所述TiO2/α/β-Ga2O3相结纳米柱阵列包括p型TiO2层2和n型α/β-Ga2O3纳米相结。
其中,所述α/β-Ga2O3纳米相结包括α-Ga2O3内核3和包覆于α-Ga2O3内核3 侧壁和顶部的β-Ga2O3纳米相4;所述TiO2层2直接与α-Ga2O3内核3的底部和β-Ga2O3纳米相4的底部接触。
其中,所述TiO2层2的厚度为200~300nm,所述α/β-Ga2O3相结纳米柱的直径为50-100nm,α/β-Ga2O3相结纳米柱的长度为1μm~1.3μm,β-Ga2O3纳米相 4的厚度为10-30nm;所述柔性钛片1衬底的厚度为0.1-0.2mm。其中β-Ga2O3纳米相4的厚度是指β-Ga2O3纳米相平行于柔性钛片1衬底平面方向的β-Ga2O3纳米相4的尺寸。
其中,所述石墨烯/Ag纳米线复合电极5由石墨烯片和Ag纳米线复合而成,形成透明导电电极,并串联所述α/β-Ga2O3相结纳米柱阵列。
本发明方法制备的一种基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,柔性可弯曲,可探测200-280nm的日盲紫外光,可应用于便捷式可穿戴紫外线检测设备。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上、在本发明的方法和原则之内,所作的任何修改等同替换、改进,均应包含在本发明的保护范围之内。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,其特征在于,包括Ag上电极,柔性钛片下电极,位于所述Ag上电极和所述柔性钛片下电极之间的TiO2/α/β-Ga2O3相结纳米柱阵列和石墨烯/Ag纳米线复合电极,其中,柔性钛片作为柔性钛片衬底;所述TiO2/α/β-Ga2O3相结纳米柱阵列包括位于所述柔性钛片衬底上TiO2层,位于所述TiO2层上的α/β-Ga2O3相结纳米柱阵列,所述α/β-Ga2O3相结纳米柱阵列包括若干间隔设置的α/β-Ga2O3相结纳米柱;所述石墨烯/Ag纳米线复合电极位于所述α/β-Ga2O3相结纳米柱背离所述TiO2层一端,所述Ag上电极部分覆盖所述石墨烯/Ag纳米线复合电极。
2.根据权利要求1所述的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,其特征在于,所述TiO2/α/β-Ga2O3相结纳米柱阵列包括p型TiO2层和n型α/β-Ga2O3纳米相结。
3.根据权利要求1所述的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,其特征在于,所述α/β-Ga2O3纳米相结包括α-Ga2O3内核和包覆于α-Ga2O3内核侧壁和顶部的β-Ga2O3纳米相;所述TiO2层直接与α-Ga2O3内核的底部和β-Ga2O3纳米相的底部接触。
4.根据权利要求1所述的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,其特征在于,所述TiO2层的厚度为200~300nm,所述α/β-Ga2O3相结纳米柱的直径为50-100nm,α/β-Ga2O3相结纳米柱的长度为1μm~1.3μm,β-Ga2O3纳米相的厚度为10-30nm;所述柔性钛片衬底的厚度为0.1-0.2mm。
5.根据权利要求1所述的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器,其特征在于,所述石墨烯/Ag纳米线复合电极由石墨烯片和Ag纳米线复合而成,形成透明导电电极,并串联所述α/β-Ga2O3相结纳米柱阵列。
6.一种基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,其特征在于,包括以下步骤:
一,将柔性钛片衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;将清洗干净的金属钛片置入氧等离子体中,使金属钛表面氧化,形成一层致密的TiO2层,即获得TiO2/Ti片衬底;
二,取浓度为0.5-1.0mol/L的异丙醇镓溶液置于反应釜内胆中,然后将步骤一所得的TiO2/Ti片衬底斜靠在反应釜内胆中,并浸没于异丙醇镓溶液中,其中TiO2层朝向所斜靠的反应釜内胆一侧;
三,将反应釜转移至烘箱中,在150℃下反应6-8h,随后取出样品,用去离子水和无水乙醇交替清洗次,烘干后在高温炉中400-500℃先退火1.0-2.0小时,得到TiO2/α-Ga2O3纳米柱阵列,然后将高温炉快速升温至700-800℃,并继续退火10-20分钟,获得TiO2/α/β-Ga2O3相结纳米柱阵列;
四,在步骤三得到的TiO2/α/β-Ga2O3相结纳米柱阵列上旋涂覆盖一层石墨烯和银纳米线混合溶液,并在80℃下真空干燥箱中烘干,制作石墨烯/Ag纳米线复合电极;
五,在步骤四所得的石墨烯/Ag纳米线复合电极上方沉积一滴银胶作为上电极,刮去样品边缘表面部分,露出金属钛表面,作为柔性探测器的下电极。
7.根据权利要求6所述的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,其特征在于,所述步骤一中所述将清洗干净的金属钛片置入氧等离子体中,氧等离子体处理的放电功率为50W,氧气流量为30Sccm,处理时间为20-30分钟。
8.根据权利要求6所述的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,其特征在于,所述步骤三中高温炉由400-500℃快速升温至700-800℃的快速升温时间为5-10分钟。
9.根据权利要求6所述的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,其特征在于,所述步骤四中银纳米线溶液的浓度为0.5-1.0mol/L,石墨烯的分散液的浓度为5-10g/L。
10.根据权利要求6所述的基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器的制备方法,其特征在于,所述步骤三的样品为TiO2/Ti片衬底生长GaOOH纳米柱阵列。
CN202011629182.0A 2020-04-16 2020-12-30 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法 Pending CN112635587A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020102974193 2020-04-16
CN202010297419 2020-04-16

Publications (1)

Publication Number Publication Date
CN112635587A true CN112635587A (zh) 2021-04-09

Family

ID=75290322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011629182.0A Pending CN112635587A (zh) 2020-04-16 2020-12-30 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112635587A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744060A (zh) * 2022-04-14 2022-07-12 浙江理工大学 一种电网电晕监测器及其制备方法
CN115621344A (zh) * 2022-12-19 2023-01-17 无锡麟力科技有限公司 异质结日盲探测器及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744060A (zh) * 2022-04-14 2022-07-12 浙江理工大学 一种电网电晕监测器及其制备方法
CN114744060B (zh) * 2022-04-14 2023-08-29 浙江理工大学 一种电网电晕监测器及其制备方法
CN115621344A (zh) * 2022-12-19 2023-01-17 无锡麟力科技有限公司 异质结日盲探测器及其制备方法
CN115621344B (zh) * 2022-12-19 2023-03-17 无锡麟力科技有限公司 异质结日盲探测器及其制备方法

Similar Documents

Publication Publication Date Title
Wang et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector
Yu et al. A high-performance self-powered broadband photodetector based on a CH 3 NH 3 PbI 3 perovskite/ZnO nanorod array heterostructure
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN101845664B (zh) 一种高取向单晶二氧化钛纳米线阵列薄膜的低温制备方法
CN112382691B (zh) 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
CN112635587A (zh) 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法
Chetri et al. Improved photodetector performance of SnO2 nanowire by optimized air annealing
CN107195725A (zh) 石墨烯/TiO2纳米柱阵列肖特基结紫外光电探测器及其制备方法
Zhang et al. Enhancing performance of Ag–ZnO–Ag UV photodetector by piezo-phototronic effect
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN106981531B (zh) 一种三维纳米结构阵列、制备方法及其应用
Wang et al. High-performance ultraviolet photodetector based on single-crystal integrated self-supporting 4H-SiC nanohole arrays
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
CN104037324A (zh) 一种基于硫化镉纳米阵列的钙钛矿杂化太阳电池
Rajab et al. Laser induced hydrothermal growth of ZnO rods for UV detector application
Ozel Strain-induced photoresponsivity in gallium-doped ZnO thin film based UV photodetectors
Liu et al. Graphene on {116} faceted monocrystalline anatase nanosheet array for ultraviolet detection
CN111463297B (zh) 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法
CN113707752A (zh) 一种基于二维材料CrPS4异质结的可见-近红外光电探测器构筑方法
CN114744060B (zh) 一种电网电晕监测器及其制备方法
CN110845728B (zh) 一种导电高分子/五氧化二铌异质结的制备方法及其应用
CN107369729B (zh) 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法
TW202218175A (zh) 鈣鈦礦金屬-半導體-金屬型光電探測器及其製法
CN108258121B (zh) 有机无机复合自驱动光电探测器及其制备方法
CN104952703A (zh) 一种IIB-VIB族半导体/CdS纳米p-n结的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination