CN114744060B - 一种电网电晕监测器及其制备方法 - Google Patents

一种电网电晕监测器及其制备方法 Download PDF

Info

Publication number
CN114744060B
CN114744060B CN202210391280.8A CN202210391280A CN114744060B CN 114744060 B CN114744060 B CN 114744060B CN 202210391280 A CN202210391280 A CN 202210391280A CN 114744060 B CN114744060 B CN 114744060B
Authority
CN
China
Prior art keywords
nano
alpha
beta
pillar array
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210391280.8A
Other languages
English (en)
Other versions
CN114744060A (zh
Inventor
郭道友
赵天丽
邓李朋
钱松程
邢志文
王顺利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202210391280.8A priority Critical patent/CN114744060B/zh
Publication of CN114744060A publication Critical patent/CN114744060A/zh
Application granted granted Critical
Publication of CN114744060B publication Critical patent/CN114744060B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种电网电晕监测器及其制备方法,包括FTO衬底,所述FTO衬底的至少一侧具有氟掺杂氧化锡层,所述氟掺杂氧化锡层上生长有GaOOH纳米柱阵列,所述GaOOH纳米柱阵列经退火后形成α/β‑Ga2O3相结纳米柱阵列,所述α/β‑Ga2O3相结纳米柱阵列上设置有Ti3C2/Ag纳米线复合层,所述Ti3C2/Ag纳米线复合层上设置有Ag电极,所述Ti3C2/Ag纳米线复合层上的Ti3C2层与所述α/β‑Ga2O3相结纳米柱阵列之间形成Ti3C2/α/β‑Ga2O3纳米柱阵列范德瓦尔斯异质结,具有三维空间异质结界面结构和日盲特性,具有优异的化学和热稳定性,耐压强,工作温度和功耗低,重复性良好,是一个具有超高响应度的自供电电网电晕监测器,可定向识别波长位于日盲波段的200‑280nm的紫外光。

Description

一种电网电晕监测器及其制备方法
技术领域
本发明涉及紫外光电探测器技术领域,具体涉及到一种电网电晕监测器及其制备方法。
背景技术
电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花,这些现象长时间出现会损害高压设备,引发电力系统瘫痪,对电力系统造成严重的危害。此外,电弧放电也会严重地影响人身安全。因此,如何准确、及时、有效地检测电弧放电的位置及强弱对保证电力系统可靠运行、减少设备损坏和确保人身安全具有重要的意义。
电弧放电的监测通常有人工目视检查、远红外望远镜、超声波电晕检测和日盲紫外检测技术等,由于太阳光中含有很强的红外线,用红外线望远镜观察误检率较高,而超声波电晕检测装置探测距离较近,在使用中的人为影响因素较多,检测误差较大。日盲紫外检测技术是近几年来新兴的一种电弧检测方式,可以检测电弧放电发出的200-280nm波段深紫外光谱,而不受太阳光中300~360nm波段的紫外线干扰,检测精度高。本发明的电网电晕监测器,具有三维空间异质结界面结构和日盲特性,具有优异的化学和热稳定性,耐压强,工作温度和功耗低,重复性良好,是一个具有超高响应度的自供电电网电晕监测器。
发明内容
为了克服上述现有技术中的缺陷,本发明提供了一种电网电晕监测器及其制备方法,基于Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结,灵敏度高、稳定性好、响应时间短、高响应度、具有日盲特性。
技术方案
一种电网电晕监测器,包括FTO衬底,所述FTO衬底的至少一侧具有氟掺杂氧化锡层,所述氟掺杂氧化锡层上生长有GaOOH纳米柱阵列,所述GaOOH纳米柱阵列经退火后形成α/β-Ga2O3相结纳米柱阵列,所述α/β-Ga2O3相结纳米柱阵列上设置有Ti3C2/Ag纳米线复合层,所述Ti3C2/Ag纳米线复合层上设置有Ag电极,所述Ti3C2/Ag纳米线复合层上的Ti3C2层与所述α/β-Ga2O3相结纳米柱阵列之间形成Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结,所述氟掺杂氧化锡层与所述Ag电极形成通路。
进一步的,所述Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结由二维层状材料Ti3C2薄膜和n型α/β-Ga2O3相结纳米柱阵列构成。
进一步的,所述二维层状材料Ti3C2薄膜的厚度为200-300nm,所述n型α/β-Ga2O3相结纳米柱阵列由若干α/β-Ga2O3纳米柱构成,所述n型α/β-Ga2O3纳米柱的直径为50-200nm、长度为1.0~1.5μm。
进一步的,所述FTO衬底的厚度为2.2mm。
进一步的,所述Ti3C2/Ag纳米线复合层包括所述Ti3C2层及位于所述Ti3C2层上的Ag纳米线。
进一步的,所述氟掺杂氧化锡层的接线处和所述Ag电极的接线处位于所述FTO衬底1的同一侧。
进一步的,一种电网电晕监测器定向探测波长为200-280nm的日盲紫外光。
一种电网电晕监测器的制备方法,包括以下步骤:
步骤一、将FTO衬底依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;
步骤二、取浓度为10-15g/L的Ga(NO3)3溶液置于反应釜内胆中,然后将步骤一中用干燥的氮气吹干后的所述FTO衬底斜靠在反应釜内胆中,并浸没于Ga(NO3)3溶液中,其中氟掺杂氧化锡层朝向所斜靠的反应釜内胆一侧;
步骤三、将步骤二中的所述反应釜转移至烘箱中,在150℃下反应12h,随后取出FTO衬底,用去离子水和无水乙醇交替清洗次,烘干后在高温炉中400-500℃先退火3.0-4.0小时,得到α-Ga2O3纳米柱阵列,然后将高温炉快速升温至700-800℃,并继续退火10-20分钟,获得α/β-Ga2O3相结纳米柱阵列;
步骤四、在步骤三中得到的所述α/β-Ga2O3相结纳米柱阵列上分别旋涂覆盖一层Ti3C2和银纳米线溶液,并在90℃下真空干燥箱中烘干,制作Ti3C2/Ag纳米线复合层;
步骤五、在步骤四中所得的所述Ti3C2/Ag纳米线复合层上方沉积一滴银胶作为上电极,即Ag电极,刮去FTO衬底边缘表面部分,露出氟掺杂氧化锡层表面,作为下电极。
进一步的,步骤三中的所述将高温炉快速升温至700-800℃的快速升温时间为5-10分钟。
进一步的,步骤四中的所述银纳米线溶液的浓度为0.5-1.0mol/L,所述Ti3C2的浓度为25mg/L。
有益效果
本发明与现有技术相比,具有以下有益效果:
1、性能稳定,反应灵敏,高响应度,具有日盲光电特性,所采用的α/β-Ga2O3相结纳米柱阵列均匀、有序,纳米柱尺寸可控;
2、α/β-Ga2O3相结纳米柱的直径为50-100nm,光电性能更佳,Ga2O3相结的成分比例可控,β-Ga2O3的厚度控制在10-30nm范围内,Ti3C2/Ag纳米线复合电极增强器件导电性和透光率,易获得加工,导电性良好,连接了电极下方的纳米柱阵列,提高了电网电晕监测器整体的性能;
3、Ti3C2层的厚度为200~300nm可控,使得探测器光电性能更佳;
4、具有三维空间多异质结界面结构,日盲特性稳定,具有优异的化学和热稳定性,高响应度,成本低,重复性良好,可以检测日盲波段的200-280nm的紫外光,可应用于便捷式可穿戴紫外线检测设备;
5、通过水热法在FTO衬底上生长氧化镓相结纳米柱阵列,覆盖一层Ti3C2/银纳米线复合透明导电电极,制作成多异质结结构的柔性日盲紫外探测器,该探测器的制备工艺可控性强,易操作,器件与衬底的结合力强,便于大面积制备、重复性好,成本低,在紫外线检测等领域具有很大的应用前景;
6、通过水热法在氟掺杂氧化锡层上方定向生长一层GaOOH纳米柱阵列,并退火生成α/β-Ga2O3相结纳米柱阵列。生长方向、尺寸、结构可控,后在α/β-Ga2O3相结纳米柱阵列上方旋涂一层Ti3C2/Ag纳米线复合电极,最后在其上方滴涂一圆形银胶作为上电极,氟掺杂氧化锡层衬底作为下电极,制备基于Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结的电网电晕监测器。
附图说明
图1是本发明中一种电网电晕监测器的结构示意图;
图2是α/β-Ga2O3相结纳米柱阵列的XRD图谱;
图3是α/β-Ga2O3相结纳米柱阵列的SEM表面;
图4是α/β-Ga2O3相结纳米柱阵列的SEM截面;
图5是电网电晕监测器在254nm紫外光照下的I-t图。
附图标记
FTO衬底1、氟掺杂氧化锡层2、GaOOH纳米柱阵列3、α/β-Ga2O3相结纳米柱阵列4、Ti3C2/Ag纳米线复合层5、Ag电极6。
具体实施方式
为更好地说明阐述本发明内容,下面结合附图和实施实例进行展开说明:
有图1-图5所示,本发明公开了一种电网电晕监测器,包括FTO衬底1,所述FTO衬底1的至少一侧具有氟掺杂氧化锡层2,所述氟掺杂氧化锡层2上生长有GaOOH纳米柱阵列3,所述GaOOH纳米柱阵列3经退火后形成α/β-Ga2O3相结纳米柱阵列4,所述α/β-Ga2O3相结纳米柱阵列4上设置有Ti3C2/Ag纳米线复合层5,所述Ti3C2/Ag纳米线复合层5上设置有Ag电极6,所述Ti3C2/Ag纳米线复合层5上的Ti3C2层与所述α/β-Ga2O3相结纳米柱阵列4之间形成Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结,所述氟掺杂氧化锡层2与所述Ag电极6形成通路。
进一步的,所述Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结由二维层状材料Ti3C2薄膜和n型α/β-Ga2O3相结纳米柱阵列构成。
进一步的,所述二维层状材料Ti3C2薄膜的厚度为200-300nm,所述n型α/β-Ga2O3相结纳米柱阵列由若干α/β-Ga2O3纳米柱构成,所述n型α/β-Ga2O3纳米柱的直径为50-200nm、长度为1.0~1.5μm。
进一步的,所述FTO衬底1的厚度为2.2mm。
进一步的,所述Ti3C2/Ag纳米线复合层5包括所述Ti3C2层及位于所述Ti3C2层上的Ag纳米线。
进一步的,所述氟掺杂氧化锡层2的接线处和所述Ag电极6的接线处位于所述FTO衬底1的同一侧。
进一步的,一种电网电晕监测器定向探测波长为200-280nm的日盲紫外光。
一种电网电晕监测器的制备方法,包括以下步骤:
步骤一、将FTO衬底1依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;
步骤二、取浓度为10-15g/L的Ga(NO3)3溶液置于反应釜内胆中,然后将步骤一中用干燥的氮气吹干后的所述FTO衬底1斜靠在反应釜内胆中,并浸没于Ga(NO3)3溶液中,其中氟掺杂氧化锡层2朝向所斜靠的反应釜内胆一侧;
步骤三、将步骤二中的所述反应釜转移至烘箱中,在150℃下反应12h,随后取出FTO衬底1,用去离子水和无水乙醇交替清洗次,烘干后在高温炉中400-500℃先退火3.0-4.0小时,得到α-Ga2O3纳米柱阵列,然后将高温炉快速升温至700-800℃,并继续退火10-20分钟,获得α/β-Ga2O3相结纳米柱阵列4;
步骤四、在步骤三中得到的所述α/β-Ga2O3相结纳米柱阵列4上分别旋涂覆盖一层Ti3C2和银纳米线溶液,并在90℃下真空干燥箱中烘干,制作Ti3C2/Ag纳米线复合层5;
步骤五、在步骤四中所得的所述Ti3C2/Ag纳米线复合层5上方沉积一滴银胶作为上电极,即Ag电极6,刮去FTO衬底1边缘表面部分,露出氟掺杂氧化锡层2表面,作为下电极。
进一步的,步骤三中的所述将高温炉快速升温至700-800℃的快速升温时间为5-10分钟。
进一步的,步骤四中的所述银纳米线溶液的浓度为0.5-1.0mol/L,所述Ti3C2的浓度为25mg/L。
具体地,实施例1
(1)将FTO衬底1依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;(2)取30mL浓度为5g/L的Ga(NO3)3溶液置于反应釜内胆中,然后将步骤(1)所得的FTO衬底1斜靠在反应釜内胆中,并浸没于Ga(NO3)3溶液中,其中氟掺杂氧化锡层2朝下(即朝向所斜靠的反应釜内胆一侧);(3)将反应釜转移至烘箱中,在150℃下反应12h,随后取出,用去离子水和无水乙醇交替清洗3次,烘干后在高温炉中400℃先退火1.0小时,得到α-Ga2O3纳米柱阵列,然后将高温炉快速升温至750℃,并继续退火10分钟,获得α/β-Ga2O3相结纳米柱阵列4;(4)在步骤(3)得到的α/β-Ga2O3相结纳米柱阵列4上分别滴涂覆盖一层Ti3C2和银纳米线溶液,并在80℃下真空干燥箱中烘干,制作Ti3C2/Ag纳米线复合透明导电电极,即Ti3C2/Ag纳米线复合层5;(5)在步骤(4)所得的Ti3C2/Ag纳米线复合层5上方沉积一滴银胶作为上电极,即Ag电极6,刮去样品边缘表面部分,露出氟掺杂氧化锡层2表面,作为下电极;
在本实施例中,步骤(3)中的高温炉由400℃快速升温至750℃的快速升温时间为10分钟,在其它实施例中,快速升温时间只要控制在5-10分钟内即可,例如在5分钟、6分钟、7分钟、8分钟或9分钟等,通过控制快速升温时间以控制α-Ga2O3相转化为β-Ga2O3相的相变;
步骤(4)中的银纳米线溶液的浓度为0.5mol/L,Ti3C2溶液的浓度为25mg/L,先滴涂Ti3C2溶液于α/β-Ga2O3相结纳米柱阵列4上,形成干膜后再滴涂银纳米线溶液;
步骤(3)采用水热法制备α/β-Ga2O3相结纳米柱阵列4,在FTO衬底1生长GaOOH纳米柱阵列3,并进一步退火,将GaOOH纳米柱阵列3在不同的退火温度下分步转化为α/β-Ga2O3相结纳米柱阵列4;
将步骤(3)中退火前和退火后所得样品分别进行XRD分析,从图2中可以看出,(021)、(002)、(070)衍射峰为GaOOH相的特征峰,表明水热法生成的产物为GaOOH,(110)、(300)衍射峰为α-Ga2O3相的特征峰,表明400℃退火后得到的是α-Ga2O3,(002)、(111)、(401)衍射峰均为β-Ga2O3相的特征峰(图2),没有发现其它杂质的特征峰,表明在750℃退火后得到的是β-Ga2O3材料,因此,在合适的退火时间下,可以获得α/β-Ga2O3相结材料,随着退火时间的增加,α-Ga2O3相将完全转变为β-Ga2O3相,将步骤(3)中所得样品在扫描电镜中观察,发现纳米柱生长均匀,图(3)为α/β-Ga2O3异质结纳米柱阵列端面的扫描电镜图,显示α/β-Ga2O3异质结纳米柱的直径为100-200nm,图(4)异质结纳米柱阵列的侧面扫描图,可以看出α/β-Ga2O3异质结纳米柱高度为1.2-1.5μm,Ti3C2的厚度为100nm;
对步骤(5)中所得的基于Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结的电网电晕监测器进行光电性能测试,图5给出了基于Ti3C2/Ga2O3不同结构纳米柱阵列的电网电晕监测器在光强为1mW/cm2的254nm光照下通过不断开关光源测得的I-T曲线图,重复测试4个I-T循环,均表现出很好的重复性,其中Ti3C2/α-Ga2O3纳米柱阵列对应的最大光电流为1.5nA,Ti3C2/β-Ga2O3纳米柱阵列对应的最大光电流为1800nA,而Ti3C2/α/β-Ga2O3相结纳米柱阵列对应的最大光电流明显优于前两者,为2800nA,这是由于Ga2O3相异质结在界面处能形成第二类型的能带排列,即某相的导带与价带位置均比另一相要高,对于光电器件来说,能使光照下产生的电子空穴对在界面处发生分离,电子流向能量低的一侧,而空穴则转移至能量高的一侧,实现光生载流子快速、有效地分离,提高光电器件的性能,而Ti3C2/β-Ga2O3和Ti3C2/α-Ga2O3只有单一的肖特基结构,相比Ti3C2/α/β-Ga2O3多异质结,分离电子空穴对的效率要相对低一些。
实施例2
步骤(1)、(4)和(5)均与实施例1相同;
步骤(2)中的Ga(NO3)3溶液的浓度为10g/L;
步骤(3):在150℃下反应12h,水热生长羟基氧化镓,随后将GaOOH转移到高温炉中退火,先400℃退火1.5小时,得到α-Ga2O3纳米柱阵列,然后将高温炉快速升温至700℃,并继续退火20分钟,获得α/β-Ga2O3相结纳米柱阵列4;所得α/β-Ga2O3相结纳米柱阵列4的晶体结构、化学成分以及基于Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结的电网电晕监测器的光电特性均与实例1类似。
实施例3
步骤(1)、(4)和(5)均与实施例1相同;
步骤(2)中的Ga(NO3)3溶液的浓度为10g/L;
步骤(3):在150℃下反应12h,水热生长羟基氧化镓,随后将GaOOH转移到高温炉中退火,先500℃退火2.0小时,得到α-Ga2O3纳米柱阵列,然后将高温炉快速升温至800℃,并继续退火10分钟,获得α/β-Ga2O3相结纳米柱阵列4,所得α/β-Ga2O3相结纳米柱阵列4的晶体结构、化学成分以及基于Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结的电网电晕监测器的光电特性均与实例1类似。
实施例4
步骤(1)、(4)和(5)均与实施例1相同;
步骤(2)中的Ga(NO3)3溶液的浓度为10g/L;
步骤(3):在150℃下反应12h,水热生长羟基氧化镓,随后将GaOOH转移到高温炉中退火,在500℃退火2.0小时,得到α-Ga2O3纳米柱阵列,所得α-Ga2O3纳米柱阵列的晶体结构、化学成分与实施例1中第一次退火后所得的样品类似,基于Ti3C2/α-Ga2O3纳米柱阵列范德瓦尔斯异质结的电网电晕监测器的光电性能明显低于基于Ti3C2/α/β-Ga2O3纳米柱阵列范德瓦尔斯异质结的电网电晕监测器的光电性能(图4)。
实施例5
步骤(1)、(4)和(5)均与实施例1相同;
步骤(2)中的Ga(NO3)3溶液的浓度为10g/L;
步骤(3):在150℃下反应12h,水热生长羟基氧化镓,随后将GaOOH转移到高温炉中退火,在800℃退火2.0小时,得到β-Ga2O3纳米柱阵列,所得β-Ga2O3纳米柱阵列的晶体结构、化学成分与实施例1中第二次退火后所得的样品类似,基于Ti3C2/β-Ga2O3纳米柱阵列纳米柱阵列柔性日盲紫外探测器的光电性能略低于Ti3C2/α/β-Ga2O3的光电性能(图4)。
实施例6
一种电网电晕监测器,包括Ag上电极,氟掺杂氧化锡层下电极,位于所述Ag上电极和所述氟掺杂氧化锡层下电极之间的α/β-Ga2O3相结纳米柱阵列和Ti3C2/Ag纳米线复合电极,其中玻璃片作为氟掺杂氧化锡层下电极的衬底;所述α/β-Ga2O3相结纳米柱阵列包括若干间隔设置的α/β-Ga2O3相结纳米柱;所述Ti3C2/Ag纳米线复合电极位于所述α/β-Ga2O3相结纳米柱背离所述氟掺杂氧化锡层下电极一端,所述Ag上电极部分覆盖所述Ti3C2/Ag纳米线复合电极。
其中,所述α/β-Ga2O3纳米相结包括α-Ga2O3内核和包覆于α-Ga2O3内核侧壁和顶部的β-Ga2O3纳米相;所述氟掺杂氧化锡层下电极直接与所述α-Ga2O3内核的底部和所述β-Ga2O3纳米相的底部接触。
其中,所述氟掺杂氧化锡层的厚度为200~300nm,所述α/β-Ga2O3相结纳米柱的直径为50-100nm,长度为1μm~1.5μm,所述β-Ga2O3纳米相的厚度为10-30nm;所述玻璃片的厚度为2.2mm,所述β-Ga2O3纳米相的厚度是指β-Ga2O3纳米相平行于所述玻璃片平面方向的所述β-Ga2O3纳米相的尺寸。
其中,所述Ti3C2/Ag纳米线复合电极由Ti3C2片和Ag纳米线复合而成,形成透明导电电极,并串联所述α/β-Ga2O3相结纳米柱阵列。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明技术方案进行了详细的说明,本领域的技术人员应当理解,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行同等替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神与范围。

Claims (3)

1.一种电网电晕监测器的制备方法,其特征在于,包括以下步骤:
步骤一、将FTO衬底(1)依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;
步骤二、取浓度为10-15 g/L的Ga(NO3)3溶液置于反应釜内胆中,然后将步骤一中用干燥的氮气吹干后的所述FTO衬底(1)斜靠在反应釜内胆中,并浸没于Ga(NO3)3溶液中,其中氟掺杂氧化锡层(2)朝向所斜靠的反应釜内胆一侧;
步骤三、将步骤二中的所述反应釜转移至烘箱中,在150 °C下反应12 h,随后取出FTO衬底(1),用去离子水和无水乙醇交替清洗次,烘干后在高温炉中400-500 °C先退火3.0-4.0小时,得到α-Ga2O3纳米柱阵列,然后将高温炉快速升温至700-800 °C,并继续退火10-20分钟,获得α/β-Ga2O3相结纳米柱阵列(4);
步骤四、在步骤三中得到的所述α/β-Ga2O3相结纳米柱阵列(4)上分别旋涂覆盖一层Ti3C2和银纳米线溶液,并在90°C下真空干燥箱中烘干,制作Ti3C2/Ag纳米线复合层(5);
步骤五、在步骤四中所得的所述Ti3C2/Ag纳米线复合层(5)上方沉积一滴银胶作为上电极,即Ag电极(6),刮去FTO衬底(1)边缘表面部分,露出氟掺杂氧化锡层(2)表面,作为下电极。
2.根据权利要求1所述的一种电网电晕监测器的制备方法,其特征在于,步骤三中的所述将高温炉快速升温至700-800 °C的快速升温时间为5-10分钟。
3.根据权利要求1所述的一种电网电晕监测器的制备方法,其特征在于,步骤四中的所述银纳米线溶液的浓度为0.5-1.0 mol/L,所述Ti3C2的浓度为25mg/L。
CN202210391280.8A 2022-04-14 2022-04-14 一种电网电晕监测器及其制备方法 Active CN114744060B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210391280.8A CN114744060B (zh) 2022-04-14 2022-04-14 一种电网电晕监测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210391280.8A CN114744060B (zh) 2022-04-14 2022-04-14 一种电网电晕监测器及其制备方法

Publications (2)

Publication Number Publication Date
CN114744060A CN114744060A (zh) 2022-07-12
CN114744060B true CN114744060B (zh) 2023-08-29

Family

ID=82281729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210391280.8A Active CN114744060B (zh) 2022-04-14 2022-04-14 一种电网电晕监测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114744060B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090029613A (ko) * 2007-09-18 2009-03-23 최현환 나노 광 검출 소자 및 그 구동방법, 이를 구비한 이미지센서
CN104584162A (zh) * 2012-12-14 2015-04-29 积水化学工业株式会社 电极基板及色素敏化太阳能电池
CN109000790A (zh) * 2018-05-30 2018-12-14 张紫菡 一种氧化镓基柔性日盲紫外火焰探测器及其制备方法
CN109148159A (zh) * 2018-08-29 2019-01-04 北京镓族科技有限公司 基于α/β-Ga2O3相结的自供电日盲紫外探测器
CN110112233A (zh) * 2019-05-13 2019-08-09 北京镓族科技有限公司 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN111341497A (zh) * 2020-03-13 2020-06-26 浙江大学 银纳米线-MXene复合透明导电薄膜的制备方法
CN111477699A (zh) * 2020-04-16 2020-07-31 杭州紫芯光电有限公司 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法
CN111613691A (zh) * 2020-04-16 2020-09-01 浙江理工大学 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN112349787A (zh) * 2020-10-26 2021-02-09 复旦大学 一种光电双调制的二维柔性神经突触器件及其制备方法
CN112563338A (zh) * 2020-12-04 2021-03-26 广东工业大学 一种柔性自供电光电探测器及其制备方法和应用
CN112635587A (zh) * 2020-04-16 2021-04-09 杭州紫芯光电有限公司 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法
CN113351227A (zh) * 2021-06-24 2021-09-07 中南民族大学 一种超薄Ti3C2纳米片/ZnIn2S4花球复合光催化剂的制备方法
WO2021201614A1 (ko) * 2020-04-01 2021-10-07 연세대학교 산학협력단 패턴화된 금속 나노구 어레이층의 제조방법, 이를 포함하는 전자 소자의 제조방법 및 이에 의해 제조된 전자 소자
CN113501522A (zh) * 2021-06-18 2021-10-15 华南理工大学 一种高效制备Ti3C2TXMxene材料的方法
CN113972294A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
CN114005939A (zh) * 2021-10-29 2022-02-01 复旦大学 一种双离子栅型神经形态器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11522060B2 (en) * 2018-09-26 2022-12-06 Intel Corporation Epitaxial layers on contact electrodes for thin- film transistors

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090029613A (ko) * 2007-09-18 2009-03-23 최현환 나노 광 검출 소자 및 그 구동방법, 이를 구비한 이미지센서
CN104584162A (zh) * 2012-12-14 2015-04-29 积水化学工业株式会社 电极基板及色素敏化太阳能电池
CN109000790A (zh) * 2018-05-30 2018-12-14 张紫菡 一种氧化镓基柔性日盲紫外火焰探测器及其制备方法
CN109148159A (zh) * 2018-08-29 2019-01-04 北京镓族科技有限公司 基于α/β-Ga2O3相结的自供电日盲紫外探测器
CN110112233A (zh) * 2019-05-13 2019-08-09 北京镓族科技有限公司 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN111341497A (zh) * 2020-03-13 2020-06-26 浙江大学 银纳米线-MXene复合透明导电薄膜的制备方法
WO2021201614A1 (ko) * 2020-04-01 2021-10-07 연세대학교 산학협력단 패턴화된 금속 나노구 어레이층의 제조방법, 이를 포함하는 전자 소자의 제조방법 및 이에 의해 제조된 전자 소자
CN111613691A (zh) * 2020-04-16 2020-09-01 浙江理工大学 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN112635587A (zh) * 2020-04-16 2021-04-09 杭州紫芯光电有限公司 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法
CN111477699A (zh) * 2020-04-16 2020-07-31 杭州紫芯光电有限公司 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法
CN112349787A (zh) * 2020-10-26 2021-02-09 复旦大学 一种光电双调制的二维柔性神经突触器件及其制备方法
CN112563338A (zh) * 2020-12-04 2021-03-26 广东工业大学 一种柔性自供电光电探测器及其制备方法和应用
CN113501522A (zh) * 2021-06-18 2021-10-15 华南理工大学 一种高效制备Ti3C2TXMxene材料的方法
CN113351227A (zh) * 2021-06-24 2021-09-07 中南民族大学 一种超薄Ti3C2纳米片/ZnIn2S4花球复合光催化剂的制备方法
CN113972294A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
CN114005939A (zh) * 2021-10-29 2022-02-01 复旦大学 一种双离子栅型神经形态器件及其制备方法

Also Published As

Publication number Publication date
CN114744060A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
Wang et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector
Abd-Alghafour et al. Fabrication and characterization of V2O5 nanorods based metal–semiconductor–metal photodetector
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
Xie et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays
US20100078067A1 (en) Carbon nanotube film based solar cell and fabricating method thereof
CN112382691B (zh) 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
Rana et al. Transparent Co3O4/ZnO photovoltaic broadband photodetector
Alsultany et al. Effects of ZnO seed layer thickness on catalyst-free growth of ZnO nanostructures for enhanced UV photoresponse
Choudhuri et al. Fabrication of novel transparent Co3O4-TiO2 nanowires pn heterojunction diodes for multiband photodetection applications
Pudasaini et al. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
Chaoudhary et al. Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV–Visible–NIR photodetection
Xu et al. Self-powered ultraviolet photodetectors based on match like quasi one-dimensional n-TiO2/p-NiO core-shell heterojunction arrays with NiO layer sputtered at different power
CN112635587A (zh) 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法
Wu et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging
CN104037324A (zh) 一种基于硫化镉纳米阵列的钙钛矿杂化太阳电池
CN106981531A (zh) 一种三维纳米结构阵列、制备方法及其应用
Lee et al. Highly transparent nanostructured zinc oxide photodetector prepared by successive ionic layer adsorption and reaction
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
CN114744060B (zh) 一种电网电晕监测器及其制备方法
US8772080B2 (en) Photovoltaic cell and methods for producing a photovoltaic cell
Ozel Strain-induced photoresponsivity in gallium-doped ZnO thin film based UV photodetectors
Thahe et al. Photophysical performance of radio frequency sputtered Pt/n-PSi/ZnO NCs/Pt photovoltaic photodetectors
CN112071652B (zh) 一种三维刺猬状ZnO/SnO2异质结构及其制备方法与其在紫外探测器中的应用
CN103966570A (zh) 单晶In2Te3纳米线及其制备以及准一维In2Te3纳米结构的宽谱光探测器及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant