CN106981531A - 一种三维纳米结构阵列、制备方法及其应用 - Google Patents

一种三维纳米结构阵列、制备方法及其应用 Download PDF

Info

Publication number
CN106981531A
CN106981531A CN201710238070.4A CN201710238070A CN106981531A CN 106981531 A CN106981531 A CN 106981531A CN 201710238070 A CN201710238070 A CN 201710238070A CN 106981531 A CN106981531 A CN 106981531A
Authority
CN
China
Prior art keywords
array
nano
structure array
dimensional nano
nano structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710238070.4A
Other languages
English (en)
Other versions
CN106981531B (zh
Inventor
李立强
张文星
丁艳丽
王沙沙
贾满满
谷旭
于佳卉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangqiu Normal University
Original Assignee
Shangqiu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangqiu Normal University filed Critical Shangqiu Normal University
Priority to CN201710238070.4A priority Critical patent/CN106981531B/zh
Publication of CN106981531A publication Critical patent/CN106981531A/zh
Application granted granted Critical
Publication of CN106981531B publication Critical patent/CN106981531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种三维纳米结构阵列、制备方法及其应用,所述的三维纳米结构阵列是由规则排列的半导体纳米线阵列及在其上辐射状生长的半导体纳米线阵列构成。本发明制得的三维纳米结构阵列中辐射状生长的纳米线直径较小,长度和密度较大,大大增加了材料的比表面积,从而增大了三维纳米结构阵列的对光的吸收面积,使其对光的吸收较一维纳米阵列有明显的增强;同时由于规则排列的纳米线外侧,细小纳米线的辐射状生长,且辐射状生长的纳米线的密度较大,使得从各个角度入射的光线都能够得到很好的吸收,降低了三维纳米结构阵列对光线入射角度的敏感性,在光伏领域应用时可以避免不断随光照角度变化而改变太阳能电池角度,导致成本增加的问题。

Description

一种三维纳米结构阵列、制备方法及其应用
技术领域
本发明属于太阳能光伏电池技术领域,具体涉及一种三维纳米结构阵列、制备方法及其应用。
背景技术
随着纳米技术的发展和人们对光电转换效率要求的提高,越来越多的研究者开始了纳米阵列太阳能电池的制备,如纳米棒、纳米线、纳米带阵列太阳能电池等。其中,纳米线太阳能电池由于光吸收发生在纳米线的轴向,有效增加了光程,增大了对光的吸收;载流子的分离发生在纳米线的径向,减小了载流子复合的几率等优点而受到较多关注。
中国专利CN 102227002B公开了多晶硅纳米线太阳能电池及其制备方法,该方法采用多晶硅纳米线阵列作为太阳电池的吸收层,并通过沉积氧化硅钝化抗反射层和ITO薄膜,在常温常压下,制备大面积多晶硅纳米线。但该方法中采用的纳米线为多晶,其对光的反射较单晶要大,对光的吸收相对会较少。
中国专利CN102543465B公开了CdS单晶纳米线太阳能电池及其制备方法,该方法对现行液相合成CdS纳米线的方法进行了改进,提供了一种在导电玻璃FTO上原位生长CdS单晶纳米线的简单便捷的方法。制备的电池原理简单,设计巧妙,合成所用的原料价格变异,整个电池的性价比高,有利于大规模的商业化生产与应用。但制备过程中需要较高的温度,相应增加了制备的成本。
Carmelo Sunseria等人也通过使用氧化铝模板的恒压沉积法制备出CIS和CIGS纳米线阵列。Yi Cui等人也第一次利用Au颗粒催化的VLS生长方法,制备出CIGS纳米线。但这类含有一维纳米线阵列的太阳能电池的制备工艺较为复杂,相应地其制备成本较高,不易于大面积加工生产,此外,该制备工艺对纳米线点阵结构和取向的控制能力有限。
从现有的文献报道来看,纳米线阵列应用于光伏领域可以在薄膜的基础上提高对光的吸收,从而增大光电转化效率。虽然有通过Au颗粒催化、使用模板的电化学方法制备的多种纳米线阵列,但是目前还不存在一种工艺简单、制作成本较低且能够用于大面积纳米线阵列制备的方法,而且当前制备的纳米线太阳能电池同样需要随着太阳位置的改变而不断改变太阳能电池板的方向,这样也容易造成太阳能电池成本的提高。
发明内容
为了解决上述问题,本发明的目的是提供一种三维纳米结构阵列、制备方法及其应用,该阵列在光伏领域应用可有效解决太阳能电池转化率低,对光线入射角度敏感,成本高的问题。
为了实现上述目的,本发明所采用的技术方案是:
一种三维纳米结构阵列,由规则排列的半导体纳米线阵列及在其上辐射状生长的半导体纳米线阵列构成。
所述半导体为具有单晶结构的硫化亚铜。
所述的规则排列的半导体纳米线的直径为50nm-1μm,长度为100nm-50μm。
所述的辐射状生长的半导体纳米线的直径为10nm-300nm,长度为20nm-5μm,密度为101-104根/μm2
一种三维纳米结构阵列的制备方法,包括以下步骤:
(1)采用物理气相沉积法或电化学沉积法在衬底上沉积铜膜,然后将沉积了铜膜的衬底放入氧气/硫化氢混合气体中,在10-200℃下气固反应1-500h,铜膜转换为规则排列的硫化亚铜纳米线阵列;所述的铜膜厚度为600nm;
(2)通过物理气相沉积或者电化学在硫化亚铜纳米线阵列表面沉积铜颗粒;铜颗粒大小为1-100nm;
(3)将表层沉积了铜颗粒的硫化亚铜纳米线阵列放入氧气/硫化氢混合气体中,在10-50℃下气固反应1-50h,铜颗粒转换为辐射状生长的硫化亚铜纳米线阵列,得到三维纳米结构阵列。
所述的衬底为陶瓷、云母、高分子塑料、金属片、硅片、玻璃或不锈钢片。
所述的物理气相沉积法为溅射法、热蒸发法、电子束蒸发法或激光束蒸发法;所述的电化学沉积法为脉冲电化学沉积、恒压电化学沉积或恒流电化学沉积。
所述的氧气/硫化氢混合气体中,硫化氢所占体积百分比为1-100%。
一种三维纳米结构阵列在光伏领域的应用。
本发明的有益效果:
1、本发明是在规则排列的Cu2S纳米阵列的基础上,再在每一根纳米线表面生长更细小的纳米线阵列。制备方法采用两步法,首先在Cu2S纳米线表面沉积Cu颗粒,再对该结构进行硫化,最终获得由两种纳米线阵列形成的三维纳米结构。本发明制备方法简单,相比于需要高真空条件或者高温条件制备纳米阵列的方法,本发明没有真空度和温度要求,能够显著降低制备成本。而且本发明还具有对设备要求不高,反应物容易得到,制备温度较低,反应条件易控制、可以方便地进行大面积应用等优点。
2、本发明制备的三维纳米结构阵列中,辐射状生长的纳米线由于直径较小,长度和密度较大,大大增加了材料的比表面积,从而增大了三维纳米结构阵列的对光的吸收面积,使其对光的吸收较一维纳米阵列有明显的增强;同时由于规则排列的纳米线外侧,细小纳米线的辐射状生长,且辐射状生长的纳米线的密度较大,使得从各个角度入射的光线都能够得到很好的吸收,降低了三维纳米结构阵列对光线入射角度的敏感性,在光伏领域应用时可以避免随着太阳位置改变而导致电池性能降低,或需不断随光照角度变化而改变太阳能电池角度,导致成本增加的问题。
2、本发明制备的三维纳米结构阵列排列有序,周期性好,光吸收性能优良,且由于该阵列可以在不同衬底上同时进行大面积生长,因此该阵列可用于高效率大面积太阳能电池的制备。
附图说明
图1是本发明的三维纳米结构阵列示意图(纵切);其中,1-衬底,2-规则排列的纳米线,3-辐射状生长的纳米线。
图2是实施例3的三维纳米结构阵列的扫描电镜图。
具体实施方式
以下结合实施例对本发明的具体实施方式作进一步详细说明。
实施例1
一种三维纳米结构阵列,其制备方法包括以下步骤:
(1)将玻璃片依次用1mol/L的NaOH、1mol/L的HCl溶液、无水乙醇、去离子水超声清洗,然后在玻璃片上通过恒压电化学法沉积铜膜,铜膜厚度为600nm;然后将沉积了铜膜的衬底放入氧气/硫化氢混合气体中(体积比1:2),在15℃下气固反应20h,铜膜转换为规则排列的硫化亚铜纳米线阵列;
(2)通过脉冲电压法在硫化亚铜纳米线阵列表面沉积铜颗粒;铜颗粒大小为10nm;
(3)将表层沉积了铜颗粒的硫化亚铜纳米线阵列放入氧气/硫化氢混合气体(体积比1:2)中,在20℃下气固反应6h,铜颗粒转换为辐射状生长的硫化亚铜纳米线阵列,得到三维纳米结构阵列。
所制得的硫化亚铜三维纳米结构阵列,其结构如图1所示。规则排列的纳米线直径为100nm,长度为25μm,辐射状纳米线的直径为50nm,长度为2μm,密度为4×102根/μm2
所制得的硫化亚铜三维纳米结构阵列的比表面积相对于微米/纳米二级阵列增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了95%,且对光的入射角度更不敏感;相比于同等条件下制备得到的微米/纳米二级阵列,其对光的吸收率增加了近10%。当入射光由与样品表面垂直,变到与样品表面呈45°时,其吸收率仅降低了4%。
实施例2
一种三维纳米结构阵列,其制备方法包括以下步骤:
(1)将玻璃片依次用1mol/L的NaOH、1mol/L的HCl溶液、无水乙醇、去离子水超声清洗,然后在玻璃片上通过恒流电化学法沉积铜膜,铜膜厚度为600nm;然后将沉积了铜膜的衬底放入氧气/硫化氢混合气体中(体积比1:2),在18℃下气固反应20h,铜膜转换为规则排列的硫化亚铜纳米线阵列;
(2)通过磁控溅射法在硫化亚铜纳米线阵列表面沉积铜颗粒;铜颗粒大小为15nm;
(3)将表层沉积了铜颗粒的硫化亚铜纳米线阵列放入氧气/硫化氢混合气体(体积比1:2)中,在20℃下气固反应3h,铜颗粒转换为辐射状生长的硫化亚铜纳米线阵列,得到三维纳米结构阵列。
所制得的硫化亚铜三维纳米结构阵列,其结构如图1所示。规则排列的纳米线直径为120nm,长度为23μm,辐射状纳米线的直径为40nm,长度为0.8μm,密度为4×102根/μm2
所制得的硫化亚铜三维纳米结构阵列的比表面积相对于微米/纳米二级阵列增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了93%,且对光的入射角度更不敏感;相比于同等条件下制备得到的微米/纳米二级阵列,其对光的吸收率增加了近10%。当入射光由与样品表面垂直,变到与样品表面呈45°时,其吸收率仅降低了5%。
实施例3
一种三维纳米结构阵列,其制备方法包括以下步骤:
(1)将玻璃片依次用1mol/L的NaOH、1mol/L的HCl溶液、无水乙醇、去离子水超声清洗,然后在玻璃片上通过脉冲电流法沉积铜膜,铜膜厚度为600nm;然后将沉积了铜膜的衬底放入氧气/硫化氢混合气体中(体积比1:2),在25℃下气固反应20h,铜膜转换为规则排列的硫化亚铜纳米线阵列;
(2)通过磁控溅射法在硫化亚铜纳米线阵列表面沉积铜颗粒;铜颗粒大小为18nm;
(3)将表层沉积了铜颗粒的硫化亚铜纳米线阵列放入氧气/硫化氢混合气体(体积比1:2)中,在25℃下气固反应10h,铜颗粒转换为辐射状生长的硫化亚铜纳米线阵列,得到三维纳米结构阵列。
所制得的硫化亚铜三维纳米结构阵列,其结构如图1所示。规则排列的纳米线直径为300nm,长度为20μm,辐射状纳米线的直径为80nm,长度为5μm,密度为1.5×102根/μm2。所制得的硫化亚铜三维纳米结构阵列的扫描电镜照片如图2所示。
所制得的硫化亚铜三维纳米结构阵列的比表面积相对于微米/纳米二级阵列增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了92%,且对光的入射角度更不敏感;相比于同等条件下制备得到的微米/纳米二级阵列,其对光的吸收率增加了近9%。当入射光由与样品表面垂直,变到与样品表面呈45°时,其吸收率仅降低了4%。
实施例4
实施例4的三维纳米结构阵列制备方法同实施例3,不同之处在于:步骤(1)沉积方法为脉冲电压法沉积,气固反应温度为10℃,时间为1h;步骤(2)沉积方法为恒压电化学沉积,沉积铜颗粒大小为1nm;步骤(3)气固反应温度为10℃,时间为1h。
所制得的硫化亚铜三维纳米结构阵列,其结构如图1所示。规则排列的纳米线直径为50nm,长度为100nm,辐射状纳米线的直径为10nm,长度为20nm,密度为1×104根/μm2
所制得的硫化亚铜三维纳米结构阵列的比表面积相对于微米/纳米二级阵列增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了93%,且对光的入射角度更不敏感;相比于同等条件下制备得到的微米/纳米二级阵列,其对光的吸收率增加了近6%。当入射光由与样品表面垂直,变到与样品表面呈45°时,其吸收率仅降低了7%。
实施例5
实施例5的三维纳米结构阵列制备方法同实施例3,不同之处在于:步骤(1)气固反应温度为200℃,时间为500h;步骤(2)沉积铜颗粒大小为100nm;步骤(3)气固反应温度为50℃,时间为50h。
所制得的硫化亚铜三维纳米结构阵列,其结构如图1所示。规则排列的纳米线直径为1μm,长度为50μm,辐射状纳米线的直径为300nm,长度为5μm,密度为10根/μm2
所制得的硫化亚铜三维纳米结构阵列的比表面积相对于微米/纳米二级阵列增大较多,使得其对光线的吸收面积变大,对光的平均吸收率达到了91%,且对光的入射角度更不敏感;相比于同等条件下制备得到的微米/纳米二级阵列,其对光的吸收率增加了近7%。当入射光由与样品表面垂直,变到与样品表面呈45°时,其吸收率仅降低了6%。
与现有技术相比,本发明取得了良好的效果:
Shi等(Jian Shi,Yukihiro Hara,Chengliang Sun,Marc A.Anderson,XudongWang.Three-Dimensional High-Density Hierarchical Nanowire Architecture forHigh-Performance Photoelectrochemical Electrodes.Nano Lett,2011,11:3413-3419)通过物理气相沉积的方法在Si纳米线的外侧制备了TiO2支晶,成功得到了Si-TiO2三维纳米结构,该结构的光吸收率虽然较Si-TiO2核-壳结构提高了67%,但也仅达到了85%-90%,远远低于本发明中三维纳米结构的光吸收率(>90%)。Zhu等(Zhu J,Yu Z,Burkhard GF,Hsu C,Connor ST,et al.Optical absorption enhancement in amorphous siliconnanowire and nanocone arrays.Nano Lett.2009,9(1):279–82)制备的Si:H纳米锥当光线的入射角度从0°增加到45°时,其对光的吸收率下降了近10%,对光线的入射角度较本发明中的三维纳米结构敏感(同等条件下,本发明中纳米线阵列对光的吸收率仅下降了4%左右)。此外,同发明人前期制备的硫化亚铜微纳二级阵列相比,硫化亚铜三维纳米结构阵列对光的入射角度更不敏感,当光线的入射角度从0°增加到45°时,根据二级阵列直径的不同,硫化亚铜微纳二级阵列对光的吸收率下降了6.8%-13%,而硫化亚铜三维纳米结构对光的吸收率下降始终小于10%。
以上所述仅为本发明最佳的实施例,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种三维纳米结构阵列,其特征在于,由规则排列的半导体纳米线阵列及在其上辐射状生长的半导体纳米线阵列构成。
2.根据权利要求1所述的三维纳米结构阵列,其特征在于,所述半导体为具有单晶结构的硫化亚铜。
3.根据权利要求1所述的三维纳米结构阵列,其特征在于,所述的规则排列的半导体纳米线的直径为50nm-1μm,长度为100nm-50μm。
4.根据权利要求1所述的三维纳米结构阵列,其特征在于,所述的辐射状生长的半导体纳米线的直径为10nm-300nm,长度为20nm-5μm,密度为101-104根/μm2
5.一种如权利要求1所述的三维纳米结构阵列的制备方法,其特征在于,包括以下步骤:
(1)采用物理气相沉积法或电化学沉积法在衬底上沉积铜膜,然后将沉积了铜膜的衬底放入氧气/硫化氢混合气体中,在10-200℃下气固反应1-500h,铜膜转换为规则排列的硫化亚铜纳米线阵列;所述的铜膜厚度为600nm;
(2)通过物理气相沉积或者电化学在硫化亚铜纳米线阵列表面沉积铜颗粒;铜颗粒大小为1-100nm;
(3)将表层沉积了铜颗粒的硫化亚铜纳米线阵列放入氧气/硫化氢混合气体中,在10-50℃下气固反应1-50h,铜颗粒转换为辐射状生长的硫化亚铜纳米线阵列,得到三维纳米结构阵列。
6.根据权利要求5所述的三维纳米结构阵列的制备方法,其特征在于,所述的衬底为陶瓷、云母、高分子塑料、金属片、硅片、玻璃或不锈钢片。
7.根据权利要求5所述的三维纳米结构阵列的制备方法,其特征在于,所述的物理气相沉积法为溅射法、热蒸发法、电子束蒸发法或激光束蒸发法;所述的电化学沉积法为脉冲电化学沉积、恒压电化学沉积或恒流电化学沉积。
8.根据权利要求5所述的三维纳米结构阵列的制备方法,其特征在于,所述的氧气/硫化氢混合气体中,硫化氢所占体积百分比为1-100%。
9.一种权利要求1所述的三维纳米结构阵列在光伏领域的应用。
CN201710238070.4A 2017-04-13 2017-04-13 一种三维纳米结构阵列、制备方法及其应用 Active CN106981531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710238070.4A CN106981531B (zh) 2017-04-13 2017-04-13 一种三维纳米结构阵列、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710238070.4A CN106981531B (zh) 2017-04-13 2017-04-13 一种三维纳米结构阵列、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106981531A true CN106981531A (zh) 2017-07-25
CN106981531B CN106981531B (zh) 2018-09-07

Family

ID=59345085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710238070.4A Active CN106981531B (zh) 2017-04-13 2017-04-13 一种三维纳米结构阵列、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106981531B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585238A (zh) * 2018-12-03 2019-04-05 深圳先进技术研究院 场致发射电极及其制备方法
CN110071027A (zh) * 2019-04-24 2019-07-30 深圳先进技术研究院 用于发射x射线的场致发射器件及其制备方法
CN110116273A (zh) * 2019-06-05 2019-08-13 北京理工大学 飞秒激光协同氧化反应制备宽谱带抗反射结构的方法
CN110690846A (zh) * 2019-09-29 2020-01-14 西南大学 一种基于倾斜硅纳米线的光热电转换器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124152A (zh) * 2003-11-26 2008-02-13 昆南诺股份有限公司 分枝纳米晶须形成的纳米结构和制造它的方法
CN102569508A (zh) * 2011-12-29 2012-07-11 中山大学 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
CN103151397A (zh) * 2013-01-21 2013-06-12 中山大学 一种微米/纳米二级表面阵列及其制备方法和用途
CN103715280A (zh) * 2013-12-30 2014-04-09 商丘师范学院 一种微米/纳米二级阵列结构薄膜太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124152A (zh) * 2003-11-26 2008-02-13 昆南诺股份有限公司 分枝纳米晶须形成的纳米结构和制造它的方法
CN102569508A (zh) * 2011-12-29 2012-07-11 中山大学 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
CN103151397A (zh) * 2013-01-21 2013-06-12 中山大学 一种微米/纳米二级表面阵列及其制备方法和用途
CN103715280A (zh) * 2013-12-30 2014-04-09 商丘师范学院 一种微米/纳米二级阵列结构薄膜太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAI CX,ET.AL: "Large-area aligned branched Cu2S nanostructure arrays: room-temperature synthesis and growth mechanism", 《NANOTECHNOLOGY》 *
XIAO Y,ET.AL: "Preparationof Cu2S dendritic, double-comb-like nanostructures by gas-solid reaction method", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585238A (zh) * 2018-12-03 2019-04-05 深圳先进技术研究院 场致发射电极及其制备方法
CN110071027A (zh) * 2019-04-24 2019-07-30 深圳先进技术研究院 用于发射x射线的场致发射器件及其制备方法
CN110071027B (zh) * 2019-04-24 2022-02-15 深圳先进技术研究院 用于发射x射线的场致发射器件及其制备方法
CN110116273A (zh) * 2019-06-05 2019-08-13 北京理工大学 飞秒激光协同氧化反应制备宽谱带抗反射结构的方法
CN110690846A (zh) * 2019-09-29 2020-01-14 西南大学 一种基于倾斜硅纳米线的光热电转换器件

Also Published As

Publication number Publication date
CN106981531B (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
CN102569508B (zh) 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
US7893348B2 (en) Nanowires in thin-film silicon solar cells
CN106981531B (zh) 一种三维纳米结构阵列、制备方法及其应用
Kuang et al. Elongated nanostructures for radial junction solar cells
TWI409963B (zh) 同軸奈米線結構的太陽能電池
CN101845664B (zh) 一种高取向单晶二氧化钛纳米线阵列薄膜的低温制备方法
Sagadevan Recent trends on nanostructures based solar energy applications: a review
CN103887073B (zh) 一种基于表面等离子体增强原理的太阳能电池及其制备方法
JP2012522395A (ja) 太陽光発電装置及びその製造方法
CN102169910A (zh) 一种基于硫属化合物纳米晶的薄膜太阳能电池
KR101164326B1 (ko) 불규칙적인 또는 규칙적인 배열의 금속 나노 입자 층을 이용한 실리콘 박막 태양 전지 및 그 제조 방법
CN107706248A (zh) 一种硅纳米结构异质结太阳电池及其制备方法
CN1933185A (zh) 廉价多晶硅薄膜太阳电池
CN104037324A (zh) 一种基于硫化镉纳米阵列的钙钛矿杂化太阳电池
CN103715280B (zh) 一种微米/纳米二级阵列结构薄膜太阳能电池及其制备方法
Nichkalo et al. Fabrication and characterization of high-performance anti-reflecting nanotextured Si surfaces for solar cells
CN111841570B (zh) 一种近红外-可见光谱宽频吸收超材料及其制备方法
CN103151397B (zh) 一种微米/纳米二级表面阵列及其制备方法和用途
CN112635587A (zh) 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法
CN102629632B (zh) 一种cigs纳米结构薄膜光伏电池及其制备方法
CN102544184A (zh) 一种横向结构的pin太阳能电池及其制备方法
CN112652720A (zh) 一种基于二维光子晶体结构的钙钛矿太阳能电池
Roy et al. Cross-fertilized biomimetic structures achieved through nanosphere lithography on an ultrathin wafer for flexible black c-Si SHJ solar cells
CN115417445B (zh) 一种铜锌锡硫一维半导体纳米结构阵列、制备方法及其应用
CN113972291A (zh) 一种铜铟镓硫微纳二级阵列及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant