CN107369729B - 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法 - Google Patents

一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法 Download PDF

Info

Publication number
CN107369729B
CN107369729B CN201710672262.6A CN201710672262A CN107369729B CN 107369729 B CN107369729 B CN 107369729B CN 201710672262 A CN201710672262 A CN 201710672262A CN 107369729 B CN107369729 B CN 107369729B
Authority
CN
China
Prior art keywords
cuo
tio
film
interpenetrating
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710672262.6A
Other languages
English (en)
Other versions
CN107369729A (zh
Inventor
吴璠
陈伟敏
唐志鲜
蒋岚
康鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou University
Original Assignee
Huzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huzhou University filed Critical Huzhou University
Priority to CN201710672262.6A priority Critical patent/CN107369729B/zh
Publication of CN107369729A publication Critical patent/CN107369729A/zh
Application granted granted Critical
Publication of CN107369729B publication Critical patent/CN107369729B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法,利用垂直生长于FTO衬基上的CuO纳米棒阵列作为光子吸收材料和空穴传输材料,TiO2纳米晶体薄膜为电子传输材料,制备了CuO/TiO2纳米有序互穿异质结,并制成以FTO为阴极和Al膜为阳极的太阳电池。发现CuO/TiO2纳米有序互穿异质结太阳电池的开路电压达到0.41V、短路电流密度为7.81uA/cm2;与CuO/TiO2双层平面异质结太阳电池相比,CuO/TiO2纳米有序互穿异质结的路电压提高了1.78倍,短路电流密度增加了16.27倍。

Description

一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备 方法
技术领域:
本发明涉及纳米半导体材料和新能源领域,确切地说是一种新型薄膜太阳电池及其制备方法。
背景技术:
能源与环境问题是当前人类面临的两个最紧迫需要解决的问题,低碳经济是当今最热门话题。太阳能是取之不尽,用之不竭的绿色能源,将太阳能转换成电能的光伏电池是解决能源和环境问题、发展低碳经济的途径之一。和块体材料相比,低维纳米棒阵列材料在太阳能光电转换方面具有独特的优势,比如,增加了载流子的收集效率,拓宽了光子吸收的比表面积【Nano Energy,2017,215-222】。然而,常见的半导体材料(ZnO、TiO2等)纳米棒阵列,其禁带宽度很大(大于3eV)【Adv.Energy Mater.,2017,1602803】,这极大限制了对太阳光谱中对可见光的吸收,从而导致较低的太阳能光电转换效率。所以发展高效纳米线阵列型的光子吸收材料是太阳电池发展的重要方向之一【Adv.Mater.2010,22,E254;J.Am.Chem.Soc,2009,131,3756】。
CuO是一种环境友好的窄带隙(1.2-1.5eV)半导体材料,被应用到光电导、光催化、气敏传感器、太阳电池等领域【Chem.Mater.,2017,29,1735–1743】。目前,阵列型CuO纳米线在太阳电池中的应用并不多见,并且大都是通过对Cu铂进行热氧化法得到CuO纳米线阵列。例如,Wang等首先对Cu铂进行热氧化后制备出CuO纳米线阵列,然后在其表面滴涂醋酸锌后进行退火得到阵列型CuO/ZnO异质结【Optics Express,2011,19,11271】。Anandan等将Cu片进行热氧化后制备出的CuO纳米线阵列用于染料敏化太阳电池的对电极【MaterialsChemistry and Physics,2005,93,35】。然而Cu片基底不能作为光窗口来吸收光子,从而限制了其制备的CuO阵列在太阳电池中的应用。Liu等通过两步法在导电玻璃上生长出了CuO纳米棒阵列【Journal of Alloys and Compounds,2012,511,195】,首先,他们通过简单的滴涂法将醋酸铜溶液滴涂在导电玻璃上,然后退火形成CuO籽晶层,接着利用水热法在CuO籽晶层上生长出CuO纳米棒阵列,但是利用水热法在透明导电玻璃上生长出的CuO纳米棒阵列来制备CuO/TiO2纳米有序互穿异质结薄膜太阳电池也还未见报道。
本发明中,我们在FTO导电玻璃上通过多次旋涂醋酸铜溶液然后退火形成CuO籽晶层,该方法得到的CuO籽晶层比他人的滴涂法【Journal of Alloys and Compounds,2012,511,195】更加均匀和致密。然后我们利用水热法在籽晶层上生长出CuO纳米棒阵列,接着在CuO纳米棒阵列上旋涂TiO2溶胶-凝胶溶液得到纳米互穿CuO/TiO2全氧化物异质结薄膜,最后在TiO2上方蒸镀LiF作为阳极修饰层和金属银作为阳极得到太阳电池。
发明内容:
本发明目的是为了弥补已有技术的缺陷,将空气中稳定的CuO纳米棒阵列应用到新型固态全氧化物异质结薄膜太阳电池中,提供一种成本较低,可以在空气中制备,环境友好、工艺简单,且便于大面积制作的电池及其制备方法。
为了实现上述目的,本发明采用如下技术方案:
全氧化物纳米有序互穿异质结薄膜太阳电池,其特征在于:包括玻璃衬基、FTO层、CuO纳米棒阵列、TiO2膜层,LiF膜层以及作为金属Al膜层;所述的FTO层镀在玻璃衬基上作为电池的阴极,以垂直生长于FTO层之上的CuO纳米棒阵列为电池的光子吸收材料,用TiO2膜层为电子传输层,TiO2覆盖在CuO纳米棒阵列的间隙之中,同时在CuO纳米棒阵列上方形成TiO2膜层,在TiO2膜层上蒸镀LiF作为阳极修饰层,在LiF膜上蒸镀Al膜作为电池的阳极。
所述的一种纳米有序互穿全氧化物异质结薄膜太阳电池,其特征在于:FTO层的厚度为50-200nm,CuO纳米棒阵列的长度为300-600nm、直径为20-90nm、CuO纳米棒的数量密度为3-6×102个/μm2,位于CuO纳米棒阵列间隙和上方的TiO2致密膜层厚度为40-80nm,LiF膜层厚度为0.5-2nm,Al膜厚度为60-120nm。
所述的一种纳米有序互穿全氧化物异质结薄膜太阳电池的制备方法,其特征在于包括以下步骤:
(1)将FTO导电玻璃上的FTO用浓盐酸和Zn粉刻蚀成细条,再经丙酮、异丙醇、超纯水超声清洗干净,干燥后得经过处理的FTO导电玻璃备用;
(2)利用水热反应法在FTO导电玻璃上生长CuO纳米阵列;
(3)匀胶机采用旋涂的方式在CuO纳米阵列上旋涂TiO2凝胶溶液并退火,得到CuO和TiO2纳米有序互穿异质结薄膜;
(4)真空镀膜机采用热蒸发的方式在TiO2层的上方蒸镀LiF为阳极修饰层;
(5)真空镀膜机采用热蒸发的方式在LiF层的上方蒸镀Al为金属阳极层;
进一步的,利用水热反应法在FTO导电玻璃上生长CuO纳米阵列的流程为:
(1)将0.10克醋酸铜溶解于5毫升无水乙醇,将得到的混合物在室温下搅拌2小时,得到蓝色澄清溶液;
(2)将步骤(1)中所得的蓝色澄清溶液以2000rpm/min转速旋涂于经过处理的FTO导电玻璃上,然后置于加热台上100℃退火1分钟,此过程重复四次,得到均匀的醋酸铜薄膜;
(3)将步骤(2)中所的醋酸铜薄膜在马弗炉中于250℃下煅烧60分钟得到覆盖在FTO导电基片上的CuO致密籽晶层薄膜,
(4)将步骤(3)中所的FTO导电基片上的CuO致密籽晶层薄膜置于0.25mol/L硝酸铜和0.25mol/L六次甲基四胺组成的水溶液中,密封后于90℃烘箱中反应4小时,得到CuO纳米棒阵列;
进一步的,采用旋涂的方式在CuO纳米阵列上旋涂TiO2凝胶溶液形成致密膜并退火的流程为:
(1)将369微升钛酸异丙酯溶解于2.53毫升的异丙醇中,待搅拌充分后再逐滴加入35微升的2摩尔/升的盐酸,将得到的混合物在室温下搅拌8小时形成TiO2凝胶溶液;
(2)在室温下于空气中,将步骤(1)中所得的TiO2凝胶溶液以2000rpm/min转速旋涂于CuO纳米棒阵列的上方,形成致密膜层,接着在马弗炉中在空气中于500℃下煅烧60分钟得到CuO和TiO2纳米有序互穿异质结薄膜;
进一步的,LiF纯度大于99.5%,Al纯度大于99.999%。
本发明的有益效果为:
(1)本发明先通过制备CuO纳米棒阵列作为光子吸收层,通过在CuO纳米棒阵列上方旋涂TiO2溶胶-凝胶溶液,得到CuO/TiO2纳米互穿异质结薄膜。本发明得到的CuO/TiO2纳米有序互穿全氧化物异质结薄膜太阳电池在一个标准太阳光下,开路电压Voc可达到0.41V,短路电流密度Jsc可达到7.81uA/cm2。本发明中CuO/TiO2纳米互穿异质结薄膜和电池器件的制备方法简便,对设备要求低,适合大规模应用,在光伏材料和低价太阳电池器件等领域具有很大的应用价值。
(2)本发明将p型半导体CuO纳米阵列与n型半导体TiO2复合成纳米有序互穿全氧化物异质结薄膜,制成以FTO为阴极和Al膜为阳极的太阳电池。CuO/TiO2纳米有序互穿异质结相比CuO/TiO2平面异质结,极大的提高了CuO/TiO2异质结的界面面积。在CuO/TiO2纳米互穿异质结中,CuO纳米棒吸收光子并产生电子-空穴对,电子扩散到TiO2中,并沿TiO2通道传输到Al电极,空穴则沿着CuO纳米棒阵列传输到FTO电极。当使用CuO纳米阵列时,电池的开路电压Voc到0.41V、短路电流密度Jsc为7.81uA/cm2;与CuO/TiO2双层平面异质结太阳电池相比,CuO/TiO2纳米有序互穿异质结太阳电池的开路电压Voc提高了1.78倍,短路电流密度Jsc增加了16.27倍。
(3)本发明的创新点有:
(a)首次用溶液法制备出了CuO/TiO2全氧化物纳米有序互穿异质结;(b)首次将CuO/TiO2纳米有序互穿异质结应用于薄膜太阳电池中;(c)CuO/TiO2纳米有序互穿异质结电池的性能比CuO/TiO2双层平面异质结电池大幅度增强。
附图说明:
图1是本发明所述的CuO/TiO2纳米有序互穿全氧化物异质结薄膜太阳电池的结构示意图;图中数字标注说明如下:
(1)玻璃衬基、(2)FTO膜作为电池的阴极、(3)CuO籽晶层、(4)CuO纳米棒阵列、(5)TiO2膜、(6)阳极修饰层LiF膜、(7)电池的阳极Al膜
图2是本发明所述的CuO纳米棒阵列的SEM表征结果;
图3是本发明所述的CuO纳米棒阵列的XRD表征结果;
图4是本发明所述的CuO纳米棒阵列的(a)TEM和(b)HRTEM表征结果;
图5是本发明所述的CuO纳米棒阵列的UV-vis吸收光谱的表征结果;
图6是本发明所述的CuO/TiO2纳米有序互穿异质结的SEM表征结果;
图7是本发明所述的CuO/TiO2纳米有序互穿异质结的元素分布表征结果;
图8是本发明所述的TiO2在硅片上的XRD表征结果;
图9是本发明所述的杂化太阳电池在AM 1.5模拟太阳光照条件下的J-V性能表征结果;其中,曲线a为CuO/TiO2双层平面异质结薄膜电池组成的参比电池,曲线b为CuO/TiO2纳米有序互穿异质结组成的电池。
具体实施方式
实施例1:CuO纳米棒阵列的制备。
(1-1)将0.10克醋酸铜溶解于5毫升无水乙醇,将得到的混合物在室温下搅拌2小时,得到蓝色澄清溶液;
(1-2)将步骤(1-1)中所得的蓝色澄清溶液以2000rpm/min转速旋涂于经过处理的FTO导电玻璃上,然后置于加热台上100℃退火1分钟,此过程重复四次,得到均匀的醋酸铜薄膜;;
(1-3)将步骤(1-2)中所的醋酸铜薄膜在马弗炉中于250℃下煅烧60分钟得到覆盖在FTO导电基片上的CuO致密籽晶层薄膜,
(1-4)将步骤(1-3)中所的FTO导电基片上的CuO致密籽晶层薄膜置于0.25mol/L硝酸铜和0.25mol/L六次甲基四胺组成的水溶液中,密封后于90℃烘箱中反应4小时,得到CuO纳米棒阵列;
(1-5)产物的表征:扫描电子显微镜(SEM)照片表明,所得的纳米棒阵列垂直于FTO基底生长,长度为400-500nm,直径为30-50nm,棒的数量密度为3-6×102/μm2。SEM表征结果见附图2。X-射线衍射(XRD)测试表明,纳米棒阵列均为单斜晶系结构CuO(JCPDS#80-0076),CuO纳米棒的XRD表征结果见附图3。透射电镜(TEM)和高分辨透射电镜(HRTEM)照片表明,所得的纳米棒确实对应CuO单斜晶系,且晶面间距0.252nm对应[111]晶面。CuO纳米棒的TEM和HRTEM表征结果见附图4。CuO的紫外-可见(UV-vis)吸收光谱的测试结果表明,CuO纳米棒阵列可以吸收300-800nm波段的光子(见附图5)。
实施例2:CuO/TiO2纳米有序互穿异质结的制备。
(2-1)CuO纳米棒阵列的制备:同实施例1。
(2-2)将369微升钛酸异丙酯溶解于2.53毫升的异丙醇中,待搅拌充分后再逐滴加入35微升的2摩尔/升的盐酸,将得到的混合物在室温下搅拌8小时形成TiO2凝胶溶液;
(2-3)在室温下于空气中,将步骤(1)中所得的TiO2凝胶溶液以2000rpm/min转速旋涂于CuO纳米棒阵列的上方,形成致密膜层,接着在马弗炉中于500℃下煅烧60分钟得到CuO和TiO2纳米有序互穿异质结薄膜;
(2-4)产物的表征:产物的表征结果见附图6、附图7和附图8。SEM照片(附图6)表明,在整个CuO纳米棒阵列的上方薄膜致密且均匀地覆盖了一层薄膜,并且很好的填充在CuO纳米棒的间隙中。我们将该薄膜旋涂在硅片上并进行了XRD表征,XRD表征结果(附图7)表明该薄膜是TiO2(JCPDS#71-1057)。元素分布(附图8)结果也表明,在CuO纳米棒的上方和间隙均匀分布着TiO2
实施例3:CuO/TiO2纳米有序互穿异质结太阳电池的制备。
(3-1)CuO纳米棒阵列的制备:同实施例1。
(3-2)CuO/TiO2纳米有序互穿异质结的制备:同实施例2。
(3-3)在TiO2薄膜上通过真空热蒸发方法蒸镀厚度为1nm的LiF膜作为阳极修饰层,压强为5×10-4Pa,蒸发速率为0.1埃/秒。在LiF膜上通过真空热蒸发方法蒸镀厚度为100nm的Al膜作为阳极,压强为5×10-4Pa,蒸发速率为1埃/秒。Al电极的大小由模板控制为4×4mm2,并作为电池的有效面积。
(3-4)CuO/TiO2双层平面异质结太阳电池的制备:
为了验证有序互穿异质结对电池性能的改善作用,将步骤(1-3)中CuO籽晶层薄膜上旋涂TiO2TiO2凝胶溶液并退火,得到了CuO/TiO2双层平面异质结并制备为参比电池;这两种电池的制备方法与(3-3)步骤完全相同。
(3-5)电池的表征:
CuO/TiO2纳米有序互穿异质结太阳电池、CuO/TiO2双层平面异质结太阳电池的电流-电压(J-V)性能表征结果见附图7。J-V测试是在下于空气室温环境中完成的;结果表明CuO/TiO2纳米有序互穿异质结太阳电池具有明显的光伏性能,且电池性能比CuO/TiO2双层平面异质结太阳电池有大幅提升。与CuO/TiO2双层平面异质结太阳电池相比,CuO/TiO2纳米有序互穿异质结太阳电池的开路电压Voc提高了1.78倍,短路电流密度Jsc增加了16.27倍,填充因子FF增加了1.65倍以及转换效率η提高了50.6倍。详细比较见表1。
表1.
注:J-V性能测试在实验室环境中完成,电池的有效面积为4mm2;Voc、Jsc、FF和η分别为电池的开路电压、短路电流、填充因子和转换效率。

Claims (3)

1.一种纳米有序互穿全氧化物异质结薄膜太阳电池的制备方法,其特征在于,包括以下步骤:
(1)将FTO导电玻璃上的FTO用浓盐酸和Zn粉刻蚀成细条,再经丙酮、异丙醇、超纯水超声清洗干净,干燥后得经过处理的FTO导电玻璃备用;
(2)利用水热反应法在FTO导电玻璃上生长CuO纳米阵列;
(3)匀胶机采用旋涂的方式在CuO纳米阵列上旋涂TiO2凝胶溶液并退火,得到CuO和TiO2纳米有序互穿异质结薄膜;
(4)真空镀膜机采用热蒸发的方式在TiO2层的上方蒸镀LiF为阳极修饰层;
(5)真空镀膜机采用热蒸发的方式在LiF层的上方蒸镀Al为金属阳极层;
利用水热反应法在FTO导电玻璃上生长CuO纳米阵列的流程为:
(1)将0.10克醋酸铜溶解于5毫升无水乙醇,将得到的混合物在室温下搅拌2小时,得到蓝色澄清溶液;
(2)将步骤(1)中所得的蓝色澄清溶液以2000rpm/min转速旋涂于经过处理的FTO导电玻璃上,然后置于加热台上100℃退火1分钟,此过程重复四次,得到均匀的醋酸铜薄膜;
(3)将步骤(2)中所的醋酸铜薄膜在马弗炉中于250℃下煅烧60分钟得到覆盖在FTO导电基片上的CuO致密籽晶层薄膜;
(4)将步骤(3)中所的FTO导电基片上的CuO致密籽晶层薄膜置于0.25mol/L硝酸铜和0.25mol/L六次甲基四胺组成的水溶液中,密封后于90℃烘箱中反应4小时,得到CuO纳米棒阵列。
2.根据权利要求1所述的一种纳米有序互穿全氧化物异质结薄膜太阳电池的制备方法,其特征在于,采用旋涂的方式在CuO纳米阵列上方旋涂TiO2凝胶溶液形成致密膜并退火的流程为:
(1)将369微升钛酸异丙酯溶解于2.53毫升的异丙醇中,待搅拌充分后再逐滴加入35微升的2摩尔/升的盐酸,将得到的混合物在室温下搅拌8小时形成TiO2凝胶溶液;
(2)在室温下于空气中,将步骤(1)中所得的TiO2凝胶溶液以2000rpm/min转速旋涂于CuO纳米棒阵列的上方,形成致密膜层,接着在马弗炉中于500℃下煅烧60分钟,得到CuO和TiO2纳米有序互穿异质结薄膜。
3.根据权利要求1所述的一种纳米有序互穿全氧化物异质结薄膜太阳电池的制备方法,其特征在于,真空镀膜机采用热蒸发的方式在TiO2层的上方蒸镀LiF的流程为:压强为5×10-4Pa,蒸发速率为0.1埃/秒;真空镀膜机采用热蒸发的方式在LiF层的上方蒸镀金属Al的流程为:压强为5×10-4Pa,蒸发速率为1埃/秒,Al电极的大小由掩膜版控制为1×4mm2,并作为电池的有效面积。
CN201710672262.6A 2017-08-08 2017-08-08 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法 Expired - Fee Related CN107369729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710672262.6A CN107369729B (zh) 2017-08-08 2017-08-08 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710672262.6A CN107369729B (zh) 2017-08-08 2017-08-08 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN107369729A CN107369729A (zh) 2017-11-21
CN107369729B true CN107369729B (zh) 2019-02-12

Family

ID=60310251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710672262.6A Expired - Fee Related CN107369729B (zh) 2017-08-08 2017-08-08 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN107369729B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394343B (zh) * 2021-01-07 2022-08-05 湖州师范学院 一种背入射p-i-n结构钙钛矿太阳电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030606A (zh) * 2007-01-12 2007-09-05 武汉理工大学 一维CuO纳米针/Cu基板材料在染料太阳能电池中的应用
CN101400512A (zh) * 2006-05-15 2009-04-01 思阳公司 利用半导体材料的用于薄膜光生伏打材料的方法和结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009285A (ja) * 2009-06-23 2011-01-13 Toyota Central R&D Labs Inc 光電変換素子
WO2015153831A1 (en) * 2014-04-04 2015-10-08 Tufts University Cupric oxide semiconductors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400512A (zh) * 2006-05-15 2009-04-01 思阳公司 利用半导体材料的用于薄膜光生伏打材料的方法和结构
CN101030606A (zh) * 2007-01-12 2007-09-05 武汉理工大学 一维CuO纳米针/Cu基板材料在染料太阳能电池中的应用

Also Published As

Publication number Publication date
CN107369729A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
Parize et al. ZnO/TiO2/Sb2S3 core–shell nanowire heterostructure for extremely thin absorber solar cells
CN102326260B (zh) 铜铁矿铜透明p型半导体的制造方法及应用
CN104659123B (zh) 化合物薄膜太阳能电池及其制备方法
CN103367512B (zh) 一种基于无机体异质结的太阳电池及其制备方法
CN102569508B (zh) 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
CN105489773A (zh) 有机无机杂化钙钛矿薄膜以及太阳能电池的制备方法
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
CN109728169B (zh) 一种掺杂有功能添加剂的钙钛矿太阳电池及其制备方法
CN102544378A (zh) 一种基于ZnO同质核壳结构纳米棒阵列的有机/无机杂化太阳电池及其制备方法
CN106128772B (zh) 一种硫化铅量子点光伏电池的制备方法
Zhao et al. ZnO/TiO 2 core–shell nanowire arrays for enhanced dye-sensitized solar cell efficiency
CN102723208A (zh) 一维氧化锌-二氧化钛核壳结构复合纳米线阵列的制备方法
CN102637755B (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
CN110844936A (zh) 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN102208487B (zh) 铜铟硒纳米晶/硫化镉量子点/氧化锌纳米线阵列纳米结构异质结的制备方法
CN105870339B (zh) 一种提高纯度、减少针孔的钙钛矿薄膜的制备方法
CN103400903A (zh) 一种提高铜锌锡硫薄膜晶粒尺寸和致密度的制备方法
CN107331774B (zh) 一种新型钙钛矿太阳能电池结构和制备方法
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
CN114188434A (zh) TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用
CN104037324A (zh) 一种基于硫化镉纳米阵列的钙钛矿杂化太阳电池
CN110350053B (zh) CuO纳米颗粒修饰ZnO纳米线阵列的光电材料、制备及应用
CN107369729B (zh) 一种纳米有序互穿全氧化物异质结薄膜太阳电池及其制备方法
Burgos et al. Electrodeposition of ZnO nanorods as electron transport layer in a mixed halide perovskite solar cell
CN107705993B (zh) 染料敏化太阳电池氧化铜纳米棒阵列对电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190212

Termination date: 20190808