CN114188434A - TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用 - Google Patents

TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用 Download PDF

Info

Publication number
CN114188434A
CN114188434A CN202111474994.7A CN202111474994A CN114188434A CN 114188434 A CN114188434 A CN 114188434A CN 202111474994 A CN202111474994 A CN 202111474994A CN 114188434 A CN114188434 A CN 114188434A
Authority
CN
China
Prior art keywords
tio
bifeo
bioi
ternary
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111474994.7A
Other languages
English (en)
Inventor
陈昕琪
程普佳
张颖洁
吴璠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou University
Original Assignee
Huzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huzhou University filed Critical Huzhou University
Priority to CN202111474994.7A priority Critical patent/CN114188434A/zh
Publication of CN114188434A publication Critical patent/CN114188434A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种TiO2/BiFeO3/BiOI三元纳米异质结光电极及其制备方法和应用,基于TiO2/BiFeO3/BiOI三元纳米异质结光电极及其制备方法,电极组成包括有导电玻璃衬基、TiO2纳米棒阵列、BiFeO3电荷分离修饰层、BiOI光吸收层。以垂直生长于FTO衬基上的TiO2纳米棒阵列作为模板,利用溶液旋涂和退火的方式将BiFeO3电荷分离层修饰在TiO2纳米棒阵列的表面,再通过多次溶液旋涂和退火的方式在纳米棒中间填充BiOI光吸收层。本发明所得到的TiO2/BiFeO3/BiOI三元纳米异质结光电极产生的光电流比参比BiOI/TiO2二元纳米异质结产生光电流高出近8倍。本发明制备方法简便,BiFeO3电荷分离修饰层以及BiOI的沉积简单且易控。

Description

TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用
技术领域
本发明涉及纳米半导体材料和新能源领域,确切地说是一种新型纳米异质结光电极的结构及其制备方法和应用。
背景技术
随着无污染新能源材料的迅速发展,环境友好型光电化学电池材料已成为研究热点。P型氧碘化铋(BiOI)由于其窄带隙(1.6-1.9eV)有利于可见光捕获,成为一种有潜力应用价值的光电化学器件材料【ActaPhys.-Chim.Sin.,37, 2011022,2021】。BiOI材料是一种间接带隙过渡材料,易于在氧卤化铋中制备。但是,由于光生电荷的快速复合速率,单一的BiOI材料的光电化学性能仍需改进【Chen,Chem.Eng.J.,428,131158,2022】。近年来,研究人员采取了许多策略来解决这一问题,如杂质掺杂、贵金属负载、纳米结构设计、异质结构建等。在上述策略中,异质结的引入已被证明是提高BiOI光活性半导体光生电荷分离效率的有效途径【J.Mater.Sci.Technol.,56,133,2020】。
近年来,TiO2/BiOI、Bi2O3/BiOI、ZnO/BiOI、BiPO4/BiOI的二元异质结光电极已经成功合成,并且发现它们的光电化学性能优于纯BiOI,而增强光电转换的主要原因是异质结可以产生内置电场来分离电荷【Nanoscale.,13,4496, 2021】。尽管基于BiOI的二元异质结方法在制备技术和光电化学应用方面取得了一些进展,但两种组分之间的能带偏移仍然不合适,这可能会影响光致电子- 空穴对的分离。这需要界面工程能量学来提高工作条件下完全解离的电子和空穴载流子的产率。因此,界面工程的研究和开发对于优化BiOI基异质结的性能非常重要。
本发明中,我们引入了TiO2/BiFeO3/BiOI三元异质结,用于光电化学电池光电极。其中BiOI为主要光吸收层,BiFeO3作为铁电材料作为界面改性剂,利用BiFeO3引起的自极化效应促进TiO2/BiOI界面上光生电子和空穴的解离,TiO2为纳米阵列结构,提供电子的径向传输通道。
发明内容
本发明目的是为了弥补已有技术的缺陷,该发明提供一种成本较低,可以在空气中制备,环境友好、工艺简单,且便于大面积制作的光电极及其制备方法和应用,具体方案如下:
一种TiO2/BiFeO3/BiOI三元纳米异质结光电极,在导电玻璃基底上利用溶剂热法先生长TiO2纳米棒阵列,然后通过旋涂法在TiO2纳米棒的表面生形成 TiO2/BiFeO3核壳结构,最后在TiO2/BiFeO3核壳结构通过多次旋涂BiOI前驱液形成TiO2/BiFeO3/BiOI三元纳米异质结。
所述的TiO2纳米棒阵列的长度为400nm、直径为30-50nm、TiO2纳米棒的数量密度为1-2×102个/μm2;BiFeO3壳层厚度为10-15nm、BiOI的厚度为500 nm。
TiO2/BiFeO3/BiOI三元纳米异质结光电极的制备方法,包括如下步骤:
(1)将30ml浓盐酸溶解于30ml去离子水中,搅拌溶解后倒入100ml容量的反应釜内胆中并加入0.8-1ml毫升钛酸异丙酯,在室温下超声10分钟到澄清透明溶液;
(2)通过水热法在FTO导电玻璃基底上生长一层TiO2纳米棒阵列:将FTO导电玻璃倒置于步骤(1)的反应釜内胆中,密封后利用加热装置于180℃反应2小时,得到TiO2纳米棒阵列;
(3)BiFeO3前驱液的制备:配置铋盐溶液5ml,待搅拌溶解完全后再向其中加入1.5ml冰乙酸后混合均匀,接着加入1.818g九水合硝酸铁,待搅拌至完全溶解后,一边搅拌一边将1ml的乙醇胺逐滴滴加到该溶液中并搅拌至均匀,最后加入7.5ml乙二醇搅拌12小时后再静置24小时深棕色的澄清BiFeO3前驱液; (4)将步骤(3)中所得的深棕色的澄清BiFeO3前驱液以2000rpm/min转速旋涂于例1中的TiO2纳米棒阵列上,然后置于加热台上以180℃退火1min后接着 350℃退火3min,得到以BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列;(5)将步骤(4)中所得的BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列在马弗炉中于550℃下煅烧120分钟;
(6)将步骤(5)中所得的核壳阵列用去离子水冲洗,再用氮气吹干;
(7)将碘盐溶液和铋盐溶液混合在一起,得到橙色澄清的BiOI前驱液;
(8)将步骤(7)中所得的橙色澄清的BiOI前驱液以2000rpm/min转速旋涂于BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列上,然后置于加热台上于 100℃退火2min;该旋涂和退火过程重复10次,得到非晶BiOI/BiFeO3/TiO2三元异质结;
(9)将步骤(8)中所得的非晶TiO2/BiFeO3/BiOI三元异质结在加热台上于 200-300℃下退火30分钟得到结晶态TiO2/BiFeO3/BiOI三元异质结。
所述步骤(3)和(7)所述的铋盐溶液选自硝酸铋、硫酸铋或氯化铋的乙二醇溶液。
所述铋盐溶液的摩尔浓度是0.8-1.2mol/L。
所述步骤(7)的碘盐溶液选自碘化钾、碘化钠或碘化锂的乙二醇溶液。
所述碘化钾的摩尔浓度是0.8-1.2mol/L。
一种TiO2/BiFeO3/BiOI三元纳米异质结光电极应用于光电化学电池的光电极产生光电流。
本发明所得到的TiO2/BiFeO3/BiOI三元纳米异质结光电极产生的光电流比 BiOI/TiO2二元纳米异质结产生光电流高出近8倍。
本发明所得到的TiO2/BiFeO3/BiOI三元纳米异质结光电极是利用溶液法在有序TiO2阵列的表面进行包覆BiFeO3和BiOI,从而形成具有有序电子传输结构的三元纳米异质结光电极,不同于目前无序的介孔或纳米颗粒制备的三元纳米异质结光电极。
附图说明
图1是本发明所述的TiO2/BiFeO3/BiOI三元纳米异质结结构示意图;其中标号:(1)FTO玻璃衬基、(2)TiO2纳米棒﹑(3)BiFeO3修饰层、(4)BiOI光吸收层。
图2的a部分是本实施例1得到的TiO2阵列的SEM(扫描电子显微镜)表征结果; b部分是本实施例2得到的TiO2/BiFeO3核壳结构纳米阵列的SEM表征结果;c 部分是本实施例3得到的TiO2/BiFeO3/BiOI三元纳米异质结的SEM表征结果。
图3是本实施例3(a部分)和例4(b部分)涉及TiO2/BiFeO3/BiOI三元纳米异质结在200℃和300℃下退火的XRD(X-射线衍射)表征结果。
图4是用本实施例1(a部分)、2(b部分)、3(c部分)、4(d部分)所制得的光电极用于光电化学电池在发光二极管(11.5mW/cm2)光照条件下的光电流响应曲线。
具体实施方式
实施例1(只包括TiO2纳米棒阵)
(1)将30ml浓盐酸溶解于30ml去离子水中,搅拌溶解后倒入反应釜内胆并加入0.9毫升钛酸异丙酯,在室温下超声得到微黄澄清透明溶液;
(2)将洁净的FTO导电玻璃倒置在步骤(1)中所得的微黄澄清透明溶液中,密封后于180℃烘箱中反应2小时,得到TiO2纳米棒阵列;
(3)将步骤(2)中所得的TiO2纳米棒阵列用去离子水冲洗,再用氮气吹干;
(4)产物的表征:TiO2纳米棒阵列的扫描电子显微镜(SEM)照片表征见附图1。扫描电子显微镜(SEM)表明,所得的大面积TiO2纳米棒垂直于FTO基底生长,长度为500-550nm,直径为30-50nm,数量密度为2-3×102/μm2
实施例2(包括TiO2/BiFeO3核壳结构纳米阵列)
(1)称取1.66g KI和4.85g BiNO3·5H2O溶解于10ml乙二醇得到橙色澄清的BiOI前驱液。
(2)将步骤(1)中所得的橙色澄清的BiOI前驱液以2000rpm/min转速旋涂于实施例1中的TiO2纳米棒阵列上,然后置于加热台上以100℃退火2min。该旋涂和退火过程重复10次,得到非晶BiOI均匀覆盖的TiO2纳米棒阵列。
(3)将步骤(2)中所得的非晶BiOI均匀覆盖的TiO2纳米棒阵列在加热台上于 200℃下退火30分钟得到结晶态BiOI均匀覆盖的TiO2纳米棒阵列;
(4)将步骤(3)中所得的BiOI均匀覆盖的TiO2纳米棒阵列用去离子水冲洗,再用氮气吹干;
(6)产物的表征:扫描电子显微镜(SEM)照片表明,所得的TiO2纳米棒表面附着了一层BiFeO3
实施例3
(1)称取2.43g的BiNO3·5H2O溶解于5ml的乙二醇溶液,待溶解完全后再向其中加入1.5ml冰乙酸后搅拌均匀,接着加入1.818g FeNO3·9H2O并搅拌至完全溶解后,一边搅拌一边将1ml的乙醇胺逐滴滴加到溶液中并搅拌至均匀,最后用乙二醇定容至15ml得到BiFeO3前驱液。该溶液搅拌12小时后静置24小时; (2)将步骤(1)中所得的深棕色的澄清BiFeO3前驱液以2000rpm/min转速旋涂于实施例1中的TiO2纳米棒阵列上,然后置于加热台上以180℃退火1min后350℃退火3min,得到以BiFeO3为壳层包覆TiO2纳米棒的核壳阵列;
(3)将步骤(2)中所得的BiFeO3为壳层包覆TiO2纳米棒的核壳阵列在马弗炉中于550℃下煅烧120分钟;
(4)将步骤(3)中所得的核壳阵列用去离子水冲洗,再用氮气吹干;
(5)称取1.66g KI和4.85g BiNO3·5H2O溶解于10ml乙二醇,得到橙色澄清的BiOI前驱液;
(6)将步骤(5)中所得的橙色澄清的BiOI前驱液以2000rpm/min转速旋涂于BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列上,然后置于加热台上于100℃退火2min。该旋涂和退火过程重复10次,得到非晶TiO2/BiFeO3/BiOI 三元异质结;
(7)将步骤(6)中所得的非晶TiO2/BiFeO3/BiOI三元异质结在加热台上于 200℃下退火30分钟得到结晶态BiOI均匀覆盖的TiO2纳米棒阵列;
(8)将步骤(3)中所得的BiOI均匀覆盖的TiO2纳米棒阵列用去离子水冲洗,再用氮气吹干;
(9)产物的表征:扫描电子显微镜(SEM)照片表明,所得的TiO2/BiFeO3核壳纳米阵列已经完全倍BiOI覆盖。X-射线衍射(XRD)测试表明,BiOI均为四方晶系结构(JCPDSNo.10-0445)。
实施例4
(1)称取2.43g的BiNO3·5H2O溶解于5ml的乙二醇溶液,待溶解完全后再向其中加入1.5ml冰乙酸后搅拌均匀,接着加入1.818g FeNO3·9H2O并搅拌至完全溶解后,一边搅拌一边将1ml的乙醇胺逐滴滴加到溶液中并搅拌至均匀,最后用乙二醇定容至15ml得到BiFeO3前驱液。该溶液搅拌12小时后静置24小时;(2)将步骤(1)中所得的深棕色的澄清BiFeO3前驱液以2000rpm/min转速旋涂于实施例1中的TiO2纳米棒阵列上,然后置于加热台上以180℃退火 1min后350℃退火3min,得到以BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列;
(3)将步骤(2)中所得的BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列在马弗炉中于550℃下煅烧120分钟;
(4)将步骤(3)中所得的核壳阵列用去离子水冲洗,再用氮气吹干;
(5)称取1.66g KI和4.85g BiNO3·5H2O溶解于10ml乙二醇,得到橙色澄清的 BiOI前驱液;
(6)将步骤(5)中所得的橙色澄清的BiOI前驱液以2000rpm/min转速旋涂于BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列上,然后置于加热台上于100℃退火2min。该旋涂和退火过程重复10次,得到非晶TiO2/BiFeO3/BiOI 三元异质结;
(7)将步骤(6)中所得的非晶TiO2/BiFeO3/BiOI三元纳米异质结在加热台上于300℃下退火30分钟得到结晶态BiOI均匀覆盖的TiO2纳米棒阵列;
(8)将步骤(3)中所得的BiOI均匀覆盖的TiO2纳米棒阵列用去离子水冲洗,再用氮气吹干;
(9)产物的表征:X-射线衍射(XRD)测试表明,BiOI物相中出现了Bi2O3的峰, BiOI的物相已经不纯净。
实验结果
将本发明实施例1,例2,例3,例4中光电极用于光电化学电池,并测试其光电流响应性能。为了验证TiO2/BiFeO3/BiOI三元异质结光电极是否可作为光电化学电池的有效光电极,将实施例1和例2中TiO2阵列光电极以及TiO2/BiOI 二元纳米异质结光电极用做参比光电极,并组装成光电化学电池。本实施例1、 2、3、4所制得的光电极制备的光电化学电池在光照条件下的电流-时间响应表征结果见附图4。
用本实施例1所制得的TiO2阵列光电极光电流几乎为0(图4a部分)。用本实施例2、例3和例4所制得的参比TiO2/BiOI二元纳米异质结和 TiO2/BiFeO3/BiOI三元异质结有明显的光电流响应,本实施例2中参比TiO2/BiO 二元纳米异质结的光电流密度约为0.5μA/cm2(图4b部分),而例3中的所制得的在200度退火得到的TiO2/BiFeO3/BiOI三元异质结样品光电流密度约为4 μA/cm2(图4c部分),高出例2所制得的参比TiO2/BiOI二元异质结电流密度近 8倍,例4中的所制得的300度退火得到TiO2/BiFeO3/BiOI三元异质结样品光电流密度约为2μA/cm2(图4d部分),从XRD表征看出300度退火BiOI出现的 Bi2O3相不利于光生电荷的转移,导致光电流减小。
上述实施例仅用于解释说明本发明的发明构思,而非对本发明权利保护的限定,凡利用此构思对本发明进行非实质性的改动,均应落入本发明的保护范围。

Claims (8)

1.一种TiO2/BiFeO3/BiOI三元纳米异质结光电极,其特征在于:在导电玻璃基底上利用溶剂热法先生长TiO2纳米棒阵列,然后通过旋涂法在TiO2纳米棒的表面生形成TiO2/BiFeO3核壳结构,最后在TiO2/BiFeO3核壳结构通过多次旋涂BiOI前驱液形成TiO2/BiFeO3/BiOI三元纳米异质结。
2.如权利要求1所述的一种TiO2/BiFeO3/BiOI三元纳米异质结光电极,其特征在于:所述的TiO2纳米棒阵列的长度为400 nm、直径为30-50 nm、TiO2纳米棒的数量密度为1-2×102个/μm2;BiFeO3壳层厚度为10-15 nm、BiOI的厚度为 500 nm。
3.一种如权利要求1所述的TiO2/BiFeO3/BiOI三元纳米异质结光电极的制备方法,其特征在于,包括如下步骤:
将30 ml浓盐酸溶解于30 ml去离子水中,搅拌溶解后倒入100 ml 容量的反应釜内胆中并加入0.8-1 ml毫升钛酸异丙酯,在室温下超声10分钟到澄清透明溶液;
(2)通过水热法在FTO导电玻璃基底上生长一层TiO2纳米棒阵列:将FTO导电玻璃倒置于步骤(1)的反应釜内胆中,密封后利用加热装置于180 ℃反应2小时,得到TiO2纳米棒阵列;
(3)BiFeO3前驱液的制备:配置铋盐溶液5 ml,待搅拌溶解完全后再向其中加入1.5 ml冰乙酸后混合均匀,接着加入1.818g 九水合硝酸铁,待搅拌至完全溶解后,一边搅拌一边将1 ml的乙醇胺逐滴滴加到该溶液中并搅拌至均匀,最后加入7.5 ml乙二醇搅拌12小时后再静置24小时深棕色的澄清BiFeO3前驱液;
(4)将步骤(3)中所得的深棕色的澄清BiFeO3前驱液以2000 rpm/min转速旋涂于例1中的TiO2纳米棒阵列上,然后置于加热台上以180℃退火1 min后接着350 ℃退火3 min,得到以BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列;
(5)将步骤(4)中所得的BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列在马弗炉中于550 ℃下煅烧120分钟;
(6)将步骤(5)中所得的核壳阵列用去离子水冲洗,再用氮气吹干;
(7)将碘盐溶液和铋盐溶液混合在一起,得到橙色澄清的BiOI前驱液;
(8)将步骤(7)中所得的橙色澄清的BiOI前驱液以2000 rpm/min转速旋涂于BiFeO3为壳层均匀的包覆TiO2纳米棒的核壳阵列上,然后置于加热台上于100 ℃退火2 min;该旋涂和退火过程重复10次,得到非晶BiOI/BiFeO3/TiO2三元异质结;
(9)将步骤(8)中所得的非晶TiO2/BiFeO3/BiOI三元异质结在加热台上于200-300 ℃下退火30分钟得到结晶态TiO2/BiFeO3/BiOI三元异质结。
4.如权利要求3所述的一种TiO2/BiFeO3/BiOI三元纳米异质结光电极的制备方法,其特征在于:所述步骤(3)和(7)所述的铋盐溶液选自硝酸铋、硫酸铋或氯化铋的乙二醇溶液。
5.如权利要求4所述的一种TiO2/BiFeO3/BiOI三元纳米异质结光电极的制备方法,其特征在于:所述铋盐溶液的摩尔浓度是0.8-1.2 mol/L。
6.如权利要求3所述的一种TiO2/BiFeO3/BiOI三元纳米异质结光电极的制备方法,其特征在于:所述步骤(7)的碘盐溶液选自碘化钾、碘化钠或碘化锂的乙二醇溶液。
7.如权利要求6所述的一种TiO2/BiFeO3/BiOI三元纳米异质结光电极的制备方法,其特征在于:所述碘化钾的摩尔浓度是0.8-1.2 mol/L。
8.一种权利要求所述的TiO2/BiFeO3/BiOI三元纳米异质结光电极应用于光电化学电池。
CN202111474994.7A 2021-12-06 2021-12-06 TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用 Withdrawn CN114188434A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111474994.7A CN114188434A (zh) 2021-12-06 2021-12-06 TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111474994.7A CN114188434A (zh) 2021-12-06 2021-12-06 TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用

Publications (1)

Publication Number Publication Date
CN114188434A true CN114188434A (zh) 2022-03-15

Family

ID=80542357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111474994.7A Withdrawn CN114188434A (zh) 2021-12-06 2021-12-06 TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用

Country Status (1)

Country Link
CN (1) CN114188434A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020530A (zh) * 2022-06-22 2022-09-06 天津理工大学 一种由铁电异质结构成的自驱动偏振光探测器及其制备方法和应用
CN115011988A (zh) * 2022-08-09 2022-09-06 河南省动力电池创新中心有限公司 一种多层复合光阳极及其制备方法
CN116477849A (zh) * 2023-04-10 2023-07-25 之江实验室 一种铁酸铋纳米柱阵列及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020530A (zh) * 2022-06-22 2022-09-06 天津理工大学 一种由铁电异质结构成的自驱动偏振光探测器及其制备方法和应用
CN115011988A (zh) * 2022-08-09 2022-09-06 河南省动力电池创新中心有限公司 一种多层复合光阳极及其制备方法
CN116477849A (zh) * 2023-04-10 2023-07-25 之江实验室 一种铁酸铋纳米柱阵列及其制备方法
CN116477849B (zh) * 2023-04-10 2024-04-26 之江实验室 一种铁酸铋纳米柱阵列及其制备方法

Similar Documents

Publication Publication Date Title
Qiu et al. Fiber‐shaped perovskite solar cells with high power conversion efficiency
Parize et al. ZnO/TiO2/Sb2S3 core–shell nanowire heterostructure for extremely thin absorber solar cells
CN114188434A (zh) TiO2/BiFeO3/BiOI三元纳米异质结光电极及制备方法和应用
CN102326260B (zh) 铜铁矿铜透明p型半导体的制造方法及应用
JP4714844B2 (ja) ポーラス酸化亜鉛膜形成用前駆体の製造方法、ポーラス酸化亜鉛膜の製造方法
Angaiah et al. A facile polyvinylpyrrolidone assisted solvothermal synthesis of zinc oxide nanowires and nanoparticles and their influence on the photovoltaic performance of dye sensitized solar cell
Farhana et al. Recent advances and new research trends in Sb2S3 thin film based solar cells
CN110844936A (zh) 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN111312522B (zh) 量子点敏化太阳能电池CuS/Ti3C2复合对电极及其制备方法
CN111525033B (zh) 一种反向介孔钙钛矿太阳能电池结构及其制备方法
CN109065725A (zh) 一种在钙钛矿层加入表面活性剂制备高效稳定的钙钛矿太阳能电池的方法
CN110350053B (zh) CuO纳米颗粒修饰ZnO纳米线阵列的光电材料、制备及应用
CN107331774B (zh) 一种新型钙钛矿太阳能电池结构和制备方法
Li et al. A poly (3-hexylthiophene) modified CdS@ TiO 2 shell-core nanorod array solar cell
CN112186107A (zh) 一种空穴传输层的锡基钙钛矿太阳能电池及其制备方法
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
CN106159098A (zh) 一种BiIO敏化的BiIO/TiO2复合电极材料及其制备方法和应用
CN105236472A (zh) 一种SnO2纳米线阵列的制备方法
CN110311043B (zh) 一种Sb-二氧化锡纳米前驱体、利用其作为电子传输层制备钙钛矿太阳能电池的方法
Peng et al. Substrate placement angle-dependent growth of dandelion-like TiO 2 nanorods for solid-state semiconductor-sensitized solar cells
CN109448998B (zh) 一种染料敏化太阳电池对电极及其制备方法
CN108855193B (zh) TaN/BiVO4异质结复合材料及其制备方法和应用
CN114772943B (zh) 一种Cs2TiBr6无铅双钙钛矿薄膜及太阳能电池的制备方法
CN113421970B (zh) 一种HCl改性二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN111755256B (zh) 一种三维ZnO/CuO纳米异质分级结构光电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220315