CN110845728B - 一种导电高分子/五氧化二铌异质结的制备方法及其应用 - Google Patents

一种导电高分子/五氧化二铌异质结的制备方法及其应用 Download PDF

Info

Publication number
CN110845728B
CN110845728B CN201911079915.5A CN201911079915A CN110845728B CN 110845728 B CN110845728 B CN 110845728B CN 201911079915 A CN201911079915 A CN 201911079915A CN 110845728 B CN110845728 B CN 110845728B
Authority
CN
China
Prior art keywords
heterojunction
conductive polymer
protonic acid
acid solution
ammonium persulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911079915.5A
Other languages
English (en)
Other versions
CN110845728A (zh
Inventor
于平平
王群亮
姜岩峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201911079915.5A priority Critical patent/CN110845728B/zh
Publication of CN110845728A publication Critical patent/CN110845728A/zh
Application granted granted Critical
Publication of CN110845728B publication Critical patent/CN110845728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开了一种导电高分子/五氧化二铌异质结的制备方法及其应用,属于半导体纳米材料技术领域。本发明以铌箔作为前驱体,水热法制备Nb2O5纳米棒阵列;然后采用原位聚合的方法制备导电高分子/Nb2O5异质结;所述原位聚合是在质子酸溶液体系中进行的,通过质子酸掺杂调控导电高分子的能带,获得更高质量的异质结型光电探测器。

Description

一种导电高分子/五氧化二铌异质结的制备方法及其应用
技术领域
本发明涉及一种导电高分子/五氧化二铌异质结的制备方法及其应用,属于半导体纳米材料技术领域。
背景技术
低维半导体纳米结构的紫外光探测器是纳米材料领域研究的热点和重点,是由于其具有优异的物理和化学性质、光电转化活性高等优势,而且其高比表面积和大大减小的有效导电通道尺寸,通常比传统的薄膜紫外光电探测器具有更高的光灵敏性、选择性和稳定性等优点,对紫外光具有良好的响应性,但存在光电流较小、高暗电流或者较低的响应速度等缺陷。另外,由于表面陷阱态导致在纳米材料表面存在载流子耗尽层,使信号恢复时间较长。
五氧化二铌(Nb2O5)是n型半导体氧化物,禁带宽度为3.0~3.4e V,具有低毒性、导带和价带相差较大、良好的化学稳定性、热稳定性、较高的电子转移率以及高的光催化活性等优点,吸引了很多研究者们的关注,被广泛的应用到诸如气体传感、催化、电致变色等相关领域。基于单根Nb2O5纳米带和中空纳米球形貌结构的探测器已有报道,但是光电性能不理想逊色于ZnO、ZnS和SnO2等,所以Nb2O5作为紫外光探测器仍处于起步阶段,存在光电流小和恢复时间长的问题,急需新型异质结结构提高光电性能。
肖特基势垒(Schottky)、pn结和异质结的光伏效应是解决以上问题的有效途径。目前,报道较多的是无机半导体异质结纳米结构如ZnO/ZnS纳米带、ZnO/ZnSe壳核结构纳米线阵列、GaP/ZnS同轴纳米线和ZnO-Ga2O3核壳结构微米线等,均为n-n型异质结,这是由于无机半导体材料的p型掺杂还相对困难,满足能带匹配的要求构成pn结且紫外光灵敏度高的p型无机半导体较少。有机半导体成为了无机半导体强有力的替代者,其中p型导电高分子(聚苯胺PANI,聚吡咯PPy和聚噻吩PEDOT/P3HT)受到研究者的青睐,主要依赖于其质轻、柔性、易合成、可大面积低成本制备等优点以及类似于金属或半导体的独特电子和光学性能。如PANI/MgZnO、PANI/TiO2的pn结型全固态自驱动日盲紫外探测器以及导电高分子/Se微米管的异质结基自驱动紫外-可见光电探测器,证明可以用于构筑有机/无机半导体异质结,实现自驱动和高性能的紫外光探测器。但是,采用通常直接混合或者中性溶液中制备导电高分子异质结,导致其丧失导电性甚至吸收峰的位置改变影响本质能级结构,进而无法能级匹配来保证异质结质量以及器件性能。
发明内容
为了解决本发明所要解决的技术问题,本发明以铌箔作为前驱体,水热法制备Nb2O5纳米棒阵列,采用原位聚合的方法制备核壳型导电高分子/Nb2O5异质结阵列,通过质子酸掺杂调控导电高分子的能带,获得更高质量的异质结型光电探测器。
本发明的第一个目的是提供一种导电高分子/Nb2O5异质结的制备方法,所述方法是以铌箔作为前驱体,水热法制备Nb2O5纳米棒阵列;然后采用原位聚合的方法制备导电高分子/Nb2O5异质结;所述原位聚合是在质子酸溶液体系中进行的。其中,质子酸作为H+掺杂调控导电高分子的能带,以获得更高质量的异质结型光电探测器。
在本发明一种实施方式中,所述导电高分子为聚苯胺、聚吡咯或者聚噻吩。
在本发明一种实施方式中,所述质子酸为没食子酸、单宁酸、柠檬酸、樟脑磺酸中的一种。
在本发明一种实施方式中,所述质子酸浓度为0.05mol/L-1.5mol/L。
在本发明一种实施方式中,采用水热法制备Nb2O5纳米棒阵列的方法是:将清洗后铌箔放入过氧化氢溶液中,然后加入0.5-2g矿化剂,充分混合,放入水热釜中100-200℃保持10-24h,后自然冷却至室温,在铌箔表面获得Nb2O5纳米棒阵列。
在本发明一种实施方式中,过氧化氢溶液中过氧化氢和去离子水的体积比为(1-2):1,所述矿化剂为NH4F。
在本发明一种实施方式中,采用原位聚合方法制备导电高分子/Nb2O5异质结是:将导电单体加入质子酸溶液中搅拌5-15min以确保充分分散,加入生长有Nb2O5纳米棒阵列的铌箔,静置1-4h,混合液温度保持在-4~0℃;加入过硫酸铵(APS)加入质子酸溶液中,反应20~30h,反应完成后的样品多次用去离子水清洗后真空烘箱80℃干燥12h,所以在铌箔上得到聚苯胺/Nb2O5的异质结阵列。
在本发明一种实施方式中,所述单体为苯胺、吡咯或者噻吩;所述单体与过硫酸铵的摩尔比为(0.25-4):1。
本发明的第二个目的是提供一种上述制备方法制备得到的导电高分子/五氧化二铌纳米棒异质结。
本发明的第三个目的是提供一种上述导电高分子/五氧化二铌纳米棒异质结在光电探测器中的应用。
本发明的有益效果:
纳米棒异质结生长过程中采用通常直接混合或者中性溶液中制备导电高分子异质结,导致其丧失导电性甚至吸收峰的位置改变影响本质能级结构,进而无法能级匹配来保证异质结质量以及器件性能。本发明原位聚合有机/无极异质结纳米结构,改变导电高分子单体和调整质子酸参数,能够实现高内建电场的异质结的制备。
附图说明
图1为实例1制备的Nb2O5纳米棒阵列的扫描电镜图片;左边为低倍SEM图,右边为高倍SEM图。
图2为实例1制备的聚苯胺/Nb2O5纳米棒异质结阵列的扫描电镜图片。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
光电性能测试方法:通过磁控溅射方法将Ti/Au镀膜于聚苯胺/Nb2O5异质结的掩膜版,作为上层电极,掩膜版的叉指长10mm宽390mm,得到两Ti/Au电极间距离2mm左右。器件的电流-电压(I-V)和电流-时间(I-t)特性测试采用双探针法。
实施例1:制备PANI/Nb2O5异质结纳米棒
采用水热法生长高质量的Nb2O5纳米棒阵列,具体参数条件是:依次采用丙酮、乙醇和去离子水清洗的铌箔,其规格为2×2cm,厚度0.25mm,放入过氧化氢和去离子水比例为1:0.5的混合液中,然后加入0.5的NH4F作为矿化剂,充分混合,放入水热釜中100-200℃保持12h,后自然冷却至室温,在铌箔表面获得Nb2O5纳米棒阵列,如图1所示。
采用原位聚合生长纳米厚度的聚苯胺壳层,具体生长条件是:适量苯胺单体(AN)加入质子酸溶液中搅拌10min以确保充分分散,生长有Nb2O5纳米棒阵列的铌箔加入以上溶液充分静置2h,混合液温度保持在0℃。适量的过硫酸铵(APS)加入0.5M没食子酸溶液中,搅拌5min。AN:APS的摩尔比为2:1。聚合反应温度在0℃,反应时间为24h,反应完成后的样品多次用去离子水清洗后真空烘箱80℃干燥12h,所以在铌箔上得到PANI/Nb2O5的异质结阵列。如图2所示,PANI均匀的包裹着Nb2O5纳米棒,形成核壳结构。制作异质结器件,波长320nm的激光照射电压为0V时光电流达到60pA,上升时间15s和恢复时间9s。
实施例2:制备PPy/Nb2O5异质结纳米棒
采用水热法生长高质量的Nb2O5纳米棒阵列,具体参数条件是:依次采用丙酮、乙醇和去离子水清洗的铌箔,其规格为2×2cm,厚度0.25mm,放入过氧化氢和去离子水比例为1:0.5的混合液中,然后加入0.5g的NH4F作为矿化剂,充分混合,放入水热釜中100-200℃保持12h,后自然冷却至室温,在铌箔表面获得Nb2O5纳米棒阵列,如图1所示。
采用原位聚合生长纳米厚度的聚吡咯壳层,具体生长条件是:适量吡咯单体(Py)加入质子酸溶液中搅拌10min以确保充分分散,生长有Nb2O5纳米棒阵列的铌箔加入以上溶液充分静置2h,混合液温度保持在0℃。适量的过硫酸铵(APS)加入0.5M没食子酸溶液中,搅拌5min。Py:APS的摩尔比为2:1。聚合反应温度在0℃,反应时间为24h,反应完成后的样品多次用去离子水清洗后真空烘箱80℃干燥12h,所以在铌箔上得到PPy/Nb2O5的异质结阵列。制作异质结器件,波长320nm的激光照射电压为0V时光电流达到55pA,上升时间20s和恢复时间14s。
实施例3:制备PEDOT/Nb2O5异质结纳米棒
采用水热法生长高质量的Nb2O5纳米棒阵列,具体参数条件是:依次采用丙酮、乙醇和去离子水清洗的铌箔,其规格为2×2cm,厚度0.25mm,放入过氧化氢和去离子水比例为1:0.5的混合液中,然后加入0.5g的NH4F作为矿化剂,充分混合,放入水热釜中100-200℃保持12h,后自然冷却至室温,在铌箔表面获得Nb2O5纳米棒阵列,如图1所示。
采用原位聚合生长纳米厚度的聚噻吩壳层,具体生长条件是:适量噻吩单体(EDOT)加入质子酸溶液中搅拌10min以确保充分分散,生长有Nb2O5纳米棒阵列的铌箔加入以上溶液充分静置2h,混合液温度保持在0℃。适量的过硫酸铵(APS)加入0.5M没食子酸溶液中,搅拌5min。EDOT:APS的摩尔比为2:1。聚合反应温度在0℃,反应时间为24h,反应完成后的样品多次用去离子水清洗后真空烘箱80℃干燥12h,所以在铌箔上得到聚噻吩/Nb2O5的异质结阵列。制作异质结器件,波长320nm的激光照射电压为0V时光电流达到50pA,上升时间23s和恢复时间16s。
实施例4:不同种类质子酸对PANI/Nb2O5异质结性能的影响
参考实施例1的制备方法制备PANI/Nb2O5的异质结,区别仅在于:质子酸种类不同,将没食子酸替换成单宁酸、柠檬酸、樟脑磺酸、盐酸、对甲基苯磺酸。
表1不同种类质子酸对PANI/Nb2O5异质结性能的影响
Figure GDA0002748633480000041
从表1中可以看出质子酸种类不同对PANI/Nb2O5异质结器件的光电性能影响不同,没食子酸掺杂异质结获得的暗电流最小,光电流与暗电流之比数值最大达到12,恢复时间最短,而其他种类质子酸的掺杂在提高光电流的同时也增大了暗电流,导致光暗电流比值较小,恢复时间也略延长。证明不同种类质子酸的掺杂对异质结光电性能影响差异很大,需要合理选择,此处没食子酸的性能最优。
实施例5:不同浓度质子酸对导电高分子/Nb2O5异质结性能的影响
参考实施例1的制备方法制备PANI/Nb2O5的异质结,区别仅在于:没食子酸浓度不同,将质子酸浓度调整成0.05-1.5M。
表2不同浓度质子酸对导电高分子/Nb2O5异质结性能的影响
Figure GDA0002748633480000051
从表2中可以看出不同浓度的没食子酸对PANI/Nb2O5异质结的光电性能影响不同,质子酸浓度在0.5-0.8mol/L时光电流能达60pA,恢复时间最短,仅需9s。因此质子酸的浓度不能太低或者太高都不利于高电导率聚苯胺生长,也不利于提高异质结的光电性能。
实施例6:不同单体和氧化剂用量比对导电高分子/Nb2O5异质结性能的影响
参考实施例1的制备方法制备PANI/Nb2O5的异质结,区别仅在于:单体和氧化剂用量比不同,将单体和氧化剂摩尔比调整成1:4、1:2、2:1和4:1。
表3单体和氧化剂摩尔比对导电高分子/Nb2O5异质结性能的影响
Figure GDA0002748633480000052
从表3中可以看出在单体与氧化剂用量比为1:1~2:1范围内,导电性能较好,单体与氧化剂用量比较高和较低是都不利于聚苯胺的生长,影响聚苯胺电导率以及能带结构,从而影响异质结的光暗电流比值,单体/APS比值为2:1时达到最高值,恢复时间也最短。
对比例1:
参考实施例1的制备方法制备PANI/Nb2O5的异质结,区别仅在于:将质子酸替换成去离子水,由于苯胺不聚合,无法得到PANI/Nb2O5的异质结。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种导电高分子/五氧化二铌异质结的制备方法,其特征在于,所述方法是以铌箔作为前驱体,水热法制备Nb2O5纳米棒阵列;然后采用原位聚合的方法制备导电高分子/Nb2O5异质结;所述原位聚合是在质子酸溶液体系中进行的;所述质子酸为没食子酸,质子酸浓度为0.5 mol/L-0.8 mol/L。
2.根据权利要求1所述的制备方法,其特征在于,所述导电高分子为聚苯胺、聚吡咯或者聚噻吩。
3.根据权利要求1或2所述的制备方法,其特征在于,采用水热法制备Nb2O5纳米棒阵列具体是:将清洗后的铌箔放入过氧化氢溶液中,然后加入矿化剂,充分混合,放入水热釜中100-200℃保持10-24h,后冷却至室温,在铌箔表面获得Nb2O5纳米棒阵列。
4.根据权利要求3所述的制备方法,其特征在于,过氧化氢溶液中过氧化氢和去离子水的体积比为(1-2):1,所述矿化剂为NH4F。
5.根据权利要求1、2或4任一所述的制备方法,其特征在于,采用原位聚合方法制备导电高分子/Nb2O5异质结是:将导电单体加入质子酸溶液中分散均匀,加入生长有Nb2O5纳米棒阵列的铌箔,静置1-4 h,混合液温度保持在-4~0℃;加入过硫酸铵到质子酸溶液中,配制成含过硫酸铵的质子酸溶液;再将含过硫酸铵的质子酸溶液加入到上述混合液中反应20~30 h,反应完成后清洗、干燥得到导电高分子/Nb2O5的异质结。
6.根据权利要求3所述的制备方法,其特征在于,采用原位聚合方法制备导电高分子/Nb2O5异质结是:将导电单体加入质子酸溶液中分散均匀,加入生长有Nb2O5纳米棒阵列的铌箔,静置1-4 h,混合液温度保持在-4~0℃;加入过硫酸铵到质子酸溶液中,配制成含过硫酸铵的质子酸溶液;再将含过硫酸铵的质子酸溶液加入到上述混合液中反应20~30 h,反应完成后清洗、干燥得到导电高分子/Nb2O5的异质结。
7.根据权利要求5所述的制备方法,其特征在于,所述导电单体与过硫酸铵的摩尔比为(0.25-4):1。
8.根据权利要求6所述的制备方法,其特征在于,所述导电单体与过硫酸铵的摩尔比为(0.25-4):1。
9.权利要求1~8任一所述的制备方法制备得到的导电高分子/ Nb2O5异质结。
10.权利要求9所述的导电高分子/ Nb2O5异质结在光电探测器中的应用。
CN201911079915.5A 2019-11-07 2019-11-07 一种导电高分子/五氧化二铌异质结的制备方法及其应用 Active CN110845728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911079915.5A CN110845728B (zh) 2019-11-07 2019-11-07 一种导电高分子/五氧化二铌异质结的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911079915.5A CN110845728B (zh) 2019-11-07 2019-11-07 一种导电高分子/五氧化二铌异质结的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110845728A CN110845728A (zh) 2020-02-28
CN110845728B true CN110845728B (zh) 2020-12-29

Family

ID=69598669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911079915.5A Active CN110845728B (zh) 2019-11-07 2019-11-07 一种导电高分子/五氧化二铌异质结的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110845728B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047230A (zh) * 2021-10-15 2022-02-15 光华临港工程应用技术研发(上海)有限公司 支化纳米线结构的气敏纳米材料、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214547A (ja) * 2003-01-08 2004-07-29 Zenji Hiroi 有機−無機半導体ヘテロ接合を有する光半導体素子
CN1578993A (zh) * 2001-11-03 2005-02-09 H.C.施塔克公司 使用导电聚合物的薄膜电容器
CN104576928A (zh) * 2013-10-18 2015-04-29 中国科学院苏州纳米技术与纳米仿生研究所 一种有机/GaN异质p-n结紫外光探测器及其制备方法
KR20190116896A (ko) * 2018-04-05 2019-10-15 전남대학교산학협력단 가스센서 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149991A1 (en) * 2010-05-24 2011-12-01 The Regents Of The University Of California Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578993A (zh) * 2001-11-03 2005-02-09 H.C.施塔克公司 使用导电聚合物的薄膜电容器
JP2004214547A (ja) * 2003-01-08 2004-07-29 Zenji Hiroi 有機−無機半導体ヘテロ接合を有する光半導体素子
CN104576928A (zh) * 2013-10-18 2015-04-29 中国科学院苏州纳米技术与纳米仿生研究所 一种有机/GaN异质p-n结紫外光探测器及其制备方法
KR20190116896A (ko) * 2018-04-05 2019-10-15 전남대학교산학협력단 가스센서 및 그 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Solution based–spin cast processed LPG sensor at room temperature;S. Kotresh等;《Sensors and Actuators A》;20170724;第263卷;687-692页 *
Solution Based-Spin Cast Processed Polypyrrole/Niobium Pentoxide Nanocomposite as Room Temperature Liquefied Petroleum Gas Sensor;S. Kotresh等;《Materials and Manufacturing Processes》;20160910;第31卷(第5期);1976-1982页 *
形貌可控氧化铌纳米棒阵列薄膜的合成研究;柴青立等;《无机材料学报》;20111031;第26卷(第10期);1078-1084页 *

Also Published As

Publication number Publication date
CN110845728A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
Dhar et al. Graphene quantum dot-sensitized ZnO nanorod/polymer Schottky junction UV detector with superior external quantum efficiency, detectivity, and responsivity
Alwadai et al. High-performance ultraviolet-to-infrared broadband perovskite photodetectors achieved via inter-/intraband transitions
Xue et al. Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
KR20210107529A (ko) 멕신-변형 하이브리드 광변환기
KR101312269B1 (ko) 고분자 태양전지 및 그의 제조방법
Zhang et al. Self-powered TiO2 NRs UV photodetectors: Heterojunction with PTTh and enhanced responsivity by Au nanoparticles
Zhan et al. Boosting the performance of self-powered CsPbCl3-based UV photodetectors by a sequential vapor-deposition strategy and heterojunction engineering
Yuan et al. Well-aligned ZnO nanorod arrays from diameter-controlled growth and their application in inverted polymer solar cell
CA2612717A1 (en) Photovoltaic wire
CN105720197B (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Yakuphanoglu et al. Novel organic doped inorganic photosensors
Ge et al. Substantial improvement of short wavelength response in n-SiNW/PEDOT: PSS solar cell
Yan et al. A spiro-MeOTAD/Ga2O3/Si pin junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers
Wang et al. A wire-shaped and high-sensitivity photoelectrochemical ultraviolet photodetector based on TiO2 nanotube arrays
Liu et al. Inverted solar cells with thermally evaporated selenium as an active layer
CN110845728B (zh) 一种导电高分子/五氧化二铌异质结的制备方法及其应用
Tian et al. Air-stable flexible photodetector based on MXene–Cs3Bi2I9 microplate Schottky junctions for weak-light detection
CN111446369A (zh) 钙钛矿光伏电池器件及其制造方法
Han et al. Cu2O quantum dots modified α-Ga2O3 nanorod arrays as a heterojunction for improved sensitivity of self-powered photoelectrochemical detectors
KR101694803B1 (ko) 금속 나노선을 광전극으로 포함하는 페로브스카이트 태양전지 및 이의 제조방법
Madhavanunni Rekha et al. Recent advances in solution-processed zinc oxide thin films for ultraviolet photodetectors
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
Zou et al. Construction and properties of ZnO/poly (EDOT-Pyridine-EDOT) core/shell heterostructure nanoarrays for UV photodetector
Hosseini et al. Stretchable and Flexible Metal–Semiconductor–Metal UV Photodetector Based on Silver-Doped ZnO Nanostructures Using a Drop-Casting Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant