CN114512569A - 一种梯度掺杂的宽光谱自供能光电探测器 - Google Patents

一种梯度掺杂的宽光谱自供能光电探测器 Download PDF

Info

Publication number
CN114512569A
CN114512569A CN202210043596.8A CN202210043596A CN114512569A CN 114512569 A CN114512569 A CN 114512569A CN 202210043596 A CN202210043596 A CN 202210043596A CN 114512569 A CN114512569 A CN 114512569A
Authority
CN
China
Prior art keywords
gradient
doped
film
powered
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210043596.8A
Other languages
English (en)
Other versions
CN114512569B (zh
Inventor
王兆娜
王莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Publication of CN114512569A publication Critical patent/CN114512569A/zh
Application granted granted Critical
Publication of CN114512569B publication Critical patent/CN114512569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种梯度掺杂的宽光谱自供能光电探测器,包括梯度掺杂n型半导体薄膜、p‑Si衬底、电极;所述梯度掺杂n型半导体薄膜为元素A的掺杂比例沿厚度方向逐渐变化的ZnO薄膜,其中A为Mn或Mg,0<x<0.2。所述梯度掺杂可获得便于载流子输运的能带梯子和增强光生载流子有效输运的梯度场,与杂质均匀(或本征)的半导体光电探测器相比,梯度掺杂可大幅提升光电探测器的光响应度和探测率。本发明实现了300~1700nm宽光谱自供能光电探测器,广泛应用于图像传感、环境监测、遥控探测等军事和民用领域。

Description

一种梯度掺杂的宽光谱自供能光电探测器
技术领域
本发明属于光电成像探测技术领域,涉及一种宽光谱自供能光电探测器,具体涉及一种梯度掺杂的宽光谱自供能光电探测器。
背景技术
作为科技信息化的核心元件,光电探测器在现代化的生活和生产中具有重要的应用。随技术的飞速发展,人们对探测器的要求日益提高,单一波段光电探测器的固有缺陷和局限性愈发明显,光电探测器在复杂环境和强干扰条件下的精确探测并获得有效信息成为科学家追求的目标。开发高探测率、快速响应、超宽光谱、节约能耗的自供能光电探测器成为光电探测技术发展的主流方向。宽光谱自供能光电探测器广泛应用于图像传感、环境监测、导弹制导、生物医学、遥控探测等军事和民用领域。
目前商用宽光谱自供能光电探测器主要以传统无机半导体材料为主,如Ge、锆钛酸铅等,因价格高昂、体积庞大而难以与现代电子设备良好耦合,同时存在对红外波段探测灵敏度差和响应度低的问题,限制其用于深海或太空探测。研究者基于p-n结或肖特基结的内建电场实现了不同的自供能光电探测器;并通过表面修饰、压电电势等途径增大结区的电场来使光生载流子有效分离。在p-n结中,掺杂梯度将诱导感生电场,合适的感生电场将提升光生载流子分离和输运效率,同时抑制载流子回流再复合,从而将提升光电探测器的探测灵敏度,在宽光谱中获得高探测率。
发明内容
本发明的目的是通过梯度掺杂,实现p-Si/n-ZnO异质结在紫外-可见-近红外波段的高探测率、高响应度的宽光谱自供能光电探测器,本发明提供了一种在300nm~1700nm处有显著响应的梯度掺杂的宽光谱自供能光电探测器。本发明与传统均匀掺杂或本征的宽光谱自供能光电探测器相比,大幅提高了瞬态光电流响应的响应度和探测率,显著拓宽了探测波段。
本发明公开了一种梯度掺杂的宽光谱自供能光电探测器,其特征在于:该光电探测器包括梯度掺杂n型半导体薄膜、p-Si衬底、电极;所述p-Si与梯度掺杂n型半导体薄膜组成p-n结,在p-n结两端沉积薄膜电极;所述梯度掺杂方式为掺杂浓度沿远离p-n结界面的薄膜厚度方向增大或减小,以获得便于载流子输运的能带梯子和增强光生载流子有效输运的梯度场,从而实现对300~1700nm光波的自供能光电探测。所述梯度掺杂n型半导体薄膜可以为梯度掺杂ZnO薄膜;所述梯度掺杂ZnO薄膜化学式为Zn1-xAxO,其中A可以为Mn、Mg、Ca、Sr或Pb,掺杂浓度沿远离p-n结界面的薄膜厚度方向在0<x<0.2范围内增大或减小,以便在梯度掺杂的ZnO薄膜内获得与p-n结内建电场同向的梯度场,实现梯度掺杂的n型半导体薄膜。
相比于现有的宽光谱自供能光电探测器,本发明具有如下优点:
1.本发明利用梯度掺杂获得梯度场,在构建的异质结光电探测器中,具备以下优点:(1)p-Si/n-ZnO的巨大禁带宽度差异,基于p-n结内建电场可实现从紫外(~365nm)到近红外(~1100nm)的良好探测;(2)梯度掺杂的ZnO薄膜中由掺杂梯度诱导的感生电场和内建电场同向,大幅度提高光生载流子的输运效率,并抑制载流子回流发生再复合,有利于提升光电探测器在小功率信号下的探测率和光响应度。
2.梯度掺杂ZnO(Zn1-xMnxO,0<x<0.2)薄膜宽光谱自供能光电探测器,在900nm红外光激发下,瞬态光电流对应的响应度高达140mA/W,探测率高达4×1013Jones,与本征ZnO薄膜光电探测器相比,响应度提升778倍,探测率提升253倍,响应时间也仅为4ms。因此,本发明中梯度掺杂ZnO薄膜宽光谱光电探测器在宽光谱、高响应、小信号探测领域具有很好的应用前景。
3.本发明实现了300nm-1700nm宽光谱光电探测器,利用p型Si和梯度掺杂的ZnO异质结的简单结构,实现紫外-可见-近红外光谱探测,与目前商用的宽光谱光电探测器相比,器件结构简单、体积小、材料环保、工艺简单、成本低廉。
附图说明
图1为本发明中基于梯度掺杂ZnO薄膜的宽光谱光电探测器的结构示意图。图中:1.1为电极,1.2为p-Si单晶衬底,1.3为梯度掺杂ZnO薄膜。
图2是实施例1、实施例2、对比例1中所述的宽光谱光电探测器对900nm准单色光的光电流响应曲线。
图3是实施例1、实施例2、对比例1中所述的宽光谱自供能光电探测器对波长在300-1700nm范围内的准单色光的响应度对比图。
图4是实施例1、实施例2、对比例1中所述的宽光谱自供能光电探测器对波长在300-1700nm范围内的准单色光的探测率对比图。
图5是实施例3、对比例2中所述的宽光谱自供能光电探测器对442nm激光的光电流响应曲线。
具体实施方式:
下面结合附图对本发明的技术细节进一步说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的主要精神和范围,均应涵盖在本发明的保护范围中。
一、本发明设备的制备过程
1.一种p-Si/n-Zn1-xMnxO光电探测器的方法,包括以下步骤:
(1)按摩尔计量比称取(CH3COO)2Zn·2H2O和(CH3COO)2Mn·4H2O;将所称取的物质按0.25M溶于乙醇溶液,按乙醇溶液和乙醇胺溶液体积比100:1加入乙醇胺作为稳定剂;在50℃下搅拌30min~60min,静置24h~48h,获得旋涂用前驱体溶液;
(2)在洁净的p-Si上旋涂掺杂Mn的ZnO薄膜,低转速为500rad/min,时间为5~10s,高转速为1500~3000rad/min,时间为20s~40s;依次旋涂ZnO前驱体、Zn1-xMnxO前驱体(0<x<0.2),x随旋涂次数逐渐增大,旋涂层数为2~5层;烤干温度为150℃~200℃,烤干时间为10min~20min,烤干环境为空气环境,退火温度为450℃~650℃,退火时间为1h~3h,管式炉中充入的气体为氩气和氧气,氩气和氧气比例为19:1,压强为常压。
(3)利用磁控溅射技术在p-Si和梯度掺杂Mn的ZnO薄膜表面溅射电极,磁控溅射的功率为80~200W,压强为1-5Pa,氩气流量为20~40sccm,溅射时间为5~15min,电极厚度为100~300nm,外接铜导线,获得梯度掺杂Mn的光电探测器。
(4)在无外接电压情况下,在常温大气环境中,在光电探测器前添加快门,即可实现对300~1700nm光波的自供能探测。
2.一种用于实现p-Si/n-Zn1-xMgxO光电探测器的方法,包括以下步骤:
(1)按摩尔计量比称取(CH3COO)2Zn·2H2O和(CH3COO)2Mg·4H2O;将所称取的物质按0.25M溶于乙醇溶液,按乙醇溶液:乙醇胺溶液体积比100:1加入乙醇胺作为稳定剂;在50℃下搅拌30min~60min,静置24h~48h,获得旋涂用前驱体溶液;
(2)旋涂的低转速为500rad/min,时间为5~10s,高转速为1500~3000rad/min,时间为20s~40s;依次旋涂Zn1-xMgxO前驱体(0<x<0.2)、ZnO前驱体,x随旋涂次数逐渐减小,旋涂层数为2~5层;烤干温度为150℃~200℃,烤干时间为10min~20min,烤干环境为空气环境,退火温度为450℃~650℃,退火时间为1h~3h,管式炉中充入的气体为氩气和氧气,氩气和氧气比例为19:1,压强为常压。
(3)利用磁控溅射技术在p-Si和梯度掺杂Mg的ZnO薄膜表面溅射电极,磁控溅射的功率为80~200W,压强为1-5Pa,氩气流量为20~40sccm,溅射时间为5~15min,电极厚度为100~300nm,外接铜导线,获得梯度掺杂Mn的光电探测器。
(4)在无外接电压情况下,在常温大气环境中,在光电探测器前添加快门,即可实现对300~1700nm准光波的自供能探测。
二、下面以具体实施例详细介绍本发明。
实施例1
(1)采用旋涂后退火的制备方案,在Si基片上通过三次旋涂不同Mn掺杂浓度的(CH3COO)2Zn乙醇溶液,获得梯度掺杂的ZnO薄膜,Mn元素梯度掺杂的ZnO薄膜的化学式为Zn1-xMnxO,掺杂浓度x依次为0,0.05和0.1;Mn元素梯度掺杂ZnO薄膜厚度为150nm。
(2)在Mn元素梯度掺杂ZnO薄膜顶端和Si上沉积ITO电极,电极厚度为150nm,电极间距2mm。
(3)利用300-1700nm准单色光作为激发光源,光斑面积为0.125cm2,光斑能量密度为8μW/cm2,利用低噪声电流前置放大器和数据采集卡对p型Si/Zn1-xMnxO产生的电流进行记录。
实施例2
与实施例1相比,本实施例中梯度掺杂ZnO的掺杂元素为Mg,化学式为Zn1-xMgxO,掺杂浓度x依次为0.1,0.05和0,其他步骤均与实施例1相同。
对比例1
与实施例1相比,本对比例中ZnO薄膜为本征薄膜,不进行任何元素掺杂,其他步骤均与实施例1相同。
用低噪声电流前置放大器和数据采集卡分别记录实施例1(掺杂元素为Mn)、实施例2(掺杂元素为Mg)和对比例1(不掺杂)中所实现的自供能光电探测器对300-1700nm范围内准单色光的光电流响应特性;当用900nm的准单色光分别激发上述三个光电探测器时,得到如图2所示的带有尖峰响应的光电流信号;当用300-1700nm范围内的一系列准单色光分别激发光电探测器时,得到如图3所示的响应度对比结果和如图4所示的探测率对比结果。由图2、图3和图4可以看出:掺杂元素为Mn的梯度掺杂ZnO薄膜组成的宽光谱光电探测器的瞬态光电流对应的响应度最高,探测率最好;对比本征ZnO薄膜组成的宽光谱光电探测器,响应度最大可提升778倍,探测率最大可提升253倍。
实施例3
(1)采用旋涂后退火的制备方案,在Si基片上通过五次旋涂不同Mn掺杂浓度的(CH3COO)2Zn乙醇溶液,获得梯度掺杂的ZnO薄膜,Mn元素梯度掺杂的ZnO薄膜的化学式为Zn1-xMnxO,掺杂浓度x依次为x=0,0.025,0.05,0.075和0.1;Mn元素梯度掺杂ZnO薄膜厚度为300nm。
(2)在Mn元素梯度掺杂ZnO薄膜顶端和Si上沉积ITO电极,电极厚度为100nm,电极间距3mm。
(3)利用325nm、442nm、1510nm激光作为激发光源,光斑面积为0.125cm2,光斑能量密度为3mW/cm2,利用低噪声电流前置放大器和数据采集卡对p型Si/Zn1-xMnxO产生的电流进行记录。
对比例2
与实施例3相比,本对比例中ZnO薄膜为本征薄膜,不进行任何元素掺杂,其他步骤均与实施例3相同。
用低噪声电流前置放大器和数据采集卡分别记录实施例3(掺杂元素为Mn)和对比例2(不掺杂)中自供能光电探测器对442nm激光的光电流响应特性;得到如图5所示的带有尖峰响应的光电流信号的对比结果。由图5、可以看出:梯度掺杂ZnO薄膜组成的宽光谱光电探测器对比本征ZnO薄膜的宽光谱光电探测器,光电流信号增大了近百倍。

Claims (6)

1.一种梯度掺杂的宽光谱自供能光电探测器,其特征在于:该光电探测器包括梯度掺杂n型半导体薄膜(1.1)、p-Si衬底(1.2)、电极(1.3);所述p-Si与梯度掺杂n型半导体薄膜组成p-n结,在p-n结两端沉积薄膜电极;所述梯度掺杂方式为掺杂浓度沿远离p-n结界面的薄膜厚度方向增大或减小,以获得便于载流子输运的能带梯子和增强光生载流子有效输运的梯度场,从而实现对300~1700nm光波的自供能光电探测。
2.根据权利要求1所述的梯度掺杂n型半导体薄膜,其特征在于所述梯度掺杂n型半导体薄膜可以为梯度掺杂ZnO薄膜;所述梯度掺杂ZnO薄膜化学式为Zn1-xAxO,其中A可以为Mn、Mg、Ca、Sr或Pb,掺杂浓度沿远离p-n结界面的薄膜厚度方向在0<x<0.2范围内增大或减小,以便在梯度掺杂的ZnO薄膜内获得与p-n结内建电场同向的梯度场,实现梯度掺杂的n型半导体薄膜。
3.根据权利要求1所述的梯度掺杂的宽光谱自供能光电探测器,其特征在于所述梯度掺杂n型半导体薄膜可以是梯度掺杂Mn的ZnO薄膜,化学式为Zn1-xMnxO,所述Mn的掺杂浓度随薄膜厚度方向在0<x<0.2范围内逐渐增大,使得梯度掺杂Mn的ZnO薄膜的导带沿该薄膜厚度方向逐渐降低;构建p-Si/n-Zn1-xMnxO异质结结构,实现对300~1700nm光波的自供能光电探测。
4.根据权利要求1所述的梯度掺杂的宽光谱自供能光电探测器,其特征在于所述梯度掺杂n型半导体薄膜可以是梯度掺杂Mg的ZnO薄膜,其化学式为Zn1-xMgxO,所述Mg的掺杂浓度随薄膜厚度方向在0<x<0.2范围内逐渐减小,使得梯度掺杂Mg的ZnO薄膜的导带沿该薄膜厚度方向逐渐降低;构建p-Si/n-Zn1-xMgxO异质结结构,实现对300~1700nm光波的自供能光电探测。
5.一种用于实现权利要求3所述的梯度掺杂的宽光谱自供能光电探测器的方法,其特征在于包括如下实现步骤:
(1)按摩尔计量比称取(CH3COO)2Zn·2H2O和(CH3COO)2Mn·4H2O;将所称取的物质按0.25M溶于乙醇溶液,按乙醇溶液和乙醇胺溶液体积比100:1加入乙醇胺作为稳定剂;在50℃下搅拌30min~60min,静置24h~48h,获得旋涂用前驱体溶液;
(2)在洁净的p-Si上旋涂掺杂Mn的ZnO薄膜,低转速为500rad/min,时间为5~10s,高转速为1500~3000rad/min,时间为20s~40s;依次旋涂ZnO前驱体、Zn1-xMnxO前驱体(0<x<0.2),x随旋涂次数逐渐增大,旋涂层数为2~5层;烤干温度为150℃~200℃,烤干时间为10min~20min,烤干环境为空气环境,退火温度为450℃~650℃,退火时间为1h~3h,管式炉中充入的气体为氩气和氧气,氩气和氧气比例为19:1,压强为常压。
(3)利用磁控溅射技术在p-Si和梯度掺杂Mn的ZnO薄膜表面溅射电极,磁控溅射的功率为80~200W,压强为1-5Pa,氩气流量为20~40sccm,溅射时间为5~15min,电极厚度为100~300nm,外接铜导线,获得梯度掺杂Mn的光电探测器。
(4)在无外接电压情况下,在常温大气环境中,在光电探测器前添加快门,即可实现对300~1700nm光波的自供能探测。
6.一种用于实现权利要求4所述的梯度掺杂的宽光谱自供能光电探测器的方法,其特征在于:包括如下实现步骤:
(1)按摩尔计量比称取(CH3COO)2Zn·2H2O和(CH3COO)2Mg·4H2O;将所称取的物质按0.25M溶于乙醇溶液,按乙醇溶液:乙醇胺溶液体积比100:1加入乙醇胺作为稳定剂;在50℃下搅拌30min~60min,静置24h~48h,获得旋涂用前驱体溶液;
(2)旋涂的低转速为500rad/min,时间为5~10s,高转速为1500~3000rad/min,时间为20s~40s;依次旋涂Zn1-xMgxO前驱体(0<x<0.2)、ZnO前驱体,x随旋涂次数逐渐减小,旋涂层数为2~5层;烤干温度为150℃~200℃,烤干时间为10min~20min,烤干环境为空气环境,退火温度为450℃~650℃,退火时间为1h~3h,管式炉中充入的气体为氩气和氧气,氩气和氧气比例为19:1,压强为常压。
(3)利用磁控溅射技术在p-Si和梯度掺杂Mg的ZnO薄膜表面溅射电极,磁控溅射的功率为80~200W,压强为1-5Pa,氩气流量为20~40sccm,溅射时间为5~15min,电极厚度为100~300nm,外接铜导线,获得梯度掺杂Mn的光电探测器。
(4)在无外接电压情况下,在常温大气环境中,在光电探测器前添加快门,即可实现对300~1700nm准光波的自供能探测。
CN202210043596.8A 2021-11-25 2022-01-14 一种梯度掺杂的宽光谱自供能光电探测器 Active CN114512569B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111409417 2021-11-25
CN202111409417X 2021-11-25

Publications (2)

Publication Number Publication Date
CN114512569A true CN114512569A (zh) 2022-05-17
CN114512569B CN114512569B (zh) 2023-06-02

Family

ID=81550744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210043596.8A Active CN114512569B (zh) 2021-11-25 2022-01-14 一种梯度掺杂的宽光谱自供能光电探测器

Country Status (1)

Country Link
CN (1) CN114512569B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117133833A (zh) * 2023-10-20 2023-11-28 长春理工大学 一种光谱探测器芯片及其制备方法和光谱探测器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055903A (zh) * 2007-04-30 2007-10-17 西安交通大学 一种高性能ZnO MSM型紫外光电导探测器的制备方法
CN101409311A (zh) * 2008-12-03 2009-04-15 中国科学院物理研究所 一种硅基双异质结可见盲紫外探测器及其制造方法
CN101533868A (zh) * 2009-04-03 2009-09-16 中国科学院上海硅酸盐研究所 一种异质pn结型日盲紫外探测器
CN102168256A (zh) * 2011-03-21 2011-08-31 南开大学 利用MOCVD梯度掺杂技术生长ZnO:B薄膜及应用
US20140284598A1 (en) * 2013-03-22 2014-09-25 University Of Central Florida Research Foundation, Inc. Uv photodetectors having semiconductor metal oxide layer
US20180308941A1 (en) * 2017-04-21 2018-10-25 Yu-chen Chang Two-dimensional electronic devices and related fabrication methods
CN108878583A (zh) * 2018-06-20 2018-11-23 东华大学 基于p-Si/NiO:Zn异质结构的光电探测材料的制备方法
CN109004057A (zh) * 2018-08-01 2018-12-14 广州大学 基于非晶氮化物薄膜的宽谱光电探测器件及其制备方法
CN110047953A (zh) * 2019-03-20 2019-07-23 天津大学 n型的二维纳米片阵列及其制备方法及红外光电探测器
CN111446324A (zh) * 2020-04-03 2020-07-24 中国石油大学(华东) 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法
CN112201711A (zh) * 2020-09-10 2021-01-08 湖北大学 一种ZnO基同质结自驱动紫外光光电探测器及其制备方法
CN112909118A (zh) * 2021-01-28 2021-06-04 广州大学 一种微分转换型宽光谱光电探测器及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055903A (zh) * 2007-04-30 2007-10-17 西安交通大学 一种高性能ZnO MSM型紫外光电导探测器的制备方法
CN101409311A (zh) * 2008-12-03 2009-04-15 中国科学院物理研究所 一种硅基双异质结可见盲紫外探测器及其制造方法
CN101533868A (zh) * 2009-04-03 2009-09-16 中国科学院上海硅酸盐研究所 一种异质pn结型日盲紫外探测器
CN102168256A (zh) * 2011-03-21 2011-08-31 南开大学 利用MOCVD梯度掺杂技术生长ZnO:B薄膜及应用
US20140284598A1 (en) * 2013-03-22 2014-09-25 University Of Central Florida Research Foundation, Inc. Uv photodetectors having semiconductor metal oxide layer
US20180308941A1 (en) * 2017-04-21 2018-10-25 Yu-chen Chang Two-dimensional electronic devices and related fabrication methods
CN108878583A (zh) * 2018-06-20 2018-11-23 东华大学 基于p-Si/NiO:Zn异质结构的光电探测材料的制备方法
CN109004057A (zh) * 2018-08-01 2018-12-14 广州大学 基于非晶氮化物薄膜的宽谱光电探测器件及其制备方法
CN110047953A (zh) * 2019-03-20 2019-07-23 天津大学 n型的二维纳米片阵列及其制备方法及红外光电探测器
CN111446324A (zh) * 2020-04-03 2020-07-24 中国石油大学(华东) 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法
CN112201711A (zh) * 2020-09-10 2021-01-08 湖北大学 一种ZnO基同质结自驱动紫外光光电探测器及其制备方法
CN112909118A (zh) * 2021-01-28 2021-06-04 广州大学 一种微分转换型宽光谱光电探测器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117133833A (zh) * 2023-10-20 2023-11-28 长春理工大学 一种光谱探测器芯片及其制备方法和光谱探测器
CN117133833B (zh) * 2023-10-20 2024-03-29 长春理工大学 一种光谱探测器芯片及其制备方法和光谱探测器

Also Published As

Publication number Publication date
CN114512569B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
Wang et al. Comprehensive pyro‐phototronic effect enhanced ultraviolet detector with ZnO/Ag Schottky junction
Varshney et al. Current advances in solar-blind photodetection technology: Using Ga 2 O 3 and AlGaN
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Yu et al. Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors
Liu et al. ZnO-based ultraviolet photodetectors
Ma et al. High-performance self-powered perovskite photodetector for visible light communication
CN102694053A (zh) 半导体器件及其制造方法
Qiao et al. The nanowire length dependence of the photoresponse and Pyro-phototronic response in the ZnO-based heterojunctions
Han et al. Self-powered Au/MgZnO/nanolayered Ga-Doped ZnO/In metal–insulator–semiconductor UV detector with high internal gain at deep UV light under low voltage
Zhu et al. Self‐powered InP nanowire photodetector for single‐photon level detection at room temperature
EP3396721A1 (en) Two-dimensional electronic devices and related fabrication methods
CN102694052A (zh) 半导体器件及其制造方法
CN105355701B (zh) 一种新型的光电导探测器
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
CN110416333B (zh) 一种紫外光电探测器及其制备方法
CN114512569B (zh) 一种梯度掺杂的宽光谱自供能光电探测器
CN115692537A (zh) 一种基于InAs/InAsSb II类超晶格材料的势垒型短中波双色红外探测器
CN102237432A (zh) 一种太赫兹、红外频段灵敏光子探测器
Yin et al. Multifunctional optoelectronic device based on CuO/ZnO heterojunction structure
Peng et al. High-performance UV–visible photodetectors based on ZnO/perovskite heterostructures
Fei et al. Improved responsivity of MgZnO film ultraviolet photodetectors modified with vertical arrays ZnO nanowires by light trapping effect
Sun et al. Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors
CN103474503A (zh) 一种基于二维晶格的紫外单波长msm光电探测器
CN112968073A (zh) 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用
Chen et al. Amorphous MgInO ultraviolet solar-blind photodetectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant