CN112968073A - 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用 - Google Patents

超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用 Download PDF

Info

Publication number
CN112968073A
CN112968073A CN202110136368.0A CN202110136368A CN112968073A CN 112968073 A CN112968073 A CN 112968073A CN 202110136368 A CN202110136368 A CN 202110136368A CN 112968073 A CN112968073 A CN 112968073A
Authority
CN
China
Prior art keywords
film
gallium oxide
metal aluminum
substrate
ultrasensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110136368.0A
Other languages
English (en)
Other versions
CN112968073B (zh
Inventor
杨珣
陈彦成
单崇新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110136368.0A priority Critical patent/CN112968073B/zh
Publication of CN112968073A publication Critical patent/CN112968073A/zh
Application granted granted Critical
Publication of CN112968073B publication Critical patent/CN112968073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提出了一种超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用,光电探测器,包括衬底,衬底的上端从下到上依次设置有金属铝薄膜、氧化铝薄膜、Ga2O3薄膜和石墨烯电极。本发明针对灵敏度低不能探测微弱的日盲光信号的问题,提出了一种利用空穴捕获降低肖特基势垒实现高响应度和快响应速度的基础上,利用多光束干涉将日盲光限制在超薄Ga2O3(<λ/4n~30nm)中共振吸收,实现了兼具高灵敏度与快响应速度的Ga2O3日盲探测器,并将其用于微弱日盲信号的阵列成像和位置探测。

Description

超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用
技术领域
本发明涉及光电器件制备领域,特别是指一种超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用。
背景技术
光电探测器是光电子器件的核心元器件之一,在光电系统中起到将光信号转变为电信号的作用。200-280nm波段的太阳辐射被大气层吸收和散射不能到达地球表面,被称为日盲波段。工作于日盲波段的探测器可以避免最大的自然光——太阳光的干扰,具有很高的信噪比和很低的虚警率,是光电探测领域的研究重点之一。日盲紫外成像和位置探测在通讯、导弹预警、火灾探测、导航定位和电晕放电检测等领域有广泛的应用前景。
氧化镓禁带宽度为4.9eV,响应光谱覆盖大部分日盲波段。此外Ga2O3化学和热稳定性好、易于大面积制备、击穿电场强度高等优点,被视为制备日盲紫外探测器的理想材料。但被探测目标在日盲区的信号往往非常微弱,如火焰探测中日盲信号强度只有nW/cm2量级。探测器对如此微弱信号的响应往往淹没在噪声中难以识别,虽然可以通过滤波法、双路消噪法、锁定接收法、取样积分法等进行识别,但大大增加了成本,也降低了探测速度。尤其对于探测成像和位置探测等应用来说,需要对信号实时测量,而对微弱响应信号测量是一件困难的事情,其噪声和干扰将影响到测量系统的分辨率、动态范围、信噪比和重复性。
因此,最佳解决方案是提高探测器的光电导增益和灵敏度,提高微弱日盲信号下的光电流。但是目前的器件对微弱光的探测灵敏度还不够,只能探测到亚μW/cm2强度的日盲光。而探测器的响应度和响应速度之间是一种权衡关系,如何在不降低响应速度的前提下提高对微弱信号的探测灵敏度,还缺乏有效解决方法。
发明内容
本发明的目的在于针对灵敏度低不能探测微弱的日盲光信号的问题,提出了一种利用空穴捕获降低肖特基势垒实现高响应度和快响应速度的基础上,利用多光束干涉将日盲光限制在超薄Ga2O3(<λ/4n~30nm)中共振吸收,实现了兼具高灵敏度与快响应速度的Ga2O3日盲探测器,并将其用于微弱日盲信号的阵列成像和位置探测。
本发明的技术方案是这样实现的:超灵敏柔性氧化镓光电探测器,包括衬底,衬底的上端从下到上依次设置有金属铝薄膜、氧化铝薄膜、氧化镓(Ga2O3)薄膜和石墨烯电极。
进一步地,金属铝薄膜的厚度为100-150纳米。
进一步地,氧化铝薄膜的厚度为5纳米,氧化铝薄膜太厚会阻挡光生载流子的收集,太薄起不到钝化铝膜的作用。
进一步地,当发生干涉相消时,氧化镓薄膜的厚度为20纳米。
进一步地,石墨烯为单层结构。
进一步地,衬底为柔性PEN衬底,厚度为0.125毫米。
所述超灵敏柔性氧化镓光电探测器的制备方法,包括以下步骤:
(1)清洗衬底;
(2)采用激光直写和磁控溅射在衬底上金属铝薄膜,金属铝薄膜作为反射层和低电极;
(3)利用原子层相沉积技术在金属铝薄膜上沉积氧化铝薄膜;
(4)采用磁控溅射技术在氧化铝薄膜上溅射Ga2O3薄膜;
(5)采用湿法转移技术,在Ga2O3薄膜上转移一层石墨烯作为公共电极。
进一步地,步骤(2)中,射频磁控溅射所用的靶材为金属铝靶,金属铝靶的纯度为99.9%,溅射气体为氩气。
进一步地,步骤(3)中,原子层沉积所用的铝源为三甲基铝,氧源为水,气体为氮气。
进一步地,步骤(4)中,射频磁控溅射所用的靶材为Ga2O3陶瓷靶,Ga2O3陶瓷靶的纯度99.99%,溅射气体为氩气和氧气混合气体,溅射温度为30℃。
采用所述的超灵敏柔性氧化镓光电探测器制备的光电探测器阵列。
所述的光电探测器阵列在光学成像或光轨迹探测的应用。
本发明的有益效果:
本发明通过利用空穴捕获降低肖特基势垒实现高响应度和快响应速度的基础上,利用多光束干涉将日盲光限制在超薄Ga2O3(h<λ/4n~30nm,h是薄膜的厚度及光在薄膜当中所走的光程)中共振吸收,实现了兼具高灵敏度与快响应速度的Ga2O3日盲探测器,并将其用于微弱日盲信号的阵列成像和位置探测。本发明的光电探测器10V偏压下响应度为295A/W,探测度为1.2×1016Jones,上升时间为1.7微秒,下降时间为26.8微秒。
本发明通过利用反射光的干涉相消原理在超薄的Ga2O3中实现高光吸收效率可以提高微弱日盲光产生的载流子浓度,更显著缩短了光生载流子输运距离,提高了光生载流子输运效率,从而实现兼具高灵敏度与快响应速度的Ga2O3日盲探测器,并将其用于微弱日盲信号的阵列成像和位置探测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为金属铝的反射光谱;
图2为本发明柔性氧化镓光电探测器不同氧化铝厚度的反射光谱;
图3为本发明柔性氧化镓光电探测器的结构示意图;
图4为本发明柔性氧化镓光电探测器的能带示意图;
图5为本发明氧化镓薄膜的吸收光谱;
图6为本发明氧化镓薄膜的扫描电子显微镜照片;
图7为本发明氧化镓薄膜的原子力显微镜照片;
图8为光电探测器的光电流和暗电流;
图9为光电探测器的光响应图谱;
图10为光电探测器阵列光学成像的应用;
图11为光电探测器阵列光轨迹探测的应用。
衬底1,金属铝薄膜2,氧化铝薄膜3,氧化镓薄膜4,石墨烯电极5。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
超灵敏柔性氧化镓光电探测器,包括衬底1,衬底1的上端从下到上依次设置有金属铝薄膜2、氧化铝薄膜3、氧化镓薄膜4和石墨烯电极5。金属铝薄膜2的厚度为100-150纳米。氧化铝薄膜3的厚度为5纳米。氧化镓薄膜4的厚度为20纳米。石墨烯5为单层结构,衬底为柔性PEN衬底,厚度为0.125毫米。因为金属铝在深紫外的反射光大于百分之八十,所以本实验选用铝作为反光层,反射光谱如图1所示,金属铝薄膜的厚度采用100纳米,氧化铝薄膜3设置于金属铝薄膜2一端的上侧,该端金属铝薄膜2作为反射层,金属铝薄膜2的另一端外露,作为低电极,氧化镓薄膜4设置于氧化铝薄膜3的上端以及衬底1上端远离低电极的一侧,石墨烯电极5设置于氧化镓薄膜4的上端作为公共电极。如图2所示通过对比这个器件结构的反射光谱发现,当氧化镓厚度为20纳米时,器件具有最小的光反射率,即发生干涉相消现象,因此在实验中氧化镓的最佳厚度为20纳米。
超灵敏柔性氧化镓光电探测器的使用方法,包括以下步骤:
(1)清洗衬底;
(2)采用激光直写和磁控溅射在衬底上金属铝薄膜,金属铝薄膜作为反射层和低电极,射频磁控溅射所用的靶材为金属铝靶,金属铝靶的纯度为99.9%,溅射气体为氩气;其中激光直写的步骤如下:首先画出需要用的图案,然后旋涂光刻胶,温度为115℃下加热1分钟,然后放入激光直写中曝光,曝光完成后,取出显影,既可得到想要的图案。射频磁控溅射步骤如下:将显影后的样品放入溅射室。在溅射之前,通过分子泵将生长室的真空抽至低于6.0×10-4Pa。在生长过程中通入氩气,气体的通量都保持在10sccm,整个溅射过程射频功率为50W,生长压强为1Pa,整个生长时间为3分钟;
(3)利用原子层相沉积技术在金属铝薄膜上沉积氧化铝薄膜,原子层沉积所用的铝源为三甲基铝,氧源为水,气体为氮气,原子层相沉积步骤如下:在沉积之前,通过机械泵将沉积室压强抽至低于2.0×10-3Pa;温度增加至100℃,然后再通入氩气,调控压强为1.6~1.7Pa,沉积时间为50分钟;
(4)采用磁控溅射技术在氧化铝薄膜上溅射Ga2O3薄膜,射频磁控溅射所用的靶材为Ga2O3陶瓷靶,Ga2O3陶瓷靶的纯度99.99%,射频磁控溅射步骤如下:首先将柔性衬底依次在丙酮、酒精和去离子水中超声波清洗5分钟,然后用氮气吹干。在溅射之前,通过分子泵将生长室的真空抽至低于6.0×10-4Pa。在生长过程中通入氩气和氧气,气体的通量都保持在10sccm,整个溅射过程射频功率为120W,生长压强为1Pa,整个生长时间为30分钟;其中,氩气和氧气为任意比例。
(5)采用湿法转移技术,在Ga2O3薄膜上转移一层石墨烯作为公共电极。
本实施例利用空穴捕获降低肖特基势垒实现高响应度和快响应速度的基础上,利用多光束干涉将日盲光限制在超薄Ga2O3(<λ/4n~30nm)中共振吸收,实现了兼具高灵敏度与快响应速度的Ga2O3日盲探测器,器件的平面图和界面图如图3所示。
光电探测器是有金属绝缘层半导体组成的MIS结构,其能带图在负向偏压下如图4所示。氧化镓薄膜的吸收光谱如图5所示,可以看出氧化镓只对深紫外有吸收,对于可见光和近紫外是完全透过的。
氧化镓薄膜的扫描图如图6所示,从图中可以看出氧化镓为无定形结构,表面为纳米团簇小颗粒组成。氧化镓的表面粗糙度可以从原子力显微镜中看出,如图7所示,氧化镓具有光滑的平面,均方根表面粗糙度为1.2纳米。
光电探测器的电压电流曲线如图8所示,从图中可以看出,器件的光电流明显大于暗电流,且是暗电流的106倍,说明器件具有良好的光电性能。光电探测器的光响应曲线如图9所示,从图中可以看出器件只对波长小于260纳米的光有响应,对于看见光和近紫外光都是没有响应,说明器件具有良好的光谱选择性。
实施例2
把实施例1的光电探测器做成一个7×7的光电探测器阵列,作为光电探测器阵列的一个应用就是成像,把光电探测器阵列器件和光源之间放置一个镂空的6字形淹膜版,然后通过记录阵列器件中每个像素的光电,绘制出来的光电如图10所示,从图中可以看出,7×7的光电探测器阵列完全还原了淹膜的图像,也出现一个6字形的图案,说明光电探测器阵列完全可以应用到成像中去。
实施例3
实施例2中的光电探测器阵列还可以探测运动着的光源,当运动着的光源途径光电探测器阵列时,阵列中的各各像素会跟着光轨迹依次输出高电流,这样的在各各像素之间交替出现,就可以判断出光源的运动轨迹,还可以根据两个像素出现高电流的时间来判断光源的运动速度,输出端被光照射的光电探测器阵列的电流随时间的变化如图11所示。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.超灵敏柔性氧化镓光电探测器,包括衬底(1),其特征在于:衬底(1)的上端从下到上依次设置有金属铝薄膜(2)、氧化铝薄膜(3)、Ga2O3薄膜(4)和石墨烯电极(5)。
2.根据权利要求1所述的一种超灵敏柔性氧化镓光电探测器,其特征在于:金属铝薄膜的厚度为100-150纳米,氧化铝薄膜的厚度为5纳米。
3.根据权利要求1所述的超灵敏柔性氧化镓光电探测器,其特征在于:Ga2O3薄膜的厚度为20纳米,石墨烯为单层结构。
4.根据权利要求1所述的超灵敏柔性氧化镓光电探测器,其特征在于:衬底为柔性PEN衬底。
5.权利要求1-4之一所述的超灵敏柔性氧化镓光电探测器阵列的制备方法,其特征在于,包括以下步骤:
(1)清洗衬底;
(2)采用激光直写和磁控溅射在衬底上金属铝薄膜,金属铝薄膜作为反射层和低电极;
(3)利用原子层相沉积技术在金属铝薄膜上沉积氧化铝薄膜;
(4)采用磁控溅射技术在氧化铝薄膜上溅射Ga2O3薄膜;
(5)采用湿法转移技术,在Ga2O3薄膜上转移一层石墨烯作为公共电极。
6.根据权利要求5所述的制备方法,其特征在于,步骤(2)中,射频磁控溅射所用的靶材为金属铝靶,金属铝靶的纯度为99.9%,溅射气体为氩气。
7.根据权利要求5所述的制备方法,其特征在于,步骤(3)中,原子层沉积所用的铝源为三甲基铝,氧源为水,气体为氮气。
8.根据权利要求5所述的制备方法,其特征在于,步骤(4)中,射频磁控溅射所用的靶材为Ga2O3陶瓷靶,Ga2O3陶瓷靶的纯度99.99%,溅射气体为氩气和氧气混合气体,溅射温度为30℃。
9.采用权利权利要求1-4之一所述的超灵敏柔性氧化镓光电探测器制备的光电探测器阵列。
10.权利要求9所述的光电探测器阵列在光学成像或光轨迹探测的应用。
CN202110136368.0A 2021-02-01 2021-02-01 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用 Active CN112968073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110136368.0A CN112968073B (zh) 2021-02-01 2021-02-01 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110136368.0A CN112968073B (zh) 2021-02-01 2021-02-01 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用

Publications (2)

Publication Number Publication Date
CN112968073A true CN112968073A (zh) 2021-06-15
CN112968073B CN112968073B (zh) 2023-06-13

Family

ID=76272283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110136368.0A Active CN112968073B (zh) 2021-02-01 2021-02-01 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用

Country Status (1)

Country Link
CN (1) CN112968073B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410330A (zh) * 2021-06-22 2021-09-17 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN114678432A (zh) * 2022-03-28 2022-06-28 浙江理工大学 一种氧化镓基电网电晕监测芯片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614961A (en) * 1984-10-09 1986-09-30 Honeywell Inc. Tunable cut-off UV detector based on the aluminum gallium nitride material system
US20150276947A1 (en) * 2014-03-26 2015-10-01 California Institute Of Technology Subnanosecond scintillation detector
CN111564504A (zh) * 2020-04-16 2020-08-21 南京大学 一种日盲紫外探测器及其制备方法
CN111710731A (zh) * 2020-06-19 2020-09-25 中国科学技术大学 一种氧化镓日盲光电探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614961A (en) * 1984-10-09 1986-09-30 Honeywell Inc. Tunable cut-off UV detector based on the aluminum gallium nitride material system
US20150276947A1 (en) * 2014-03-26 2015-10-01 California Institute Of Technology Subnanosecond scintillation detector
CN111564504A (zh) * 2020-04-16 2020-08-21 南京大学 一种日盲紫外探测器及其制备方法
CN111710731A (zh) * 2020-06-19 2020-09-25 中国科学技术大学 一种氧化镓日盲光电探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SOOYEOUN OH ET.AL.: ""High Responsivity β-Ga203 Metal-Semiconductor-Metal Solar-Blind Photodetectors with Ultraviolet Transparent Graphene Electrodes"", 《ACS PHOTONICS》 *
赖黎;莫慧兰;符思婕;毛彦琦;王加恒;范嗣强;: "氧化镓微晶薄膜制备及其日盲深紫外探测器" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410330A (zh) * 2021-06-22 2021-09-17 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN113410330B (zh) * 2021-06-22 2022-07-22 金华紫芯科技有限公司 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN114678432A (zh) * 2022-03-28 2022-06-28 浙江理工大学 一种氧化镓基电网电晕监测芯片及其制备方法

Also Published As

Publication number Publication date
CN112968073B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
CN108281509B (zh) 氧化物半导体基光电探测器及提高其性能的方法
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN108470675B (zh) 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN112968073B (zh) 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
US11605743B2 (en) Photodetector based on PtSe2 and silicon nanopillar array and preparation method thereof
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN105355701B (zh) 一种新型的光电导探测器
CN111564504A (zh) 一种日盲紫外探测器及其制备方法
JP2000196134A (ja) 可視―ブラインドuv検出器
Yadav et al. Development of visible-blind UV photodetector using solution processed Ag-ZnO nanostructures
CN110350041B (zh) 基于上下非对称栅状电极的光电导型光电探测器
CN110611010B (zh) 一种硅纳米晶/石墨烯宽光谱光电探测器及其制备方法
Berthold et al. Surface plasmon enhanced quantum efficiency of metal‐insulator‐semiconductor junctions in the visible
CN111063751A (zh) 一种超薄无机窄带异质结光电探测器及其制备方法
CN114512569B (zh) 一种梯度掺杂的宽光谱自供能光电探测器
CN109755341A (zh) 基于β-Ga2O3/FTO异质结的日盲紫外光电探测器及其制备
CN114695430A (zh) 双极性响应双色探测器、其制备方法及应用
CN106997913B (zh) 日盲紫外光探测器单元及阵列
CN114300551A (zh) 石墨烯/等离子激元黑硅近红外探测器结构及其制备方法
CN108878571B (zh) 一种基于热载流子的隐身探测器
CN113745360A (zh) 一种窄带响应紫外光电二极管及其制备方法
CN114171634B (zh) 日盲紫外光电探测器及其制备方法
CN217444411U (zh) 电调控同光轴日盲紫外-可见光双波段探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant