CN111710731A - 一种氧化镓日盲光电探测器及其制备方法 - Google Patents

一种氧化镓日盲光电探测器及其制备方法 Download PDF

Info

Publication number
CN111710731A
CN111710731A CN202010571215.4A CN202010571215A CN111710731A CN 111710731 A CN111710731 A CN 111710731A CN 202010571215 A CN202010571215 A CN 202010571215A CN 111710731 A CN111710731 A CN 111710731A
Authority
CN
China
Prior art keywords
gallium oxide
thickness
layers
electrode layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010571215.4A
Other languages
English (en)
Other versions
CN111710731B (zh
Inventor
赵晓龙
谭鹏举
徐光伟
侯小虎
龙世兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202010571215.4A priority Critical patent/CN111710731B/zh
Publication of CN111710731A publication Critical patent/CN111710731A/zh
Application granted granted Critical
Publication of CN111710731B publication Critical patent/CN111710731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/111Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本公开提供了一种氧化镓日盲光电探测器,包括:衬底(100);多层氧化镓(200),多层氧化镓(200)堆叠设于衬底(100)的表面;氧化镓(200)与衬底(100)之间、两层氧化镓(200)之间设有纳米厚度电极层(300)。奇数层纳米厚度电极层(300)嵌入氧化镓内部的同时,延伸至氧化镓外部并相互重叠;偶数层纳米厚度电极层(300)嵌入氧化镓内部的同时,延伸至氧化镓外部另外一侧并相互重叠。另一方面,本公开还提供了一种氧化镓日盲光电探测器的制备方法。

Description

一种氧化镓日盲光电探测器及其制备方法
技术领域
本公开涉及光电探测技术领域,尤其涉及一种氧化镓日盲光电探测器及其制备方法。
背景技术
光电探测器是一类能将光信号转化为电信号的光电子器件。日盲波段指波长范围在200~280nm的紫外光,日盲光电探测器具有背景干扰小的突出优点,在导弹预警、火灾遥感、高压电监测、非视距保密光通信等领域具有广阔的应用前景。日盲光电探测器主要包括外光电效应探测器和内光电效应探测器。外光电效应探测器基于材料中电子在吸收一定波长光后可以获得足够能量,从材料内部发射出来的原理制成,主要包括光电倍增管、光电管等。需要高真空和高电压,同时体积大、易碎等缺点限制了外光电效应探测器在现代电子系统中的应用。半导体中电子吸收一定波长光子后可以发生从价带到导带的跃迁,产生光生电子和光生空穴(统称为光生载流子),这被称为内光电效应。内光电效应日盲探测器不需要真空,可以微型化,是目前的研究热点。内光电效应光电探测器的探测机理主要有两种。若器件内部不存在内建电场,光生载流子使得半导体的电导率上升,通过器件的电流增大,这称为光电导效应。若器件内部存在内建电场,光生电子和空穴会在内建电场的推动下分离并分别向器件两端运动,产生光生电动势,这称为光伏效应。当两种类型不同的半导体相互接触时,由于能带不匹配,在两种半导体的接触面两侧会产生内建电场。内建电场通常由pn结构建,金属-半导体(肖特基结)间也存在内建电场。目前用于内光电效应日盲光电探测器的半导体材料主要有Si、GaAs、GaP等传统半导体材料,GaN、SiC、ZnO等宽禁带半导体材料,以及Ga2O3、金刚石等超宽禁带半导体材料。相比于其他材料,氧化镓应用于日盲探测具有显著优势:Ga2O3是直接带隙半导体,具有4.9eV的超宽禁带,直接对应于日盲波段,不需要滤波片或掺杂。超宽的禁带宽度也使Ga2O3具有比其他半导体材料更强的抗辐照能力,同时,Ga2O3具有较高的化学稳定性,这些使得Ga2O3可以应用于高温、高辐照等极端环境。目前,Ga2O3已可以通过导模法生长得到高质量单晶并实现可控的n型掺杂。相比于其他生长方法,导模法的成本更低,这为未来Ga2O3的实用化奠定了基础。因此氧化镓(Ga2O3)是制作日盲光电探测器的理想材料。目前基于氧化镓的日盲光电探测器所采用的结构主要有光电导结构、MSM(金属-半导体-金属)结构、肖特基结构、异质结结构等。这些结构都存在一定缺陷,导致目前氧化镓日盲光电探测器普遍存在响应灵敏度不高、暗电流较大、响应和下降速度较慢等问题,实用性较差。例如,不透明的金属电极对入射光造成阻挡,妨碍了氧化镓对入射光的完全吸收;氧化镓的载流子迁移率不高,限制了器件的响应速度;氧化镓目前还无法实现可控P型掺杂,这导致基于氧化镓的器件缺乏通过PN结构建内建电场的简单手段。而内建电场的存在可以加速载流子的运输,提高器件的响应灵敏度和响应速度。
发明内容
(一)要解决的技术问题
本公开提供了一种氧化镓日盲光电探测器及其制备方法,至少解决以上技术问题。
(二)技术方案
一方面,本公开提供了一种氧化镓日盲光电探测器,包括:衬底100;多层氧化镓200,多层氧化镓200堆叠设于衬底100的表面;氧化镓200与衬底100之间、两层氧化镓200之间设有纳米厚度电极层300;其中奇数层纳米厚度电极层300嵌入氧化镓内部的同时,延伸至氧化镓外部并相互重叠;偶数层纳米厚度电极层300嵌入氧化镓内部的同时,延伸至氧化镓外部另外一侧并相互重叠。
在进一步的实施例中,衬底100为绝缘材料。
在进一步的实施例中,纳米厚度电极层300的材料为Ti、Cr、Ni、Pt、Au、Ag、W、In、Al、Ru、Pd、TiN、Ta、TaN、ITO或石墨烯中的一种或多种。
在进一步的实施例中,所述单层纳米厚度电极层(300)的厚度小于10nm。
在进一步的实施例中,纳米厚度电极层300的层数大于2层。
在进一步的实施例中,每层氧化镓200的厚度为1~500nm。
本公开另一实施例中一种氧化镓日盲光电探测器的制备方法,包括:S1,在衬底100上设置一层纳米厚度电极层300;S2,在纳米厚度电极层300表面设置氧化镓200;S3,在氧化镓200上设置另一层纳米厚度电极层300;S4,重复执行步骤S2~S3,直至纳米厚度电极300的层数达到预设值;
在进一步的实施例中,纳米厚度电极层300的层数的预设值为大于2。
在进一步的实施例中,每层氧化镓200的厚度为1~500nm。
(三)有益效果
本公开提供了一种氧化镓日盲光电探测器及其制备方法,至少具有如下有益效果:
每层氧化镓层都只有纳米级厚度,使得载流子在氧化镓中的运动距离较短,载流子的运输主要在载流子迁移率较高的电极中完成,从而提高了器件的反应速度;
使用多层氧化镓层,避免了单层氧化镓层吸光率较小的缺陷,可以实现对入射光的完全吸收,从而提高了器件的响应灵敏度;使用纳米厚度电极,减少了电极对入射光的遮挡,同时使得入射光在电极间多次反射,增强了氧化镓对光的吸收,从而提高器件的响应灵敏度;
电极与氧化镓形成内建电场和肖特基势垒,内建电场的存在加速了载流子的分离和运动,从而提高器件的响应灵敏度和响应速度,肖特基势垒的存在降低了器件的暗电流,从而提高了器件的信噪比。
附图说明
图1示意性示出了根据本公开实施例的氧化镓日盲光电探测器的结构示意图;
图2示意性示出了根据本公开实施例的氧化镓日盲光电探测器的制备方法步骤图;
图3示意性示出了根据本公开实施例的氧化镓日盲光电探测器的制备方法流程图。
具体实施方式
本公开提供了一种全新结构的氧化镓日盲光电探测器及其制备方法,能够提高氧化镓日盲探测器的响应灵敏度、探测率、响应速度等,推动氧化镓日盲光电探测器的实用化。通过构建纳米厚度电极/氧化镓垂直叠层结构,使用纳米厚度电极避免了电极对入射光的遮挡,使用多层氧化镓层在缩短载流子在氧化镓中的运动距离的同时实现对入射光的完全吸收;同时,氧化镓与金属间因能带不匹配而形成内建电场,加速了光照下产生的光生载流子的分离和传输。氧化镓和金属间还会形成肖特基势垒,阻碍无光照时载流子的传输,进而降低器件的暗电流,而暗电流是光电探测器噪声的主要来源。
本公开提供了一种氧化镓日盲光电探测器,包括衬底100、多层氧化镓200以及纳米厚度电极层300,其中:衬底100;多层氧化镓200,多层氧化镓200堆叠设于衬底100的表面;氧化镓200与衬底100之间、两层氧化镓200之间设有纳米厚度电极层300。奇数层纳米厚度电极层(300)嵌入氧化镓内部的同时,延伸至氧化镓外部并相互重叠;偶数层纳米厚度电极层300嵌入氧化镓内部的同时,延伸至氧化镓外部另外一侧并相互重叠。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
如图1所示,本公开实施例的氧化镓日盲光电探测器,包括衬底100、多层氧化镓200以及纳米厚度电极层300。
衬底100,该衬底100为绝缘衬底,在使用之前可以对其进行清洗或打磨等预处理。纳米厚度电极层300的材料可以为Ti、Cr、Ni、Pt、Au、Ag、W、In、Al、Ru、Pd、TiN、Ta、TaN、ITO或石墨烯中的一种或多种。
氧化镓200包括多层,多层氧化镓200依次在衬底100上堆叠。每一层氧化镓200的厚度优选为1~500nm。氧化镓200与衬底100之间、两层氧化镓200之间以及顶层氧化镓200的上表面设置一层纳米厚度电极层300,从而形成多层纳米厚度电极层300。奇数层纳米厚度电极层300嵌入氧化镓内部的同时,延伸至氧化镓外部并相互重叠;偶数层纳米厚度电极层300嵌入氧化镓内部的同时,延伸至氧化镓外部另外一侧并相互重叠。依此方式,纳米厚度电极层300和氧化镓200结构多次重复,最终交替结构的纳米厚度电极层300的层数大于2。单层纳米厚度电极层300的厚度小于10nm。
本公开实施例中的纳米厚度电极层300和氧化镓200层的水平形状没有限制,可以是矩形、圆形等。每个周期中纳米厚度电极层300与氧化镓200重叠部分占氧化镓200的面积的比例不受限制,重复周期数不受限制。
本公开另一方面提供了一种氧化镓日盲光电探测器的制备方法,如图2和图3所示,包括:
S1,在衬底100上设置一层纳米厚度电极层300;
在衬底100上设置纳米厚度电极层300之前需要对衬底100进行预处理,如清洗、打磨等。衬底100为绝缘材料,可以为带有SiO2的硅片、PEN衬底、石英或蓝宝石等中的一种。将纳米厚度电极层300转移(对于石墨烯)或沉积(对于其他电极材料)至衬底100上。
S2,在纳米厚度电极层300表面沉积氧化镓200;
每层氧化镓200的厚度为1~500nm。
S3,在氧化镓200上设置另一层纳米厚度电极层300;
新的纳米厚度电极层与上一次制备的纳米厚度电极层水平方向相反并与同一侧的其他纳米厚度电极层有重叠。
S4,重复执行步骤S2~S3,直至纳米厚度电极层300的层数达到预设值;
纳米厚度电极层300的层数的预设值优选为大于2。
综上所述,本公开实施例中,每层氧化镓层都只有纳米级厚度,使得载流子在氧化镓中的运动距离较短,载流子的运输主要在载流子迁移率较高的电极中完成,从而提高了器件的反应速度;使用多层氧化镓层,避免了单层氧化镓层吸光率较小的缺陷,可以实现对入射光的完全吸收,从而提高了器件的响应灵敏度;使用纳米厚度电极,避免了金属电极对入射光的遮挡,同时入射光在电极间多次反射,使得氧化镓对光的吸收更完全,从而提高器件的响应灵敏度;金属与氧化镓形成了内建电场和肖特基势垒,内建电场的存在加速了载流子的分离和运动,从而提高器件的响应灵敏度和响应速度,肖特基势垒的存在降低了器件的暗电流,从而提高了器件的信噪比。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种氧化镓日盲光电探测器,包括:
衬底(100);
多层氧化镓(200),所述多层氧化镓(200)堆叠设于所述衬底(100)的表面;
氧化镓(200)与衬底(100)之间、两层氧化镓(200)之间设有纳米厚度电极层(300);其中,奇数层纳米厚度电极层(300)嵌入氧化镓内部的同时,延伸至氧化镓外部并相互重叠;偶数层纳米厚度电极层(300)嵌入氧化镓内部的同时,延伸至氧化镓外部另外一侧并相互重叠。
2.根据权利要求1所述的日盲光电探测器,所述衬底(100)为绝缘材料。
3.根据权利要求1所述的日盲光电探测器,所述纳米厚度电极层(300)的材料为Ti、Cr、Ni、Pt、Au、Ag、W、In、Al、Ru、Pd、TiN、Ta、TaN、ITO或石墨烯中的一种或多种。
4.根据权利要求1所述的日盲光电探测器,所述单层纳米厚度电极层(300)的厚度小于10nm。
5.根据权利要求1所述的日盲光电探测器,所述纳米厚度电极层(300)的层数大于2。
6.根据权利要求1所述的日盲光电探测器,每层所述氧化镓(200)的厚度为1~500nm。
7.一种氧化镓日盲光电探测器的制备方法,包括:
S1,在衬底(100)上设置一层纳米厚度电极层(300);
S2,在所述纳米厚度电极层(300)表面形成氧化镓(200);
S3,在所述氧化镓(200)上设置另一层纳米厚度电极层(300);
S4,重复执行步骤S2~S3,直至所述纳米厚度电极层(300)的层数达到预设值。
8.根据权利要求7所述的方法,所述纳米厚度电极层(300)的层数的预设值大于2层。
9.根据权利要求7所述的方法,每层所述氧化镓(200)的厚度为1~500nm。
CN202010571215.4A 2020-06-19 2020-06-19 一种氧化镓日盲光电探测器及其制备方法 Active CN111710731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010571215.4A CN111710731B (zh) 2020-06-19 2020-06-19 一种氧化镓日盲光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010571215.4A CN111710731B (zh) 2020-06-19 2020-06-19 一种氧化镓日盲光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111710731A true CN111710731A (zh) 2020-09-25
CN111710731B CN111710731B (zh) 2022-05-17

Family

ID=72542526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010571215.4A Active CN111710731B (zh) 2020-06-19 2020-06-19 一种氧化镓日盲光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111710731B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968073A (zh) * 2021-02-01 2021-06-15 郑州大学 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用
CN114361286A (zh) * 2021-11-24 2022-04-15 中国科学院宁波材料技术与工程研究所 氧化镓基日盲紫外光电探测器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1217361A2 (de) * 2000-12-22 2002-06-26 Siemens Aktiengesellschaft Mehrstufiger Gassensor, Betriebs- und Herstellungsverfahren
US20080129155A1 (en) * 2006-11-30 2008-06-05 Tdk Corporation Piezoelectric ceramic composition and laminated piezoelectric element
US20090071538A1 (en) * 2007-09-17 2009-03-19 Moon-Jae Lee Photovoltaic device and method of manufacturing the same
JP2014017440A (ja) * 2012-07-11 2014-01-30 Nippon Hoso Kyokai <Nhk> 光電変換素子、及び、イメージセンサ
CN103915252A (zh) * 2012-12-28 2014-07-09 三星电机株式会社 嵌入式多层陶瓷电子元件以及具有嵌入式多层陶瓷电子元件的印刷电路板
CN107833745A (zh) * 2012-12-20 2018-03-23 三星电机株式会社 多层陶瓷电容器及用于安装该多层陶瓷电容器的板
CN109713058A (zh) * 2017-10-25 2019-05-03 中国科学院物理研究所 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
CN111180546A (zh) * 2019-12-30 2020-05-19 浙江大学 多层单晶硅纳米膜/石墨烯光电探测器及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1217361A2 (de) * 2000-12-22 2002-06-26 Siemens Aktiengesellschaft Mehrstufiger Gassensor, Betriebs- und Herstellungsverfahren
US20080129155A1 (en) * 2006-11-30 2008-06-05 Tdk Corporation Piezoelectric ceramic composition and laminated piezoelectric element
US20090071538A1 (en) * 2007-09-17 2009-03-19 Moon-Jae Lee Photovoltaic device and method of manufacturing the same
JP2014017440A (ja) * 2012-07-11 2014-01-30 Nippon Hoso Kyokai <Nhk> 光電変換素子、及び、イメージセンサ
CN107833745A (zh) * 2012-12-20 2018-03-23 三星电机株式会社 多层陶瓷电容器及用于安装该多层陶瓷电容器的板
CN103915252A (zh) * 2012-12-28 2014-07-09 三星电机株式会社 嵌入式多层陶瓷电子元件以及具有嵌入式多层陶瓷电子元件的印刷电路板
CN109713058A (zh) * 2017-10-25 2019-05-03 中国科学院物理研究所 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
CN111180546A (zh) * 2019-12-30 2020-05-19 浙江大学 多层单晶硅纳米膜/石墨烯光电探测器及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALEI LI 等: "Ultrahigh-Sensitive Broadband Photodetectors Based on Dielectric Shielded MoTe2/Graphene/SnS2 p–g–n Junctions", 《ADVANCED MATERIALS》 *
崔尉: "Ga2O3外延薄膜生长与电场调控光电性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968073A (zh) * 2021-02-01 2021-06-15 郑州大学 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用
CN114361286A (zh) * 2021-11-24 2022-04-15 中国科学院宁波材料技术与工程研究所 氧化镓基日盲紫外光电探测器

Also Published As

Publication number Publication date
CN111710731B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Alaie et al. Recent advances in ultraviolet photodetectors
Cao et al. High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures
US8759670B2 (en) Photovoltaic converter device and electronic device
CN108878576B (zh) 一种氧化镓基紫外探测器
CN110212053B (zh) 一种硅基叉指型光电探测器
CN111710731B (zh) 一种氧化镓日盲光电探测器及其制备方法
US11653555B2 (en) Methods and apparatuses for fabricating perovskite-based devices on cost-effective flexible conductive substrates
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN112635614A (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法
CN111952384B (zh) 光电探测器及其制备方法
TW201907574A (zh) 二維電子元件與相關製造方法
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN111863981A (zh) 一种氧化镓日盲光电探测器及其制备方法
CN108922931B (zh) 一种氧化镓基紫外探测器及其制作方法
CN113678268A (zh) 肖特基势垒型红外光电探测器
CN108615783B (zh) 一种肖特基紫外探测器及其制造方法
CN109638100B (zh) 具有背面反射体的光伏器件
CN111863979B (zh) 一种氧化镓光电探测器及其制备方法
CN111710734B (zh) 一种氧化镓光电探测器及其制备方法
CN108615782B (zh) 一种紫外探测器及其制造方法
CN113178497B (zh) 一种基于量子点的紫外探测器及制作方法
Patel et al. New Concepts in All-Metal-Oxide-Based Ultraviolet Transparent Photovoltaics
KR102156113B1 (ko) 전하 운반자 수평 포집 거리 측정 방법
CN207165584U (zh) 一种背照式级联倍增雪崩光电二极管
Zhang et al. Three-dimensional Dirac semimetal (Cd1− x Zn x) 3As2/Sb2Se3 back-to-back heterojunction for fast-response broadband photodetector with ultrahigh signal-to-noise ratio

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant