CN112635614A - 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法 - Google Patents

一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法 Download PDF

Info

Publication number
CN112635614A
CN112635614A CN202011520157.9A CN202011520157A CN112635614A CN 112635614 A CN112635614 A CN 112635614A CN 202011520157 A CN202011520157 A CN 202011520157A CN 112635614 A CN112635614 A CN 112635614A
Authority
CN
China
Prior art keywords
layer
graphene
semiconductor
substrate
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011520157.9A
Other languages
English (en)
Other versions
CN112635614B (zh
Inventor
李国强
陈�胜
王文樑
柴吉星
孔德麒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202011520157.9A priority Critical patent/CN112635614B/zh
Publication of CN112635614A publication Critical patent/CN112635614A/zh
Application granted granted Critical
Publication of CN112635614B publication Critical patent/CN112635614B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法,包括衬底,所述衬底上设置半导体层,半导体层上设置绝缘层,绝缘层及部分半导体层上设置石墨烯层,透明钝化层及压电栅极层设置在石墨烯层上,栅极顶部电极设置在压电栅极层上,第二金属电极与半导体层形成肖特基接触,第一金属电极与石墨烯层形成欧姆接触。本发明结构简单,可靠性高,制作工艺对核心结构的影响较小,可以调控器件光响应,制备出高响应度低暗电流的光电探测器。

Description

一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制 备方法
技术领域
本发明涉及光电探测器技术领域,具体涉及一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法。
背景技术
光电探测器是一种把光信号转化为电信号输出的器件,在光纤通讯,图像传感器,可见光传输,光芯片互联集成等领域都是不可或缺的关键部件。目前常用的光电探测器按结构分类有:PIN型光电二极管、雪崩二极管(APD)、金属-半导体-金属(MSM)二极管、超晶格雪崩二极管(SAPD)、波导型光电探测器(WPD)和谐振腔增强型光电探测器(RCEPD)等,按金属电极和半导体接触类型分类有:欧姆接触和肖特基接触。使用的材料包括Si、Ge、GaAs、InP、GaP、GaN、InxGa1-xN、ZnO、MoS2、AlN,覆盖波段包括中远红外波段、近红外波段、可见光波段、紫外波段和深紫外波段等。目前常用的探测器类型包括PIN型、APD型和MSM型光电探测器,其中PIN型和APD型属于欧姆接触型,MSM型属于肖特基接触型。PIN型二极管光电探测器是目前主流的探测器,它结构简单,制备流程少,利于大规模生产,但其灵敏度相对较低,不能进行远距离通信,且响应带宽较低。APD型探测器是一种利用雪崩效应以提供较大电流增益的光电二极管,具有灵敏度高,暗电流小的优点,但是其工作偏压高,背景噪声大,且结构复杂,制备流程多。MSM型探测器是一种利用金属-半导体-金属接触结构的肖特基势垒,外加偏压产生拉通的内电场,起到收集光生载流子,产生光电流响应的一种器件,相比MSM由于其本身结构固有的高速、低电容、高响应率等特性而倍受关注。MSM光电探测器按结构可以分为共面结构和垂直结构;共面型MSM探测器的电极通常由分立的两组金属条构成,包括叉指电极、圆环形电极等,两组电极处于同一平面,即位于半导体的一侧,第二种器件具有垂直形的结构,半导体层夹在上下两个金属电极中间,呈三明治结构;
传统的MSM型肖特基结探测器靠在器件两端加偏压来形成收集载流子的内建电场,但是肖特基势垒以及外加偏压电场的场强不如PIN、APD等器件的PN结内建电场强(因为在同等反偏电压下,PN结耗尽区比肖特基势接触产生的耗尽区,外加偏压加在耗尽区上,产生的内建电场极强),载流子收集效率、迁移速率较PIN型器件低,响应时间也更长,且更容易产生暗电流。
发明内容
为了克服现有技术存在的缺点与不足,本发明的首要目的是提供一种采用栅调制石墨烯/半导体肖特基结的光电探测器。
本发明的次要目的是提供一种采用栅调制石墨烯/半导体肖特基结的光电探测器的制备方法。
采用该制备方法得到的MSM型光电探测器可以增大器件光电流和响应速度,减小暗电流,并可以通过施加栅极电压能够调控器件的光电流和响应速度。
本发明的首要目的采用如下技术方案:
一种采用栅调制石墨烯/半导体肖特基结的光电探测器,包括衬底,所述衬底上设置半导体层,半导体层上设置绝缘层,绝缘层及部分半导体层上设置石墨烯层,透明钝化层及压电栅极层设置在石墨烯层上,栅极顶部电极设置在压电栅极层上,第二金属电极与半导体层形成肖特基接触,第一金属电极与石墨烯层形成欧姆接触。
进一步,所述半导体层的厚度为500nm-1000nm;所述绝缘层厚度为200-300nm。
进一步,所述衬底为Si衬底、Ge衬底、生长有GaN、InGaN材料外延层的Si、Ge、SOI、GOI、SiC或蓝宝石衬底。
进一步,所述半导体层为本征的AlN、GaN、InN、InxGa1-xN、ZnO、GaAs、MoS2、Si、Ge、SixGe1-x、InP、GaP、InxAl1-xN、AlInGaP或AlInGaAs中的一种以上材料的组合。
进一步,第一金属电极为条形电极或者叉指电极结构。
进一步,所述栅极顶部电极具体是能与压电材料形成良好欧姆接触的金属和ITO导电化合物。
进一步,所述第二金属电极包括钛、铝、镍、金、银或铂中的一种以上组合。
进一步,所述绝缘层为二氧化硅、氮化硅、氧化铝或氧化镁。
进一步,所述压电栅极层为压电材料。
本发明的次要目的采用如下技术方案:
一种制备采用栅调制石墨烯/半导体肖特基结的光电探测器的方法,包括如下步骤:
对衬底进行表面清洗,在衬底上生长缓冲层;
在缓冲层上表面生长单层单晶或多层半导体材料组合的半导体层;
在半导体层上涂抹光刻胶,得到绝缘层的生长区域,生长绝缘层,通过清洗光刻胶,露出半导体层;
在绝缘层和半导体层表面生长或转移石墨烯层,使石墨烯层一部分在半导体层表面,一部分在绝缘层表面;
采用硬掩膜版覆盖在石墨烯层上,依次获得压电栅极层、第一金属电极、栅极顶部电极及第二金属电极,最后在器件表面用硬掩膜版盖住电极部分,生长一层透明钝化层。
生长缓冲层以及半导体层的方法包括MOCVD、PLD、MBE、UHVCVD、LPCVD中的一种或多种结合;绝缘层生长方式包括直接氧化或直接氮化、物理溅射、物理气相沉积(PVD)、化学气相沉积(CVD)等方法;生长第一金属电极、栅极顶部电极、第二金属电极的方法为电子束蒸镀或磁控溅射。
压电栅极层制备方法包括电子束蒸发,物理气相沉积(PVD)、原子沉积(ALD)等方法。
本发明的有益效果:
本发明引入了石墨烯作为功能层,补充了单独半导体功能层的不足,降低暗电流增强了器件光电流和载流子输运速度;
引入栅极顶部电机能够调制器件的能带结构增强内建电场;
本发明MSM型光电探测器可以增大器件光电流和响应速度,减小暗电流,并可以通过施加栅极电压能够调控器件的光电流和响应速度。
附图说明
图1是本发明实施例1的结构图;
图2是本发明实施例1的立体结构图;
图3是实施例2中在生长完一半绝缘层后的剖视图;
图4是实施例2中在绝缘层上和锗外延层材料上转移一层石墨烯后的剖视图;
图5是实施例2中在LPCVD中生长了ZnO压电材料层后的剖视图;
图6是实施例2中在蒸镀了第一金属电极和栅电极后的剖视图;
图7是本发明栅调制石墨烯/锗肖特基结光电探测器的剖视图。
图中示出:
01-第一金属电极;02-栅极顶部电极;03-压电栅极层、04-石墨烯层、05-第二金属电极;06-绝缘层;07-透明钝化层;08-衬底。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
如图1及图2所示,一种采用栅调制石墨烯/半导体肖特基结的光电探测器,包括衬底08、所述衬底上设置半导体层,所述绝缘层06设置在半导体层上,且只覆盖半导体的一部分区域,本实施例1具体是覆盖半导体层的左侧部分,作为隔绝一部分石墨烯和半导体层接触的绝缘层,并提供石墨烯与电极接触的平台,其形状根据电极要求可以发生变化。石墨烯层04设置在绝缘层及部分半导体层上,石墨烯在绝缘层上的和在半导体层上的长度上比例为1:2-1:3;透明钝化层07及压电栅极层03设置在石墨烯层上,在石墨烯层上生长第一金属电极,栅极顶部电极02设置在压电栅极层上,第二金属电极05与半导体层形成肖特基接触,第一金属电极01与石墨烯层形成欧姆接触。
所述第二金属电极和半导体层直接形成了肖特基接触,具有一定高度的肖特基势垒;第一金属电极与石墨烯形成欧姆接触,石墨烯与衬底之间形成了较弱的肖特基接触。顶部栅极是压电材料,通过施加栅压可以调控石墨烯和半导体材料接触的能带结构,起到调控光响应的作用。
衬底为(100)晶向的高阻单晶硅,该高阻单晶硅片上生长了厚度为1μm的高质量半导体外延层。
半导体层为Si、Ge、GaAs、InP、GaP、GaN、InxGa1-xN中的一种以上优选地,在半导体外延层上通过涂覆负光刻胶、光刻,得到绝缘层生长区域,并生长一层100nm厚度的绝缘层。
在绝缘层和半导体外延层上生长或转移一层石墨烯,石墨烯一端与外延层接触,一端在绝缘层上。
在石墨烯层上蒸镀一层栅极压电材料,形成压电材料,石墨烯和半导体三明治结构;栅极压电材料为为氧化锌(ZnO)、锆钛酸铅(PTZ)、钛酸钡(BT)等压电材料中的一种。
在绝缘层和石墨烯上生长一层第一金属电极,形成绝缘层、石墨烯、金属电极三明治结构,第一金属电极与石墨烯形成欧姆接触;在半导体层上生长一层第二金属电极,第二金属电极与半导体层形成肖特基接触;在压电材料层上生长一层栅电极,电极与栅形成欧姆接触。
第一金属电极、第二金属电极和栅极顶部电极均为金属电极层,所述金属为Pt、Au、Ag、Ti、Al、Ni中的一种或两种种组合,其中Ti、Al、Ni作为与半导体层直接接触的金属,Pt、Au、Ag为保护层和增强导电层。
实施例2
如图3-图7所示,上述实施例1光电探测器的制备方法,包括如下步骤:
(1)衬底为(100)晶向的高阻单晶硅,该高阻单晶硅片上生长了厚度为1μm的高质量锗外延层,生长过程采用高低温两步法。首先,在生长前将接收到的Si(100)衬底在900℃的空气中退火5小时,以获得原子平坦的表面。其次,利用乙醇的去离子水清洗衬底表面污染物,并将其放入真空度为2.0×10-10Torr的超高真空MBE室中。Ge的生长采用固源MBE方法,首先在500℃下,在Si(100)衬底上生长了~20nm的锗缓冲层,以抑制岛状生长;随后将温度升至750℃,生长厚度为980nm的Ge层。生长时的气体氛围为H2,背景压力为2×10- 4Torr。
(2)将生长了高质量锗的外延片用丙酮和0.5%的氢氟酸清洗,去除表面氧化物,之后用光刻胶遮住外延片一半面积,在LPCVD设备中沉积一层100nm厚的SiO2绝缘层,随后清洗光刻胶,获得覆盖了一半绝缘层的外延片。
(3)随后进行石墨烯转移步骤,将载有泡取式三层石墨烯,表面涂了聚甲基丙烯酸甲酯(PMMA)的铜箔剪成1*1cm的小块,放入0.6mol/L的FeCl3溶液中刻1小时,当铜衬底被刻蚀之后,用硅片将石墨烯捞取出来用放在装有去离子水的培养皿中分别清洗5分钟,10分钟和15分钟,之后再用外延片捞取,转移到外延片上,使其一端在外延层材料上,一端在绝缘层上。转移完毕后晾干,放到干燥皿中抽真空1小时至20Pa,增强石墨烯与外延片之间结合的范德华力。最后再涂一层PMMA溶液,120℃烘干2分钟,再用丙酮分别浸泡5分钟,10分钟和15分钟以便更好去除原有固化在石墨烯表面的PMMA薄膜。
(4)将转移好石墨烯的外延片,用硬掩膜版覆盖,放入在LPCVD设备中,沉积一层300nm的ZnO薄膜。
(5)将转移好石墨烯的外延片,用硬掩膜版覆盖,用放入电子束蒸镀机的腔室里,抽真空至5×10-4Pa,蒸镀100nm厚的Au,形成电极1和栅极电极;之后换第二块硬掩膜版,放入电子束蒸镀机的腔室里,抽真空至5×10-4Pa,依次蒸镀40nm厚的Ni和100nm厚的Au,形成电极2;
(6)最后生长用光刻胶覆盖住电极区域,将器件放入物理在LPCVD设备中,沉积一层200nm的透明SiO2钝化层。
采用硬掩膜版可以降低涂胶光刻工艺过程中各操作步骤和清洗溶剂对石墨烯层的损伤,保证器件良好的性能。
引入石墨烯层和栅极,栅极在偏压下产生压电极化效应,会使下方半导体材料和石墨烯接触的能带弯曲,增大器件耗尽区的电场强度,提高光生载流子的收集速率,进而提高探测器响应度。形成一套工艺体系,用以简化掺杂阻挡杂质带的MSM型探测器的制备工艺,提高器件性能。
本发明提出栅调制石墨烯/半导体肖特基结的光电探测器方案。采用石墨烯与半导体光吸收层接触,由于石墨烯的金属特性,石墨烯与大多数半导体接触会产生弱肖特基接触,具有一定的整流特性;此外由于半导体材料表面是晶体结构中断的地方,存在大量缺陷和原子悬挂键,具有较高的表面态密度,当有光电流产生时,同时会伴随较大的暗电流产生。石墨烯是一种无表面悬挂键的二维材料,当与半导体材料表面接触时,其中的电子会与半导体材料表面的悬挂键复合,降低表面态密度,起到钝化表面作用,降低暗电流,此外石墨烯的类金属性质使得在光照下产生的光生载流子浓度很大,这增大了器件光生载流子浓度,在二维石墨烯中载流子输运速率也大于半导体材料,这有效提高了探测器的整体光电流和响应带宽。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种采用栅调制石墨烯/半导体肖特基结的光电探测器,其特征在于,包括衬底,所述衬底上设置半导体层,半导体层上设置绝缘层,绝缘层及部分半导体层上设置石墨烯层,透明钝化层及压电栅极层设置在石墨烯层上,栅极顶部电极设置在压电栅极层上,第二金属电极与半导体层形成肖特基接触,第一金属电极与石墨烯层形成欧姆接触。
2.根据权利要求1所述的光电探测器,其特征在于,所述半导体层的厚度为500nm-1000nm;所述绝缘层厚度为200-300nm。
3.根据权利要求1所述的光电探测器,其特征在于,所述衬底为Si衬底、Ge衬底、生长有GaN、InGaN材料外延层的Si、Ge、SOI、GOI、SiC或蓝宝石衬底。
4.根据权利要求1所述的光电探测器,其特征在于,所述半导体层为本征的AlN、GaN、InN、InxGa1-xN、ZnO、GaAs、MoS2、Si、Ge、SixGe1-x、InP、GaP、InxAl1-xN、AlInGaP或AlInGaAs中的一种以上材料的组合。
5.根据权利要求1所述的光电探测器,其特征在于,第一金属电极为条形电极或者叉指电极结构。
6.根据权利要求1所述的光电探测器,其特征在于,所述栅极顶部电极具体是能与压电材料形成良好欧姆接触的金属和ITO导电化合物。
7.根据权利要求1所述的光电探测器,其特征在于,所述第二金属电极包括钛、铝、镍、金、银或铂中的一种以上组合。
8.根据权利要求1所述的光电探测器,其特征在于,所述绝缘层为二氧化硅、氮化硅、氧化铝或氧化镁。
9.根据权利要求1所述的光电探测器,其特征在于,所述压电栅极层为压电材料。
10.一种制备权利要求1-9任一项所述的采用栅调制石墨烯/半导体肖特基结的光电探测器的方法,其特征在于,包括如下步骤:
对衬底进行表面清洗,在衬底上生长缓冲层;
在缓冲层上表面生长单层单晶或多层半导体材料组合的半导体层;
在半导体层上涂抹光刻胶,得到绝缘层的生长区域,生长绝缘层,通过清洗光刻胶,露出半导体层;
在绝缘层和半导体层表面生长或转移石墨烯层,使石墨烯层一部分在半导体层表面,一部分在绝缘层表面;
采用硬掩膜版覆盖在石墨烯层上,依次获得压电栅极层、第一金属电极、栅极顶部电极及第二金属电极,最后在器件表面用硬掩膜版盖住电极部分,生长一层透明钝化层。
CN202011520157.9A 2020-12-21 2020-12-21 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法 Active CN112635614B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011520157.9A CN112635614B (zh) 2020-12-21 2020-12-21 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011520157.9A CN112635614B (zh) 2020-12-21 2020-12-21 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN112635614A true CN112635614A (zh) 2021-04-09
CN112635614B CN112635614B (zh) 2024-09-06

Family

ID=75320866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011520157.9A Active CN112635614B (zh) 2020-12-21 2020-12-21 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN112635614B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023844A (zh) * 2021-10-15 2022-02-08 华南师范大学 一种自驱动光电探测器及其制备方法
CN114038933A (zh) * 2021-10-15 2022-02-11 华南师范大学 一种高性能位置灵敏探测器及其制备方法
CN114792742A (zh) * 2022-04-22 2022-07-26 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法
CN116013964A (zh) * 2023-01-29 2023-04-25 中国人民解放军军事科学院系统工程研究院 一种可调谐二维材料超晶格器件的实现方法
WO2023188408A1 (ja) * 2022-03-31 2023-10-05 日本電信電話株式会社 グラフェン光検出器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280484A (zh) * 2013-05-28 2013-09-04 合肥工业大学 p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
CN105280813A (zh) * 2014-07-18 2016-01-27 三星电子株式会社 石墨烯器件及其制造和操作方法以及电子装置
CN107026219A (zh) * 2017-06-02 2017-08-08 深圳大学 基于Fe掺GaN衬底的二硫化钼光电探测器和制备方法
US20170256667A1 (en) * 2016-03-02 2017-09-07 Gwangju Institute Of Science And Technology Graphene-semiconductor schottky junction photodetector of having tunable gain
CN111564511A (zh) * 2020-05-19 2020-08-21 河北工业大学 一种基于极化效应的AlGaN-MSM探测器结构及其制备方法
CN214797436U (zh) * 2020-12-21 2021-11-19 华南理工大学 一种采用栅调制石墨烯/半导体肖特基结的光电探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280484A (zh) * 2013-05-28 2013-09-04 合肥工业大学 p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法
CN105280813A (zh) * 2014-07-18 2016-01-27 三星电子株式会社 石墨烯器件及其制造和操作方法以及电子装置
US20170256667A1 (en) * 2016-03-02 2017-09-07 Gwangju Institute Of Science And Technology Graphene-semiconductor schottky junction photodetector of having tunable gain
CN107026219A (zh) * 2017-06-02 2017-08-08 深圳大学 基于Fe掺GaN衬底的二硫化钼光电探测器和制备方法
CN111564511A (zh) * 2020-05-19 2020-08-21 河北工业大学 一种基于极化效应的AlGaN-MSM探测器结构及其制备方法
CN214797436U (zh) * 2020-12-21 2021-11-19 华南理工大学 一种采用栅调制石墨烯/半导体肖特基结的光电探测器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEI-CHUN TAN等: "A Highly Sensitive Graphene-Organic Hybrid Photodetector with a Piezoelectric Substrate", ADVANCED FUNCTIONAL MATERIALS, vol. 24, 8 September 2014 (2014-09-08), pages 6818 *
WENJING JIE等: "Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors", NANOSCALE, vol. 6, no. 12, 25 February 2014 (2014-02-25), pages 6346 - 6362, XP055541626, DOI: 10.1039/C3NR06918D *
ZHONG LIN WANG: "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics", NANO TODAY, vol. 5, no. 6, 18 November 2010 (2010-11-18), pages 540 - 552, XP027544045 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023844A (zh) * 2021-10-15 2022-02-08 华南师范大学 一种自驱动光电探测器及其制备方法
CN114038933A (zh) * 2021-10-15 2022-02-11 华南师范大学 一种高性能位置灵敏探测器及其制备方法
CN114023844B (zh) * 2021-10-15 2024-08-09 广州诚毅科技咨询有限公司 一种自驱动光电探测器及其制备方法
WO2023188408A1 (ja) * 2022-03-31 2023-10-05 日本電信電話株式会社 グラフェン光検出器
CN114792742A (zh) * 2022-04-22 2022-07-26 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法
CN114792742B (zh) * 2022-04-22 2024-04-02 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法
CN116013964A (zh) * 2023-01-29 2023-04-25 中国人民解放军军事科学院系统工程研究院 一种可调谐二维材料超晶格器件的实现方法
CN116013964B (zh) * 2023-01-29 2023-06-27 中国人民解放军军事科学院系统工程研究院 一种可调谐二维材料超晶格器件的实现方法

Also Published As

Publication number Publication date
CN112635614B (zh) 2024-09-06

Similar Documents

Publication Publication Date Title
CN112635614B (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN111244203B (zh) 基于Ga2O3/CuI异质PN结的日光盲紫外探测器
US10957808B2 (en) Flexible double-junction solar cell
CN112614910B (zh) 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN102820367A (zh) 基于异质结构吸收、倍增层分离GaN基雪崩光电探测器
US11245046B2 (en) Multi-junction tandem laser photovoltaic cell and manufacturing method thereof
CN214797436U (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器
CN110676272A (zh) 一种半导体紫外光电探测器
CN112420876B (zh) 一种从日盲紫外到近红外的宽波段探测器的制备方法
JP2010186915A (ja) 太陽電池
CN108899380B (zh) 红外半导体雪崩探测器及其制备方法
CN102738311B (zh) 一种InGaN/Si双结太阳能电池的制备方法
CN210778633U (zh) 一种氮化物多结太阳能电池
CN116799092A (zh) 一种基于氧化镓基的日盲紫外探测器及其制备方法
CN111863981A (zh) 一种氧化镓日盲光电探测器及其制备方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN115332385A (zh) 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法
CN110137294B (zh) 一种氮化物多结太阳能电池及其制备方法
CN110797431B (zh) 驰豫GeSn红外雪崩光电探测器及其制造方法
CN110828603B (zh) 基于III-V族材料发射极区的GeSn光电晶体管及其制造方法
CN113054048A (zh) 一种蓝绿光增强型的硅基雪崩光电二极管
CN109148623B (zh) 一种具有低噪声的AlGaN基雪崩光电二极管及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant