CN112420876B - 一种从日盲紫外到近红外的宽波段探测器的制备方法 - Google Patents

一种从日盲紫外到近红外的宽波段探测器的制备方法 Download PDF

Info

Publication number
CN112420876B
CN112420876B CN202011412393.9A CN202011412393A CN112420876B CN 112420876 B CN112420876 B CN 112420876B CN 202011412393 A CN202011412393 A CN 202011412393A CN 112420876 B CN112420876 B CN 112420876B
Authority
CN
China
Prior art keywords
topological insulator
insulator material
dimensional topological
thickness
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011412393.9A
Other languages
English (en)
Other versions
CN112420876A (zh
Inventor
矫淑杰
聂伊尹
卢洪亮
张峻华
王东博
王金忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202011412393.9A priority Critical patent/CN112420876B/zh
Publication of CN112420876A publication Critical patent/CN112420876A/zh
Application granted granted Critical
Publication of CN112420876B publication Critical patent/CN112420876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种从日盲紫外到近红外的宽波段探测器的制备方法,属于光电探测技术领域。本发明的目的是为了解决现有宽光谱探测器存在不同材料之间晶格失配大、质量低、响应速度慢等问题,所述方法为:在蓝宝石衬底上沉积Ga2O3薄膜,薄膜厚度不小于300nm,通过化学气相沉积法在蓝宝石基底上制备厚度为3nm‑6nm的二维拓扑绝缘体材料,将所述二维拓扑绝缘体材料通过湿法转移的方法转移至Ga2O3上表面,Ga2O3和二维拓扑绝缘体材料之间形成范德华异质结;利用电子束沉积的方法在二维拓扑绝缘体材料表面依次沉积Ti电极和Au电极。本发明采用范德华异质结,通过转移的方法形成异质结,而不是外延方法,克服了Ga2O3和Bi2Se3之间晶格失配而导致质量下降等问题。

Description

一种从日盲紫外到近红外的宽波段探测器的制备方法
技术领域
本发明属于光电探测技术领域,具体涉及一种从日盲紫外到近红外的宽波段探测器的制备方法。
背景技术
宽波段探测器自20世纪被提出以来,在国内外都得到了巨大的发展,但目前宽波段探测器仍然没有很好的普及,其中晶格不匹配带来的紫外-红外光敏材料或探测系统集成困难、集成器件后红外探测系统的探测性能弱,以及双色集成探测器结构复杂等问题成为限制其发展的主要原因。
第一次实际运用紫外-红外双色探测器是在1977年,在战争中运用的“尾刺”导弹,其导引头上就安装了硫化镉-锑化铟(CdS/InSb)探测器,称为紫外-红外双波段探测器,但当时集成技术不完善,实际上还是两个独立的探测器。而国内最早出现则是1987年张烽生等人设计研究出的p+/p/n结构硅光伏探测器,其采用的p+/p前表面高低结能够有效地减少表面损失和增大日盲紫外波段的响应率,同时也大大减少了表面发射区的复合电流分量,所制备器件应用光谱范围为190-1150nm。总的来说早期关于宽波段探测器的研究,由于集成技术限制、高质量日盲紫外光敏材料制备困难等原因,还只处于初步探索阶段。
进入21世纪的近20年来,宽波段探测器技术得到了较快发展。高晶体质量日盲紫外光敏材料的生长外延问题被逐渐解决,新的日盲紫外光敏材料在不断地涌现,如氧化物材料和III族氮化物材料等,研究人员在日盲紫外光敏材料的选择上逐渐拓宽了视线,但目前红外探测技术由于量子效率低、工作温度低等原因仍然制约着宽波段探测器的发展。
二维拓扑绝缘体材料Bi2Se3、Bi2Te3、Sb2Te3等多种类的二维体系。这些二维材料的光电探测器与传统光探测器相比也显示了独特的优势,获得了高的探测率、高响应度以及高的响应速度。尤其在长波红外和太赫兹领域具有优势,相比与传统的HgCdTe或InAs/GaSbII类超晶格探测器可在室温工作,无需制冷,探测率可超越背景限。
通过范德华力将宽带隙半导体氧化镓(Ga2O3)与二维拓扑绝缘体(2DTopologicalInsulator)材料结合起来,利用各自材料在带隙和性能方面的互补性,构建异质结,通过增大吸收率、调控界面和层数、提高载流子分离和传输实现高灵敏度、高响应速度的超宽谱段探测器。
这种范德华异质结可避免两种材料由于晶格失配引起的质量下降的问题,并且可以在室温工作,可以实现覆盖从日盲紫外到红外的宽波段探测材料和器件。
传统半导体光探测器主要基于半导体的带隙进行光响应的波段选择,很难找到一种材料兼顾多谱段高灵敏度探测,因此需利用不同带隙的半导体材料构建异质结,从而实现多谱段探测。在材料制备过程需考虑材料带隙、晶格失配、热失配等多种因素才能获得高质量的探测材料。相比于传统块体和薄膜探测材料,二维材料通过范德华力链接材料,可以克服晶格失配带来的质量退化问题,便于被设计成范德华异质结结构,极大拓展了器件的可设计性,可以更加灵活的构建异质结和新型器件结构。针对不同材料的能带结构和特性,可选择结构匹配,功能互补的材料设计异质结以实现性能更优异的光电探测器。在材料制备和器件制备以及材料的改性掺杂等方面,二维材料制备方法简单,也更加灵活,往往可以创造出新的材料或者得到一些新颖的性能。
传统半导体光探测器往往需要一定的厚度来保证足够的光吸收,尤其是红外光探测器,光吸收层需要几个微米,甚至十几个微米的厚度才可实现足够的红外光吸收。二维材料虽然只有几个原子层的厚度,却较之半导体薄膜具有更高的吸收效率,因此二维材料光探测器往往具有较高的探测率和响应度,可实现超越背景限的探测率。
氧化镓(Ga2O3)是一种超宽带隙半导体,禁带宽度为4.9eV,远大于氮化镓和碳化硅的带隙,在日盲探测和功率器件领域都有广泛的应用;氧化镓和硒化铋(Bi2Se3)等二维拓扑绝缘体范德华异质结结构集成了多种材料的优点,取长补短,克服单一材料的缺陷,甚至会由于材料间独特的耦合机制而发挥出原有材料所不具备的新颖特性,有望能在光探测领域获得较大的突破,以满足以上所提出的实际应用需求。
二维Bi2Se3材料因其优异的物理特性,在光电探测领域颇具优势,尤其是在室温中、长波红外探测方面有着良好的前景,器件响应时间也可以降低到皮秒量级,适用于太赫兹频率的超快光通讯和光互连场合。然而,二维Bi2Se3材料较小的带隙导致较大的暗电流,不利于施加大的偏压,明显制约了器件响应度的提升。以往报道的各种特殊结构设计,虽然能够提高探测器的响应度,但是却不能同时兼顾宽波段响应和超快响应速度,而在兼顾探测器的宽光谱和超快响应的前提之下,将灵敏度提高到实用化水平,是难以突破的技术瓶颈。
专利(CN202010525007.0)一种硅基宽光谱光电探测器的制备方法,利用硅和可见光的量子点形成异质结实现可见到红外的宽光谱探测器,制备方法复杂,且只覆盖可见到红外区。专利(CN201920378820.2)利用Si光敏半导体和PbSe光敏半导体使用双通道探测,实现可见到红外的探测,实际上是两个独立的探测器。专利(CN201811067522.8)一种基于拓扑绝缘体硒化铋电极的钙钛矿薄膜的宽波段光电探测器及其制备方法,主要利用作为拓扑绝缘体硒化铋电极材料而不是光敏层,专利中利用钙钛矿材料实现宽波段的探测器。
到目前为止,商业化的光电探测器主要以传统半导体材料(Si、III-V族、II-VI族等化合物半导体)为主。虽然现在已有适用于不同波长的半导体探测器,但受光电探测材料带隙限制,传统半导体材料的光电探测能力往往只能覆盖一定波长区域,并且需要根据不同场合和环境做选择以及切换,在具体的应用中有诸多不便。此外,在红外和太赫兹波段由于传统材料HgCdTe、锑化物超晶格构成的器件较难抑制暗电流,器件只有在制冷的情况下才能获得较高的灵敏度,额外的制冷设备增大了探测系统的成本、体积和功耗,这与光电探测器低成本、小型化、低功耗的发展理念不符。因此,利用单一材料结构实现非制冷、宽波段光电响应,是目前宽波段探测器发展亟待解决的问题。
发明内容
本发明的目的是为了解决现有宽光谱探测器存在不同材料之间晶格失配大、质量低、响应速度慢等问题,提供一种从日盲紫外到近红外的宽波段探测器的制备方法。本发明的探测器由Ga2O3、二维拓扑绝缘体材料和电极组成,将宽带隙半导体Ga2O3与二维拓扑绝缘体材料形成范德华异质结,首先可以避免不同半导体材料外延的晶格失配,其次,Ga2O3带隙宽,光响应区域位于日盲波段,同时形成异质结后,可有效降低暗电流,二维拓扑绝缘体材料由于特殊的材料特性,在低能耗高速光响应特性,二者的范德华异质结可实现响应速度快、响应度高的宽光谱探测器。
为实现上述目的,本发明采取的技术方案如下:
一种从日盲紫外到近红外的宽波段探测器的制备方法,所述方法具体步骤为:
步骤一:在蓝宝石衬底上沉积Ga2O3薄膜,薄膜厚度不小于300nm,所述沉积方法为分子束外延、磁控溅射或激光脉冲沉积中的一种;
步骤二:通过化学气相沉积法在蓝宝石基底上制备厚度为3nm-6nm的二维拓扑绝缘体材料,将所述二维拓扑绝缘体材料通过湿法转移的方法转移至Ga2O3上表面,Ga2O3和二维拓扑绝缘体材料之间形成范德华异质结;
步骤三:利用电子束沉积的方法在二维拓扑绝缘体材料表面依次沉积Ti电极和Au电极形成Ti/Au电极,Ti层厚度为50-150nm,Au层厚度为200-400nm。
本发明相对于现有技术的有益效果为:
1.采用范德华异质结,通过转移的方法形成异质结,而不是外延方法,方法简单,成本低,易推广;
2.工艺成熟,简单,克服了Ga2O3和二维拓扑绝缘体材料之间晶格失配而导致质量下降等问题。
附图说明
图1为Ga2O3/Bi2Se3宽光谱探测器结构示意图;
其中,1-衬底,2-Ga2O3,3-二维Bi2Se3,4-电极;
图2为Ga2O3/Bi2Se3宽光谱探测器响应光谱图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
本发明通过宽带隙半导体Ga2O3与二维拓扑绝缘体材料形成范德华异质结的宽光谱探测器首先实现了从日盲到红外的宽光谱探测器,克服了Ga2O3与二维拓扑绝缘体材料各自材料的弱点,实现宽光谱,高灵敏,快速响应的探测器。
本发明包括利用Ga2O3薄膜作为基底材料,将二维拓扑绝缘体材料转移到Ga2O3的表面上,制成Ga2O3/二维拓扑绝缘体材料范德华异质结,然后在异质结上通过蒸镀电极,通过在电极上施加不同极性和大小的电压,实现不同波段的探测。该方案克服了不同半导体材料外延时,由于晶格常数不同导致的晶体质量差,探测率低的问题。本方案采用范德华异质结方法,制备方法简单易于实现,易于推广。
具体实施方式一:本实施方式记载的是一种从日盲紫外到近红外的宽波段探测器的制备方法,所述方法具体步骤为:
步骤一:在蓝宝石(Al2O3)衬底上沉积Ga2O3薄膜,薄膜厚度不小于300nm,所述沉积方法为分子束外延、磁控溅射或激光脉冲沉积中的一种;
步骤二:通过化学气相沉积法在蓝宝石基底上制备厚度为3nm-6nm的二维拓扑绝缘体材料,将所述二维拓扑绝缘体材料通过湿法转移的方法转移至Ga2O3上表面,Ga2O3和二维拓扑绝缘体材料之间形成范德华异质结;二维拓扑绝缘体材料厚度小于6nm具有优异的性能,因此控制厚度为3-6nm。
步骤三:利用电子束沉积的方法在二维拓扑绝缘体材料表面依次沉积Ti电极和Au电极形成Ti/Au电极,Ti层厚度为50-150nm,Au层厚度为200-400nm。
具体实施方式二:具体实施方式一所述的一种从日盲紫外到近红外的宽波段探测器的制备方法,步骤二中,所述湿法转移具体为:将表面涂有100~200nmPMMA的化学气相沉积法生长的蓝宝石(Al2O3)基二维拓扑绝缘体材料浸泡于KOH中,以腐蚀掉蓝宝石(Al2O3)基底;然后,采用载玻片将样品捞出并放入去离子水的培养皿中,重复3次以去除残留的KOH;最后,使用步骤一中的氧化镓薄膜,依次把二维拓扑绝缘体材料从下而上捞起,晾干后,放入丙酮溶液中,以去除PMMA。
具体实施方式三:具体实施方式一或二所述的一种从日盲紫外到近红外的宽波段探测器的制备方法,所述二维拓扑绝缘体材料为Bi2Se3、Bi2Te3、Bi2Se3-xTex或Bi2OSe2中的一种。
实施例1:
本发明衬底采用蓝宝石衬底,采用磁控溅射方法制备氧化镓Ga2O3薄膜,与Bi2Se3形成范德华异质结的宽光谱探测器。
1.取一蓝宝石衬底,经RCA标准清洗法清洗蓝宝石衬底。
2.取清洗好的蓝宝石衬底,放入磁控溅射设备生长室,选用99.9%的氧化镓靶材,将衬底温度升至600℃,生长过程中射频功率为180W,氧气和氩气比例6:34,溅射压强为1Pa。溅射时间2小时,完成后,关闭靶材转动和加热系统,冷却得到氧化镓薄膜。
3.将表面涂有100nmPMMA的化学气相法生长在蓝宝石(Al2O3)衬底上的Bi2Se3二维材料浸泡于KOH中,以腐蚀掉蓝宝石(Al2O3)基底;然后,采用载玻片将样品捞出并放入去离子水的培养皿中,重复3次以去除残留的KOH;最后,使用步骤一中的氧化镓薄膜,依次把Bi2Se3从下而上捞起,晾干后,放入丙酮溶液中,以去除PMMA。
4.将步骤3获得Ga2O3薄膜Bi2Se3异质结放入电子束蒸发设备,通过掩膜版蒸镀得到Ti/Au电极,Ti层的厚度为100nm,Au层厚度为300nm,获得Ga2O3/Bi2Se3范德华异质结的从日盲紫外到近红外的宽光谱探测器,如图1所示。
本实施例制备的是Ga2O3和Bi2Se3范德华异质结宽光谱探测器,也同样适用于与Bi2Se3同为六族铋化物的Bi2Te3材料,或者为二者的合金材料Bi2Se3-xTex和Bi2OSe2等材料。
5.在上一步制备的两个电极之间提供偏置电压的电压源,调控碲化铋-石墨烯异质结中载流子的输运能力,进而实现宽光谱的探测,效果如图2所示。

Claims (3)

1.一种从日盲紫外到近红外的宽波段探测器的制备方法,其特征在于:所述方法具体步骤为:
步骤一:在蓝宝石衬底上沉积Ga2O3薄膜,薄膜厚度不小于300nm,所述沉积方法为分子束外延、磁控溅射或激光脉冲沉积中的一种;
步骤二:通过化学气相沉积法在蓝宝石基底上制备厚度为3nm-6nm的二维拓扑绝缘体材料,将所述二维拓扑绝缘体材料通过湿法转移的方法转移至Ga2O3上表面,Ga2O3和二维拓扑绝缘体材料之间形成范德华异质结;
步骤三:利用电子束沉积的方法在二维拓扑绝缘体材料表面依次沉积Ti电极和Au电极形成Ti/Au电极,Ti层厚度为50-150nm,Au层厚度为200-400nm。
2.根据权利要求1所述的一种从日盲紫外到近红外的宽波段探测器的制备方法,其特征在于:步骤二中,所述湿法转移具体为:将表面涂有100~200nm PMMA的化学气相沉积法生长的蓝宝石基二维拓扑绝缘体材料浸泡于KOH中,以腐蚀掉蓝宝石基底;然后,采用载玻片将样品捞出并放入去离子水的培养皿中,重复3次以去除残留的KOH;最后,使用步骤一中的氧化镓薄膜,依次把二维拓扑绝缘体材料从下而上捞起,晾干后,放入丙酮溶液中,以去除PMMA。
3.根据权利要求1或2所述的一种从日盲紫外到近红外的宽波段探测器的制备方法,其特征在于:所述二维拓扑绝缘体材料为Bi2Se3、Bi2Te3、Bi2Se3-xTex或Bi2OSe2中的一种。
CN202011412393.9A 2020-12-03 2020-12-03 一种从日盲紫外到近红外的宽波段探测器的制备方法 Active CN112420876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011412393.9A CN112420876B (zh) 2020-12-03 2020-12-03 一种从日盲紫外到近红外的宽波段探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011412393.9A CN112420876B (zh) 2020-12-03 2020-12-03 一种从日盲紫外到近红外的宽波段探测器的制备方法

Publications (2)

Publication Number Publication Date
CN112420876A CN112420876A (zh) 2021-02-26
CN112420876B true CN112420876B (zh) 2022-04-08

Family

ID=74830431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011412393.9A Active CN112420876B (zh) 2020-12-03 2020-12-03 一种从日盲紫外到近红外的宽波段探测器的制备方法

Country Status (1)

Country Link
CN (1) CN112420876B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257933B (zh) * 2021-05-26 2023-08-29 哈尔滨工业大学 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425081B (zh) * 2017-06-28 2019-02-26 中国人民解放军国防科学技术大学 基于石墨烯类二维材料保护层的拓扑绝缘体阵列型光电探测器及其制备方法和应用
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN110729365A (zh) * 2019-10-23 2020-01-24 昆明物理研究所 基于碲化锑材料的宽响应光谱探测器及其制备方法

Also Published As

Publication number Publication date
CN112420876A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
Zhang et al. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed
Singh et al. Performance analysis of RF-sputtered ZnO/Si heterojunction UV photodetectors with high photo-responsivity
CN109285911B (zh) 一种短波/中波/长波三波段红外探测器及其制备方法
CN109037374B (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
TWI705577B (zh) 二維電子元件與相關製造方法
CN111403505B (zh) 一种双极型可见光探测器及其制备方法
CN112635614A (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法
CN103258869A (zh) 基于氧化锌材料的紫外红外双色探测器及其制作方法
Ren et al. Solar-blind photodetector based on single crystal Ga2O3 film prepared by a unique ion-cutting process
WO2021018261A1 (zh) Si衬底InGaN可见光探测器及制备方法与应用
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
CN113659029A (zh) 一种氧化镓日盲紫外探测器
CN112420876B (zh) 一种从日盲紫外到近红外的宽波段探测器的制备方法
CN101409311B (zh) 一种硅基双异质结可见盲紫外探测器及其制造方法
Zhao et al. Ultrasensitive Self-Powered Deep-Ultraviolet Photodetector Based on In Situ Epitaxial Ga₂O₃/Bi₂Se₃ Heterojunction
Zhu et al. High-performance near-infrared PtSe2/n-Ge heterojunction photodetector with ultrathin Al2O3 passivation interlayer
CN103383976B (zh) 石墨烯增强型InGaAs红外探测器
CN109524491B (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法
CN114582996B (zh) 周期渐变超晶格宽光谱红外探测器及其制备方法
CN113299778B (zh) 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法
Yang et al. Low-cost self-powered shortwave infrared photodetectors with GeSn/Ge multiple quantum wells grown by magnetron sputtering
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
CN113193069A (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
Liu et al. Ultrasonic assisted mist chemical vapor deposition deposited MgO for AlGaNGaN metal-insulator-semiconductor ultraviolet photodetector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant