CN113299778B - 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法 - Google Patents

硒化铋/碲化铋超晶格红外双波段探测器及其制备方法 Download PDF

Info

Publication number
CN113299778B
CN113299778B CN202110579522.1A CN202110579522A CN113299778B CN 113299778 B CN113299778 B CN 113299778B CN 202110579522 A CN202110579522 A CN 202110579522A CN 113299778 B CN113299778 B CN 113299778B
Authority
CN
China
Prior art keywords
layer
bismuth
superlattice
infrared
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110579522.1A
Other languages
English (en)
Other versions
CN113299778A (zh
Inventor
王东博
赵晨晨
王金忠
矫淑杰
曾值
刘雅欣
刘东昊
刘洋洋
张雨琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110579522.1A priority Critical patent/CN113299778B/zh
Publication of CN113299778A publication Critical patent/CN113299778A/zh
Application granted granted Critical
Publication of CN113299778B publication Critical patent/CN113299778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种硒化铋/碲化铋超晶格红外双波段探测器及其制备方法,所述探测器包括蓝宝石衬底、Bi2Se3层、Bi2Te3层和金电极,蓝宝石衬底上生长Bi2Se3层,Bi2Se3层上生长Bi2Te3层,Bi2Se3与Bi2Te3之间形成Bi2Se3/Bi2Te3异质结,金电极设置在Bi2Se3层和Bi2Te3层上,制备步骤如下:一、在蓝宝石衬底上利用CVD技术生长Bi2Te3层;二、在生长的Bi2Se3层上利用CVD技术生长Bi2Te3层;三、利用磁控溅射技术在Bi2Se3层和Bi2Te3层表面沉积Au电极。本发明在蓝宝石衬底上利用CVD技术制备了Bi2Se3/Bi2Te3超晶格短波红外双波段超晶格,超晶格的红外发光峰分别在2.75μm和3.5μm,实现了红外双色探测材料结构。

Description

硒化铋/碲化铋超晶格红外双波段探测器及其制备方法
技术领域
本发明属于红外成像探测技术领域,涉及一种红外双波段探测器及其制备方法,具体涉及一种基于硒化铋(Bi2Se3)/碲化铋(Bi2Te3)超晶格红外双波段探测器及其制备方法。
背景技术
红外成像探测技术是图像监控家族中的重要成员,由红外探测成像的机理可知,任何温度高于绝对零度的物体都会由内部分子热运动不停向外界发射红外辐射,红外成像正是通过目标和背景的温差来成像。红外探测器把接收到的红外辐射转换成相应的电信号,是红外技术的核心。红外探测器按探测波长可分为短波红外(NIR, <3 μm)、中波红外(MIR,3 ~5 μm)、长波红外(LWIR,8 ~5 μm)和甚长波红外(VLWIR,14 ~30 μm)。其中短波红外具有良好的穿透性能,可以有效的应用在烟、雨、雾等复杂背景下成像探测。
能实现短波红外探测的材料主要包括HgCdTe (MCT)、红外量子阱(QWIP)和锑化物II型超晶格(InAs/Ga(In)Sb)等。
虽然经过多年的努力,基于碲镉汞(MCT)材料和III-V族量子阱材料的红外探测器和红外焦平面器件在长波红外波段的性能有了很大改善。但是,受材料本身和器件物理机制的限制,到目前为止,仍然存在一些难以克服的问题。
碲镉汞、量子阱、超晶格等材料均由分子束外延技术制备,制备工艺复杂,成本高。
此外,由于受限于晶格失配等问题,利用分子束外延技术制备红外短波双色探测材料,材料中会产生大量失配位错,失配位错是非辐射复合中心,会将光生载流子复合,影响了双色红外器件性能。
Bi2O2Se材料体系(Bi2O2Se、Bi2Se3、Bi2Te3、Sb2Te3等)作为新型拓扑绝缘体材料,在红外光探测方面具有优异的性能。首先,Bi2Se3/Bi2Te3超晶格结构由化学气相沉积技术(CVD)制备,与分子束外延技术相比,材料制备成本低。其次,Bi2Se3和Bi2Te3构成范德华异质结,不受失配位错影响,材料具有良好的晶体质量,因此可以制备高质量的红外双色探测材料。然后,Bi2O2Se材料体系其表面态由具有线性色散关系的狄拉克费米子组成,因而拥有着极高的载流子迁移率,会提高器件的灵敏度。
发明内容
为了解决受限于晶格失配等问题高质量红外双色探测材料制备工艺复杂、成本高,本发明提供了一种硒化铋/碲化铋超晶格红外双波段探测器及其制备方法。本发明采用CVD制备二维范德华异质结,避免了因为晶格失配造成的材料晶体质量下降的问题。
本发明的目的是通过以下技术方案实现的:
一种硒化铋/碲化铋超晶格红外双波段探测器,包括蓝宝石衬底、Bi2Se3层、Bi2Te3层和金电极,蓝宝石衬底上生长Bi2Se3层,Bi2Se3层上生长Bi2Te3层,Bi2Se3与Bi2Te3之间形成Bi2Se3/Bi2Te3异质结,金电极设置在Bi2Se3层和Bi2Te3层上。
本发明中,所述蓝宝石衬底的厚度2μm。
本发明中,所述Bi2Te3层和Bi2Se3层的厚度均为9~10个单原子层(3nm),探测器在2.75μm处短波红外的响应是固定的,但是中波红外区域的响应随Bi2Se3层和Bi2Te3层厚度的变化而变化。
本发明中,所述金电极分为顶电极和底电极,顶电极设置在Bi2Te3层上,底电极设置在Bi2Se3层上,顶电极和底电极连线垂直于Bi2Se3层和Bi2Te3层交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。
本发明中,所述金电极的厚度为50μm。
本发明,所述红外双波段探测器的工作原理如下:2.75μm处短波红外探测工作机理为利用Bi2Te3材料的光电导效应,Bi2Te3材料的带隙0.4eV左右,探测截止波长2.75μm,当入射光子能量大于Bi2Te3材料禁带宽度时,材料中电导率增加,实现2.75μm处短波红外响应;3.5μm处中波红外探测工作机理为利用9~10单原子层Bi2Te3材料和9~10单原子层Bi2Se3材料构成超晶格,利用超晶格形成微带,当入射光子能量大于等于超晶格间微带带隙,实现中波红外响应。
一种上述硒化铋/碲化铋超晶格红外双波段探测器的制备方法,包括如下步骤:
步骤一、在蓝宝石衬底上利用CVD技术生长Bi2Te3层,其中:Bi2Te3层的厚度为9~10单原子层,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Se粒作Se源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2O3放置在高温区,升温至600~800℃;(2)将Se放置在低温区,升温至200~400℃;(3)采用化学气相沉积法在GaN衬底上生长Bi2Se3薄膜,控制生长时间为1~3小时;
步骤二、在生长的Bi2Se3层上利用CVD技术生长Bi2Te3层,Bi2Te3层的厚度为9~10单原子层,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Te粒作Te源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2O3放置在高温区,升温至600~800℃;(2)将Te放置在低温区,升温至400~600℃;(3)用化学气相沉积法在Bi2Se3上生长Bi2Te3薄膜,控制生长时间为10~20分钟;
步骤三、利用磁控溅射技术在Bi2Se3层和Bi2Te3层表面沉积Au电极,控制磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
相比于现有技术,本发明具有如下优点:
1、本发明在蓝宝石衬底上利用CVD技术制备了Bi2Se3/Bi2Te3超晶格短波红外双波段超晶格,超晶格的红外发光峰如图4所示,分别在2.75μm和3.5μm,实现了红外双色探测材料结构。
2、常用分子束外延制备的红外超晶格、碲镉汞、量子阱等红外材料制备成本高,工艺复杂,而CVD技术具有工艺简单,低成本的优点。
附图说明
图1为Bi2Se3的光致发光谱;
图2为Bi2Te3的光致发光谱;
图3为Bi2Te3/Bi2Se3异质结结构图;
图4为Bi2Te3/Bi2Se3异质结器件结构图;
图5为Bi2Te3/Bi2Se3异质结红外光致发光谱图。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
短波红外探测由于具有高穿透性可广泛应用于对地遥感探测、森林防火、高压电线路巡视等领域,本发明所设计的红外双色探测结构可应用于目前已有的短波红外探测预警相机,用于替换价格昂贵的碲镉汞、超晶格、量子阱的成像探测芯片材料。
如图4所示,所述红外双波段探测器包括蓝宝石衬底、Bi2Se3层、Bi2Te3层和金电极,蓝宝石衬底上生长9~10单原子层的Bi2Se3层,Bi2Se3层上生长9~10单原子层的Bi2Te3层,Bi2Se3与Bi2Te3之间形成Bi2Se3/Bi2Te3异质结,金电极分为顶电极和底电极,顶电极设置在Bi2Te3层上,底电极设置在Bi2Se3层上,顶电极和底电极连线垂直于Bi2Se3层和Bi2Te3层交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。具体制备方法如下:
步骤一、利用CVD技术在蓝宝石衬底上生长9~10单原子层的Bi2Se3层,生长工艺如下:使用0.1克99.995% Bi2O3粉末作为Bi源,使用1g 99.9999%纯度Se粒作Se源,使用200sccm氩气、15sccm氢气作为生长载气,生长设备使用双温区管式炉,Bi2O3放置在高温区升温至700℃,Se放置在低温区升温至300℃,蓝宝石放置在Bi2O3下方向5cm处,此处温度约为500℃,生长2小时,在蓝宝石上生长Bi2Se3薄膜。
CVD生长的Bi2Se3的光致发光谱如图1所示。由图1可以看出,样品在720~800 nm之间的发光峰与低维铋化物的间接带隙发光峰一致,表明所生长的为Bi2Se3材料。
步骤二、在Bi2Se3薄膜上利用CVD技术生长9~10单原子层的Bi2Te3层,生长工艺如下:使用0.1克99.995% Bi2O3粉末作为Bi源,使用1g 99.9999%纯度Te粒作Te源,使用200sccm氩气、15sccm氢气作为生长载气,生长设备使用双温区管式炉,Bi2O3放置在高温区升温至700℃,Te放置在低温区升温至500℃,Bi2Se3放置在Bi2O3下方向7cm处,此处温度约为450℃,生长15分钟,在Bi2Se3上生长Bi2Te3薄膜。
CVD生长的Bi2Te3光致发光谱如图2所示,生长异质结结构图如图3所示。由图2可以看出,样品在600~800 nm之间的发光峰与低维铋化物的间接带隙发光峰一致,表明所生长的为Bi2Te3材料。
步骤三、器件制备过程:利用磁控溅射技术(溅射功率40W,压强0.7 Pa,氩气流量30sccm,溅射时间1.5 min)在已制备的Bi2Se3/Bi2Te3异质结上蒸镀金电极,制备红外探测器。
异质结红外光致发光谱如图5所示,由图5可以看出,样品在2.75μm和3.5μm处有明显的光致发光峰。

Claims (9)

1.一种硒化铋/碲化铋超晶格红外双波段探测器,其特征在于所述探测器包括蓝宝石衬底、Bi2Se3层、Bi2Te3层和金电极,蓝宝石衬底上生长Bi2Se3层,Bi2Se3层上生长Bi2Te3层,Bi2Se3与Bi2Te3之间形成Bi2Se3/Bi2Te3异质结,金电极设置在Bi2Se3层和Bi2Te3层上,所述Bi2Te3层和Bi2Se3层的厚度均为9~10个单原子层,利用9~10单原子层Bi2Te3材料和9~10单原子层Bi2Se3材料构成超晶格,利用超晶格形成微带,当入射光子能量大于等于超晶格间微带带隙,实现中波红外响应。
2.根据权利要求1所述的硒化铋/碲化铋超晶格红外双波段探测器,其特征在于所述蓝宝石衬底的厚度2μm。
3.根据权利要求1所述的硒化铋/碲化铋超晶格红外双波段探测器,其特征在于所述金电极分为顶电极和底电极,顶电极设置在Bi2Te3层上,底电极设置在Bi2Se3层上。
4.根据权利要求3所述的硒化铋/碲化铋超晶格红外双波段探测器,其特征在于顶电极和底电极连线垂直于Bi2Se3层和Bi2Te3层交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。
5.根据权利要求1所述的硒化铋/碲化铋超晶格红外双波段探测器,其特征在于所述金电极的厚度为50μm。
6.一种权利要求1-5任一项所述硒化铋/碲化铋超晶格红外双波段探测器的制备方法,其特征在于所述方法包括如下步骤:
步骤一、在蓝宝石衬底上利用CVD技术生长Bi2Te3层;
步骤二、在生长的Bi2Se3层上利用CVD技术生长Bi2Te3层;
步骤三、利用磁控溅射技术在Bi2Se3层和Bi2Te3层表面沉积Au电极。
7.根据权利要求6所述的硒化铋/碲化铋超晶格红外双波段探测器的制备方法,其特征在于所述步骤一中,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Se粒作Se源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2O3放置在高温区,升温至600~800℃;(2)将Se放置在低温区,升温至200~400℃;(3)采用化学气相沉积法在GaN衬底上生长Bi2Se3薄膜,控制生长时间为1~3小时。
8.根据权利要求6所述的硒化铋/碲化铋超晶格红外双波段探测器的制备方法,其特征在于所述步骤二中,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Te粒作Te源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2O3放置在高温区,升温至600~800℃;(2)将Te放置在低温区,升温至400~600℃;(3)用化学气相沉积法在Bi2Se3上生长Bi2Te3薄膜,控制生长时间为10~20分钟。
9.根据权利要求6所述的硒化铋/碲化铋超晶格红外双波段探测器的制备方法,其特征在于所述步骤三中,磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
CN202110579522.1A 2021-05-26 2021-05-26 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法 Active CN113299778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110579522.1A CN113299778B (zh) 2021-05-26 2021-05-26 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110579522.1A CN113299778B (zh) 2021-05-26 2021-05-26 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113299778A CN113299778A (zh) 2021-08-24
CN113299778B true CN113299778B (zh) 2022-08-02

Family

ID=77325202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110579522.1A Active CN113299778B (zh) 2021-05-26 2021-05-26 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113299778B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990520B (zh) * 2022-05-20 2023-08-22 中国科学院长春光学精密机械与物理研究所 硒碲合金薄膜、光导型红外光探测器及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017341A2 (en) * 1997-09-27 1999-04-08 National University Of Singapore Dual band infrared detector using step multiquantum wells with superlattice barriers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284048A1 (en) * 2010-04-01 2011-11-24 Hi - Z Technology, Inc. Multi-layer superlattice quantum well thermoelectric material and module
JP7283148B2 (ja) * 2019-03-14 2023-05-30 富士通株式会社 赤外線検出器、これを用いた撮像装置、及び赤外線検出器の製造方法
CN110729365A (zh) * 2019-10-23 2020-01-24 昆明物理研究所 基于碲化锑材料的宽响应光谱探测器及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017341A2 (en) * 1997-09-27 1999-04-08 National University Of Singapore Dual band infrared detector using step multiquantum wells with superlattice barriers

Also Published As

Publication number Publication date
CN113299778A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
Ping et al. Properties and perspectives of ultrawide bandgap Ga2O3 in optoelectronic applications
CN109285911B (zh) 一种短波/中波/长波三波段红外探测器及其制备方法
CN109037374B (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
Wang et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology
CN103258869A (zh) 基于氧化锌材料的紫外红外双色探测器及其制作方法
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Wang et al. Self-powered CsCu2I3/Si heterojunction UV photodetectors prepared by pulsed-laser deposition
Wu et al. Room temperature operation of InxGa1− xSb/InAs type-II quantum well infrared photodetectors grown by MOCVD
CN114220920A (zh) 一种量子点红外探测器及其制备方法
CN113299778B (zh) 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法
Liu et al. Noise properties of low-temperature-grown Co-doped ZnO nanorods as ultraviolet photodetectors
Zhao et al. Ultrasensitive Self-Powered Deep-Ultraviolet Photodetector Based on In Situ Epitaxial Ga₂O₃/Bi₂Se₃ Heterojunction
Zhou et al. Self-powered p-CuI/n-GaN heterojunction UV photodetector based on thermal evaporated high quality CuI thin film
He et al. Pulsed laser deposition of lead-free Cs3Cu2Br5 thin films on GaN substrate for ultraviolet photodetector applications
Liu et al. Mg 0.35 Zn 0.65 O/Al/ZnO photodetectors with capability of identifying ultraviolet-A/ultraviolet-B
US11271131B2 (en) Group IV and group IV-VI semiconductor heterojunction devices
JP7551631B2 (ja) シーディングまたは触媒を使わずにパルスレーザー堆積法によって成長させた無転位半導体ナノ構造
CN113675297A (zh) 一种氧化镓/氮化镓异质结光电探测器及其制备方法
CN113257933B (zh) 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法
CN112420876A (zh) 一种从日盲紫外到近红外的宽波段探测器的制备方法
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
CN110137277A (zh) 非极性自支撑GaN基pin紫外光电探测器及制备方法
CN113299779A (zh) 一种二硫化钼/二硫化钨红外双色探测器及其制备方法
Hwang et al. Mg x Zn 1–x O/ZnO Quantum Well Photodetectors Fabricated by Radio-Frequency Magnetron Sputtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant