CN113257933B - 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 - Google Patents
硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 Download PDFInfo
- Publication number
- CN113257933B CN113257933B CN202110580066.2A CN202110580066A CN113257933B CN 113257933 B CN113257933 B CN 113257933B CN 202110580066 A CN202110580066 A CN 202110580066A CN 113257933 B CN113257933 B CN 113257933B
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- gan substrate
- gallium nitride
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 43
- FBGGJHZVZAAUKJ-UHFFFAOYSA-N bismuth selenide Chemical compound [Se-2].[Se-2].[Se-2].[Bi+3].[Bi+3] FBGGJHZVZAAUKJ-UHFFFAOYSA-N 0.000 title claims abstract 10
- 238000002360 preparation method Methods 0.000 title abstract description 9
- 239000010931 gold Substances 0.000 claims abstract description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052737 gold Inorganic materials 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 6
- 238000000151 deposition Methods 0.000 claims abstract description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 239000012159 carrier gas Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 19
- 238000001228 spectrum Methods 0.000 abstract description 9
- 229910052594 sapphire Inorganic materials 0.000 abstract description 3
- 239000010980 sapphire Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 16
- 230000004044 response Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- OMEPJWROJCQMMU-UHFFFAOYSA-N selanylidenebismuth;selenium Chemical compound [Se].[Bi]=[Se].[Bi]=[Se] OMEPJWROJCQMMU-UHFFFAOYSA-N 0.000 description 5
- 238000004020 luminiscence type Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 238000000103 photoluminescence spectrum Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0328—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
- H01L31/0336—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/109—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种硒化铋/氮化镓紫外‑红外宽波段探测器及其制备方法,所述探测器包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上,具体制备方法如下:一、在蓝宝石衬底上利用CVD技术生长Bi2Se3层;二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外‑红外宽波段探测器。本发明实现了200~4000nm超宽光谱的光电探测器,利用Bi2Se3/GaN异质结单一结构,实现宽光谱探测。与紫外、红外多个器件叠加实现紫外‑红外探测相比,器件结构简单,降低了系统的体积、功耗和成本。
Description
技术领域
本发明属于光电成像探测技术领域,涉及一种紫外-红外宽波段探测探测器及其制备方法,具体涉及一种基于硒化铋(Bi2Se3)/氮化镓(GaN)异质结红外-紫外宽波段探测器及其制备方法。
背景技术
作为现代科技信息化的核心器件,光电探测器是基于光电效应将光信号转换为电信号从而实现对光辐射进行测量的器件,按其探测波段可分为紫外探测器、可见光探测器、红外探测器等。随着现代信息化对光电子元件的要求日益升高,光电探测器要在复杂背景和强干扰下,准确地探测目标信息,单一红外、紫外探测器的固有弱点和局限性愈发明显,光电探测技术正朝着超灵敏、高分辨、超宽光谱(紫外日盲-中长波红外)的方向发展。高灵敏、宽光谱探测成像器件可广泛应用于对地遥感、医疗防疫、通信、石油勘探、边防监控、烟火预警、智慧城市、宇宙探索、导弹制导预警等军事和民用领域。
商业化光电探测器主要以传统半导体材料(Si、III-V族、II-VI族等化合物半导体)为主。其中III-V族半导体材料GaN具有高载流子迁移率和稳定的物理化学性能,是目前商用高性能紫外探测器的首选材料。但受光电探测材料带隙限制,GaN材料的光电探测能力往往只能覆盖紫外区域,难以实现紫外-红外宽波段探测。如何设计材料结构,将GaN探测波段别向红外区域拓展,以便制备实用型低成本、高灵敏、宽光谱探测成像器件,成为新材料领域亟待解决的问题。
Bi2Se3作为新型拓扑绝缘体材料,在红外光探测方面具有优异的性能,如可调谐表面带隙、极化敏感光电流、与厚度大小有关的光学吸收。这些特殊的属性使Bi2Se3成为高性能的红外探测器的潜在材料。但是二维拓扑绝缘体Bi2Se3厚度较薄,光吸收较弱,难以实现高红外响应。
发明内容
为了解决GaN基材料受带隙所限难以实现高性能宽波段探测材料结构,本发明提供了一种在200nm~3.5μm处有明显光致发光峰的硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法。
本发明的目的是通过以下技术方案实现的:
一种硒化铋/氮化镓紫外-红外宽波段探测器,包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上。
本发明中,所述GaN衬底作为紫外吸收层,厚度在2~4μm左右。
本发明中,所述Bi2Se3层的厚度为2~3单原子层(0.9nm)。
本发明中,所述金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN衬底上,顶电极和底电极连线垂直于Bi2Se3层和GaN衬底交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。
本发明中,所述金电极厚度为5μm。
本发明中,所述探测器为紫外-红外宽波段探测器,具体工作原理为:紫外波段,探测器利用GaN材料吸收紫外波段的光辐射,利用GaN的光电导效应实现器件紫外区域响应;红外区域,利用二维Bi2Se3层实现器件在红外区域的响应,与此同时,GaN和二维Bi2Se3层构成异质结时,由于表面电荷迁移会形成内建电场,内建电场可以增强探测器在红外区域的响应。
一种上述硒化铋/氮化镓紫外-红外宽波段探测器的制备方法,采用CVD制备异质结,即:利用CVD技术在GaN衬底上生长2~3单原子层的Bi2Se3层,具体包括如下步骤:
步骤一、在蓝宝石衬底上利用CVD技术生长Bi2Se3层,其中:Bi2Se3层的厚度为2~3单原子层,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Se粒作Se源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区,升温至600~800℃;(2)将Se放置在低温区,升温至200~400℃;(3)采用化学气相沉积法在GaN衬底上生长Bi2Se3薄膜,控制生长时间为1~3小时;
步骤二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器,控制磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
相比于现有技术,本发明具有如下优点:
1、本发明将GaN与多层Bi2Se3相结合,构建复合结构的光电探测器,不但可以实现两种材料的优势互补,还衍生出以下优点:(1)体材料作为吸收层能有效增强Bi2Se3材料的吸收;(2)Bi2Se3与GaN构成异质时,会发生电子的转移,从而导致体材料能带在交界面处发生弯曲,形成内建电场,而内建电场的产生大大提高了器件对光生电子空穴对的分离能力,可使器件表现出优异的响应率和响应速度;(3)光生载流子在范德瓦尔斯异质结子带间的跃迁可以将材料探测截止波长拓展到红外波段,有利于实现宽波段探测。
2、本发明实现了200~4000nm超宽光谱的光电探测器,利用Bi2Se3/GaN异质结单一结构,实现宽光谱探测。与目前为实现宽光谱探测广泛采用的紫外、红外多个器件叠加实现紫外-红外探测相比,器件结构简单,降低了系统的体积、功耗和成本。
3、本发明利用异质结界面形成的内建电场增强器件的灵敏度和响应度。
附图说明
图1为CVD生长Bi2Se3拉曼光谱图;
图2为异质结吸收光谱(200~900nm);
图3为异质结光致发光谱(200~900nm);
图4为异质结的红外光谱;
图5为器件结构图。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
本发明提供了一种低成本Bi2Se3/GaN紫外-红外宽波段探测器,器件结构图如图5所示,在2μm厚商业GaN衬底上,利用CVD技术生长2~3单原子层的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,再在GaN衬底和Bi2Se3层上分别蒸镀50μm厚金电极,制备宽波段探测器,其中:金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN层上,顶电极和底电极连线垂直于Bi2Se3层和GaN层交界面,电极之间间距为2mm,顶电极距交界面1mm,底电极距交界面1mm。具体制备步骤如下:
步骤一、使用0.1克99.995% Bi2O3粉末作为Bi源,使用1g 99.9999%纯度Se粒作Se源,使用200sccm氩气、15sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区升温至700℃,Se放置在低温区升温至300℃,蓝宝石放置在Bi2Se3下方向5cm处,此处温度约为500℃,生长2小时,在GaN上生长Bi2Se3薄膜;
步骤二、利用磁控溅射技术(溅射功率40W,压强0.7 Pa,氩气流量30sccm,溅射时间1.5 min)在GaN衬底和Bi2Se3层表面分别沉积50μm厚Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器,其中:Bi2Se3层为1cm×1cm正方形,GaN衬底上电极位置为距Bi2Se3边1mm位置,Bi2Se3上电极位置与GaN上电极相距2mm,两电极连线与Bi2Se3边垂直。
CVD生长的Bi2Se3的拉曼光谱如图1所示。图中在71.8 cm-1、174.3 cm-1和132.1cm-1波数处的三个峰峰分别为Bi2Se3的A11g、A21g、 E2g 声子峰。
异质结吸收光谱如图2所示,图中可以看出样品在200~900nm处有明显的吸收峰。异质结200~900nm光致发光谱如图3所示,图中可以看出450nm处的发光峰为商业GaN衬底的发光峰,550~750 nm处发光峰为Bi2Se3的发光峰。异质结的红外波段发光光谱如图4所示,图中可以看出样品在4μm处有明显的光致发光峰。综合图2~图4的结果,样品在200~4000nm 紫外-红外波段有明显的光谱信号。
Claims (8)
1.一种硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于所述探测器包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上,所述Bi2Se3层的厚度为2~3单原子层。
2.根据权利要求1所述的硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于所述GaN衬底的厚度在2~4μm。
3.根据权利要求1所述的硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于所述金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN衬底上。
4.根据权利要求3所述的硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于顶电极和底电极连线垂直于Bi2Se3层和GaN衬底交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。
5.根据权利要求1所述的硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于所述金电极厚度为5μm。
6.一种权利要求1-5任一项所述硒化铋/氮化镓200~4000nm宽波段探测器的制备方法,其特征在于所述方法包括如下步骤:
步骤一、在GaN衬底上利用CVD技术生长Bi2Se3层;
步骤二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器。
7.根据权利要求6所述的硒化铋/氮化镓200~4000nm宽波段探测器的制备方法,其特征在于所述步骤一中,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Se粒作Se源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区,升温至600~800℃;(2)将Se放置在低温区,升温至200~400℃;(3)采用化学气相沉积法在GaN衬底上生长Bi2Se3薄膜,控制生长时间为1~3小时。
8.根据权利要求6所述的硒化铋/氮化镓200~4000nm宽波段探测器的制备方法,其特征在于所述步骤二中磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110580066.2A CN113257933B (zh) | 2021-05-26 | 2021-05-26 | 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110580066.2A CN113257933B (zh) | 2021-05-26 | 2021-05-26 | 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113257933A CN113257933A (zh) | 2021-08-13 |
CN113257933B true CN113257933B (zh) | 2023-08-29 |
Family
ID=77184608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110580066.2A Active CN113257933B (zh) | 2021-05-26 | 2021-05-26 | 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113257933B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112490305B (zh) * | 2020-11-25 | 2022-04-01 | 天津津航技术物理研究所 | 一种可见-紫外双色探测器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103979505A (zh) * | 2014-05-16 | 2014-08-13 | 厦门大学 | 一种少数层硒化铋纳米片的制备方法 |
CN112420876A (zh) * | 2020-12-03 | 2021-02-26 | 哈尔滨工业大学 | 一种从日盲紫外到近红外的宽波段探测器的制备方法 |
-
2021
- 2021-05-26 CN CN202110580066.2A patent/CN113257933B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103979505A (zh) * | 2014-05-16 | 2014-08-13 | 厦门大学 | 一种少数层硒化铋纳米片的制备方法 |
CN112420876A (zh) * | 2020-12-03 | 2021-02-26 | 哈尔滨工业大学 | 一种从日盲紫外到近红外的宽波段探测器的制备方法 |
Non-Patent Citations (1)
Title |
---|
UV/Near-IR dual band photodetector based on p-GaN/α-In2Se3 heterojunction;Swanand V. Solanke等;《Sensors and Actuators A: Physical》;20201128;第317卷;第112455.1-9页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113257933A (zh) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Su et al. | Self‐powered ultraviolet photodetectors driven by built‐in electric field | |
Xu et al. | ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector | |
CN103346199B (zh) | 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法 | |
Su et al. | High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction | |
CN109285911B (zh) | 一种短波/中波/长波三波段红外探测器及其制备方法 | |
CN106449894B (zh) | 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法 | |
Ma et al. | High-photoresponsivity self-powered a-, ε-, and β-Ga2O3/p-GaN heterojunction UV photodetectors with an in situ GaON layer by MOCVD | |
Wu et al. | ${\rm Ga} _ {2}{\rm O} _ {3} $ Nanowire Photodetector Prepared on ${\rm SiO} _ {2}/{\rm Si} $ Template | |
Lashkarev et al. | Properties of zinc oxide at low and moderate temperatures | |
Ferhati et al. | Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector | |
Yu et al. | Analysis of electronic structure and properties of Ga2O3/CuAlO2 heterojunction | |
CN113257933B (zh) | 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 | |
CN102694052A (zh) | 半导体器件及其制造方法 | |
CN108346712B (zh) | 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法 | |
Feng et al. | Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area | |
CN101409311B (zh) | 一种硅基双异质结可见盲紫外探测器及其制造方法 | |
CN113299778B (zh) | 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法 | |
CN109524491B (zh) | 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法 | |
Li et al. | Solar-blind avalanche photodetector based on epitaxial Ga 2 O 3/La 0.8 Ca 0.2 MnO 3 pn heterojunction with ultrahigh gain | |
Chang et al. | Zn/Mg co-alloyed for higher photoelectric performance and unchanged spectral response in β-Ga2O3 solar-blind photodetector | |
Yan et al. | Research progress of solar-blind UV photodetectors based on amorphous gallium oxide | |
CN108258081B (zh) | CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用 | |
CN112018210B (zh) | 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法 | |
CN113299779A (zh) | 一种二硫化钼/二硫化钨红外双色探测器及其制备方法 | |
CN114512569A (zh) | 一种梯度掺杂的宽光谱自供能光电探测器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |