CN113257933B - 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 - Google Patents

硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 Download PDF

Info

Publication number
CN113257933B
CN113257933B CN202110580066.2A CN202110580066A CN113257933B CN 113257933 B CN113257933 B CN 113257933B CN 202110580066 A CN202110580066 A CN 202110580066A CN 113257933 B CN113257933 B CN 113257933B
Authority
CN
China
Prior art keywords
layer
gan
gan substrate
gallium nitride
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110580066.2A
Other languages
English (en)
Other versions
CN113257933A (zh
Inventor
王东博
曾值
王金忠
矫淑杰
赵晨晨
张书博
刘东昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110580066.2A priority Critical patent/CN113257933B/zh
Publication of CN113257933A publication Critical patent/CN113257933A/zh
Application granted granted Critical
Publication of CN113257933B publication Critical patent/CN113257933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种硒化铋/氮化镓紫外‑红外宽波段探测器及其制备方法,所述探测器包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上,具体制备方法如下:一、在蓝宝石衬底上利用CVD技术生长Bi2Se3层;二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外‑红外宽波段探测器。本发明实现了200~4000nm超宽光谱的光电探测器,利用Bi2Se3/GaN异质结单一结构,实现宽光谱探测。与紫外、红外多个器件叠加实现紫外‑红外探测相比,器件结构简单,降低了系统的体积、功耗和成本。

Description

硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法
技术领域
本发明属于光电成像探测技术领域,涉及一种紫外-红外宽波段探测探测器及其制备方法,具体涉及一种基于硒化铋(Bi2Se3)/氮化镓(GaN)异质结红外-紫外宽波段探测器及其制备方法。
背景技术
作为现代科技信息化的核心器件,光电探测器是基于光电效应将光信号转换为电信号从而实现对光辐射进行测量的器件,按其探测波段可分为紫外探测器、可见光探测器、红外探测器等。随着现代信息化对光电子元件的要求日益升高,光电探测器要在复杂背景和强干扰下,准确地探测目标信息,单一红外、紫外探测器的固有弱点和局限性愈发明显,光电探测技术正朝着超灵敏、高分辨、超宽光谱(紫外日盲-中长波红外)的方向发展。高灵敏、宽光谱探测成像器件可广泛应用于对地遥感、医疗防疫、通信、石油勘探、边防监控、烟火预警、智慧城市、宇宙探索、导弹制导预警等军事和民用领域。
商业化光电探测器主要以传统半导体材料(Si、III-V族、II-VI族等化合物半导体)为主。其中III-V族半导体材料GaN具有高载流子迁移率和稳定的物理化学性能,是目前商用高性能紫外探测器的首选材料。但受光电探测材料带隙限制,GaN材料的光电探测能力往往只能覆盖紫外区域,难以实现紫外-红外宽波段探测。如何设计材料结构,将GaN探测波段别向红外区域拓展,以便制备实用型低成本、高灵敏、宽光谱探测成像器件,成为新材料领域亟待解决的问题。
Bi2Se3作为新型拓扑绝缘体材料,在红外光探测方面具有优异的性能,如可调谐表面带隙、极化敏感光电流、与厚度大小有关的光学吸收。这些特殊的属性使Bi2Se3成为高性能的红外探测器的潜在材料。但是二维拓扑绝缘体Bi2Se3厚度较薄,光吸收较弱,难以实现高红外响应。
发明内容
为了解决GaN基材料受带隙所限难以实现高性能宽波段探测材料结构,本发明提供了一种在200nm~3.5μm处有明显光致发光峰的硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法。
本发明的目的是通过以下技术方案实现的:
一种硒化铋/氮化镓紫外-红外宽波段探测器,包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上。
本发明中,所述GaN衬底作为紫外吸收层,厚度在2~4μm左右。
本发明中,所述Bi2Se3层的厚度为2~3单原子层(0.9nm)。
本发明中,所述金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN衬底上,顶电极和底电极连线垂直于Bi2Se3层和GaN衬底交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。
本发明中,所述金电极厚度为5μm。
本发明中,所述探测器为紫外-红外宽波段探测器,具体工作原理为:紫外波段,探测器利用GaN材料吸收紫外波段的光辐射,利用GaN的光电导效应实现器件紫外区域响应;红外区域,利用二维Bi2Se3层实现器件在红外区域的响应,与此同时,GaN和二维Bi2Se3层构成异质结时,由于表面电荷迁移会形成内建电场,内建电场可以增强探测器在红外区域的响应。
一种上述硒化铋/氮化镓紫外-红外宽波段探测器的制备方法,采用CVD制备异质结,即:利用CVD技术在GaN衬底上生长2~3单原子层的Bi2Se3层,具体包括如下步骤:
步骤一、在蓝宝石衬底上利用CVD技术生长Bi2Se3层,其中:Bi2Se3层的厚度为2~3单原子层,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Se粒作Se源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区,升温至600~800℃;(2)将Se放置在低温区,升温至200~400℃;(3)采用化学气相沉积法在GaN衬底上生长Bi2Se3薄膜,控制生长时间为1~3小时;
步骤二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器,控制磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
相比于现有技术,本发明具有如下优点:
1、本发明将GaN与多层Bi2Se3相结合,构建复合结构的光电探测器,不但可以实现两种材料的优势互补,还衍生出以下优点:(1)体材料作为吸收层能有效增强Bi2Se3材料的吸收;(2)Bi2Se3与GaN构成异质时,会发生电子的转移,从而导致体材料能带在交界面处发生弯曲,形成内建电场,而内建电场的产生大大提高了器件对光生电子空穴对的分离能力,可使器件表现出优异的响应率和响应速度;(3)光生载流子在范德瓦尔斯异质结子带间的跃迁可以将材料探测截止波长拓展到红外波段,有利于实现宽波段探测。
2、本发明实现了200~4000nm超宽光谱的光电探测器,利用Bi2Se3/GaN异质结单一结构,实现宽光谱探测。与目前为实现宽光谱探测广泛采用的紫外、红外多个器件叠加实现紫外-红外探测相比,器件结构简单,降低了系统的体积、功耗和成本。
3、本发明利用异质结界面形成的内建电场增强器件的灵敏度和响应度。
附图说明
图1为CVD生长Bi2Se3拉曼光谱图;
图2为异质结吸收光谱(200~900nm);
图3为异质结光致发光谱(200~900nm);
图4为异质结的红外光谱;
图5为器件结构图。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
本发明提供了一种低成本Bi2Se3/GaN紫外-红外宽波段探测器,器件结构图如图5所示,在2μm厚商业GaN衬底上,利用CVD技术生长2~3单原子层的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,再在GaN衬底和Bi2Se3层上分别蒸镀50μm厚金电极,制备宽波段探测器,其中:金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN层上,顶电极和底电极连线垂直于Bi2Se3层和GaN层交界面,电极之间间距为2mm,顶电极距交界面1mm,底电极距交界面1mm。具体制备步骤如下:
步骤一、使用0.1克99.995% Bi2O3粉末作为Bi源,使用1g 99.9999%纯度Se粒作Se源,使用200sccm氩气、15sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区升温至700℃,Se放置在低温区升温至300℃,蓝宝石放置在Bi2Se3下方向5cm处,此处温度约为500℃,生长2小时,在GaN上生长Bi2Se3薄膜;
步骤二、利用磁控溅射技术(溅射功率40W,压强0.7 Pa,氩气流量30sccm,溅射时间1.5 min)在GaN衬底和Bi2Se3层表面分别沉积50μm厚Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器,其中:Bi2Se3层为1cm×1cm正方形,GaN衬底上电极位置为距Bi2Se3边1mm位置,Bi2Se3上电极位置与GaN上电极相距2mm,两电极连线与Bi2Se3边垂直。
CVD生长的Bi2Se3的拉曼光谱如图1所示。图中在71.8 cm-1、174.3 cm-1和132.1cm-1波数处的三个峰峰分别为Bi2Se3的A11g、A21g、 E2g 声子峰。
异质结吸收光谱如图2所示,图中可以看出样品在200~900nm处有明显的吸收峰。异质结200~900nm光致发光谱如图3所示,图中可以看出450nm处的发光峰为商业GaN衬底的发光峰,550~750 nm处发光峰为Bi2Se3的发光峰。异质结的红外波段发光光谱如图4所示,图中可以看出样品在4μm处有明显的光致发光峰。综合图2~图4的结果,样品在200~4000nm 紫外-红外波段有明显的光谱信号。

Claims (8)

1.一种硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于所述探测器包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上,所述Bi2Se3层的厚度为2~3单原子层。
2.根据权利要求1所述的硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于所述GaN衬底的厚度在2~4μm。
3.根据权利要求1所述的硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于所述金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN衬底上。
4.根据权利要求3所述的硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于顶电极和底电极连线垂直于Bi2Se3层和GaN衬底交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。
5.根据权利要求1所述的硒化铋/氮化镓200~4000nm宽波段探测器,其特征在于所述金电极厚度为5μm。
6.一种权利要求1-5任一项所述硒化铋/氮化镓200~4000nm宽波段探测器的制备方法,其特征在于所述方法包括如下步骤:
步骤一、在GaN衬底上利用CVD技术生长Bi2Se3层;
步骤二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器。
7.根据权利要求6所述的硒化铋/氮化镓200~4000nm宽波段探测器的制备方法,其特征在于所述步骤一中,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Se粒作Se源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区,升温至600~800℃;(2)将Se放置在低温区,升温至200~400℃;(3)采用化学气相沉积法在GaN衬底上生长Bi2Se3薄膜,控制生长时间为1~3小时。
8.根据权利要求6所述的硒化铋/氮化镓200~4000nm宽波段探测器的制备方法,其特征在于所述步骤二中磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
CN202110580066.2A 2021-05-26 2021-05-26 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 Active CN113257933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110580066.2A CN113257933B (zh) 2021-05-26 2021-05-26 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110580066.2A CN113257933B (zh) 2021-05-26 2021-05-26 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113257933A CN113257933A (zh) 2021-08-13
CN113257933B true CN113257933B (zh) 2023-08-29

Family

ID=77184608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110580066.2A Active CN113257933B (zh) 2021-05-26 2021-05-26 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113257933B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490305B (zh) * 2020-11-25 2022-04-01 天津津航技术物理研究所 一种可见-紫外双色探测器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979505A (zh) * 2014-05-16 2014-08-13 厦门大学 一种少数层硒化铋纳米片的制备方法
CN112420876A (zh) * 2020-12-03 2021-02-26 哈尔滨工业大学 一种从日盲紫外到近红外的宽波段探测器的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979505A (zh) * 2014-05-16 2014-08-13 厦门大学 一种少数层硒化铋纳米片的制备方法
CN112420876A (zh) * 2020-12-03 2021-02-26 哈尔滨工业大学 一种从日盲紫外到近红外的宽波段探测器的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UV/Near-IR dual band photodetector based on p-GaN/α-In2Se3 heterojunction;Swanand V. Solanke等;《Sensors and Actuators A: Physical》;20201128;第317卷;第112455.1-9页 *

Also Published As

Publication number Publication date
CN113257933A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
Su et al. Self‐powered ultraviolet photodetectors driven by built‐in electric field
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN103346199B (zh) 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
Su et al. High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction
CN109285911B (zh) 一种短波/中波/长波三波段红外探测器及其制备方法
CN106449894B (zh) 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
Ma et al. High-photoresponsivity self-powered a-, ε-, and β-Ga2O3/p-GaN heterojunction UV photodetectors with an in situ GaON layer by MOCVD
Wu et al. ${\rm Ga} _ {2}{\rm O} _ {3} $ Nanowire Photodetector Prepared on ${\rm SiO} _ {2}/{\rm Si} $ Template
Lashkarev et al. Properties of zinc oxide at low and moderate temperatures
Ferhati et al. Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector
Yu et al. Analysis of electronic structure and properties of Ga2O3/CuAlO2 heterojunction
CN113257933B (zh) 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法
CN102694052A (zh) 半导体器件及其制造方法
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
Feng et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area
CN101409311B (zh) 一种硅基双异质结可见盲紫外探测器及其制造方法
CN113299778B (zh) 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法
CN109524491B (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法
Li et al. Solar-blind avalanche photodetector based on epitaxial Ga 2 O 3/La 0.8 Ca 0.2 MnO 3 pn heterojunction with ultrahigh gain
Chang et al. Zn/Mg co-alloyed for higher photoelectric performance and unchanged spectral response in β-Ga2O3 solar-blind photodetector
Yan et al. Research progress of solar-blind UV photodetectors based on amorphous gallium oxide
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
CN112018210B (zh) 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法
CN113299779A (zh) 一种二硫化钼/二硫化钨红外双色探测器及其制备方法
CN114512569A (zh) 一种梯度掺杂的宽光谱自供能光电探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant