CN113257933A - 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 - Google Patents
硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 Download PDFInfo
- Publication number
- CN113257933A CN113257933A CN202110580066.2A CN202110580066A CN113257933A CN 113257933 A CN113257933 A CN 113257933A CN 202110580066 A CN202110580066 A CN 202110580066A CN 113257933 A CN113257933 A CN 113257933A
- Authority
- CN
- China
- Prior art keywords
- gan
- layer
- ultraviolet
- gallium nitride
- broadband detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- FBGGJHZVZAAUKJ-UHFFFAOYSA-N bismuth selenide Chemical compound [Se-2].[Se-2].[Se-2].[Bi+3].[Bi+3] FBGGJHZVZAAUKJ-UHFFFAOYSA-N 0.000 title claims abstract 11
- 239000010931 gold Substances 0.000 claims abstract description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052737 gold Inorganic materials 0.000 claims abstract description 12
- 238000005516 engineering process Methods 0.000 claims abstract description 11
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 4
- 239000010980 sapphire Substances 0.000 claims abstract description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 20
- 238000001228 spectrum Methods 0.000 abstract description 9
- 238000000151 deposition Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 17
- 230000004044 response Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- OMEPJWROJCQMMU-UHFFFAOYSA-N selanylidenebismuth;selenium Chemical compound [Se].[Bi]=[Se].[Bi]=[Se] OMEPJWROJCQMMU-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 238000000103 photoluminescence spectrum Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/222—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN heterojunction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种硒化铋/氮化镓紫外‑红外宽波段探测器及其制备方法,所述探测器包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上,具体制备方法如下:一、在蓝宝石衬底上利用CVD技术生长Bi2Se3层;二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外‑红外宽波段探测器。本发明实现了200~4000nm超宽光谱的光电探测器,利用Bi2Se3/GaN异质结单一结构,实现宽光谱探测。与紫外、红外多个器件叠加实现紫外‑红外探测相比,器件结构简单,降低了系统的体积、功耗和成本。
Description
技术领域
本发明属于光电成像探测技术领域,涉及一种紫外-红外宽波段探测探测器及其制备方法,具体涉及一种基于硒化铋(Bi2Se3)/氮化镓(GaN)异质结红外-紫外宽波段探测器及其制备方法。
背景技术
作为现代科技信息化的核心器件,光电探测器是基于光电效应将光信号转换为电信号从而实现对光辐射进行测量的器件,按其探测波段可分为紫外探测器、可见光探测器、红外探测器等。随着现代信息化对光电子元件的要求日益升高,光电探测器要在复杂背景和强干扰下,准确地探测目标信息,单一红外、紫外探测器的固有弱点和局限性愈发明显,光电探测技术正朝着超灵敏、高分辨、超宽光谱(紫外日盲-中长波红外)的方向发展。高灵敏、宽光谱探测成像器件可广泛应用于对地遥感、医疗防疫、通信、石油勘探、边防监控、烟火预警、智慧城市、宇宙探索、导弹制导预警等军事和民用领域。
商业化光电探测器主要以传统半导体材料(Si、III-V族、II-VI族等化合物半导体)为主。其中III-V族半导体材料GaN具有高载流子迁移率和稳定的物理化学性能,是目前商用高性能紫外探测器的首选材料。但受光电探测材料带隙限制,GaN材料的光电探测能力往往只能覆盖紫外区域,难以实现紫外-红外宽波段探测。如何设计材料结构,将GaN探测波段别向红外区域拓展,以便制备实用型低成本、高灵敏、宽光谱探测成像器件,成为新材料领域亟待解决的问题。
Bi2Se3作为新型拓扑绝缘体材料,在红外光探测方面具有优异的性能,如可调谐表面带隙、极化敏感光电流、与厚度大小有关的光学吸收。这些特殊的属性使Bi2Se3成为高性能的红外探测器的潜在材料。但是二维拓扑绝缘体Bi2Se3厚度较薄,光吸收较弱,难以实现高红外响应。
发明内容
为了解决GaN基材料受带隙所限难以实现高性能宽波段探测材料结构,本发明提供了一种在200nm~3.5μm处有明显光致发光峰的硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法。
本发明的目的是通过以下技术方案实现的:
一种硒化铋/氮化镓紫外-红外宽波段探测器,包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上。
本发明中,所述GaN衬底作为紫外吸收层,厚度在2~4μm左右。
本发明中,所述Bi2Se3层的厚度为2~3单原子层(0.9nm)。
本发明中,所述金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN衬底上,顶电极和底电极连线垂直于Bi2Se3层和GaN衬底交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。
本发明中,所述金电极厚度为5μm。
本发明中,所述探测器为紫外-红外宽波段探测器,具体工作原理为:紫外波段,探测器利用GaN材料吸收紫外波段的光辐射,利用GaN的光电导效应实现器件紫外区域响应;红外区域,利用二维Bi2Se3层实现器件在红外区域的响应,与此同时,GaN和二维Bi2Se3层构成异质结时,由于表面电荷迁移会形成内建电场,内建电场可以增强探测器在红外区域的响应。
一种上述硒化铋/氮化镓紫外-红外宽波段探测器的制备方法,采用CVD制备异质结,即:利用CVD技术在GaN衬底上生长2~3单原子层的Bi2Se3层,具体包括如下步骤:
步骤一、在蓝宝石衬底上利用CVD技术生长Bi2Se3层,其中:Bi2Se3层的厚度为2~3单原子层,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Se粒作Se源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区,升温至600~800℃;(2)将Se放置在低温区,升温至200~400℃;(3)采用化学气相沉积法在GaN衬底上生长Bi2Se3薄膜,控制生长时间为1~3小时;
步骤二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器,控制磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
相比于现有技术,本发明具有如下优点:
1、本发明将GaN与多层Bi2Se3相结合,构建复合结构的光电探测器,不但可以实现两种材料的优势互补,还衍生出以下优点:(1)体材料作为吸收层能有效增强Bi2Se3材料的吸收;(2)Bi2Se3与GaN构成异质时,会发生电子的转移,从而导致体材料能带在交界面处发生弯曲,形成内建电场,而内建电场的产生大大提高了器件对光生电子空穴对的分离能力,可使器件表现出优异的响应率和响应速度;(3)光生载流子在范德瓦尔斯异质结子带间的跃迁可以将材料探测截止波长拓展到红外波段,有利于实现宽波段探测。
2、本发明实现了200~4000nm超宽光谱的光电探测器,利用Bi2Se3/GaN异质结单一结构,实现宽光谱探测。与目前为实现宽光谱探测广泛采用的紫外、红外多个器件叠加实现紫外-红外探测相比,器件结构简单,降低了系统的体积、功耗和成本。
3、本发明利用异质结界面形成的内建电场增强器件的灵敏度和响应度。
附图说明
图1为CVD生长Bi2Se3拉曼光谱图;
图2为异质结吸收光谱(200~900nm);
图3为异质结光致发光谱(200~900nm);
图4为异质结的红外光谱;
图5为器件结构图。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
本发明提供了一种低成本Bi2Se3/GaN紫外-红外宽波段探测器,器件结构图如图5所示,在2μm厚商业GaN衬底上,利用CVD技术生长2~3单原子层的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,再在GaN衬底和Bi2Se3层上分别蒸镀50μm厚金电极,制备宽波段探测器,其中:金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN层上,顶电极和底电极连线垂直于Bi2Se3层和GaN层交界面,电极之间间距为2mm,顶电极距交界面1mm,底电极距交界面1mm。具体制备步骤如下:
步骤一、使用0.1克99.995% Bi2O3粉末作为Bi源,使用1g 99.9999%纯度Se粒作Se源,使用200sccm氩气、15sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区升温至700℃,Se放置在低温区升温至300℃,蓝宝石放置在Bi2Se3下方向5cm处,此处温度约为500℃,生长2小时,在GaN上生长Bi2Se3薄膜;
步骤二、利用磁控溅射技术(溅射功率40W,压强0.7 Pa,氩气流量30sccm,溅射时间1.5 min)在GaN衬底和Bi2Se3层表面分别沉积50μm厚Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器,其中:Bi2Se3层为1cm×1cm正方形,GaN衬底上电极位置为距Bi2Se3边1mm位置,Bi2Se3上电极位置与GaN上电极相距2mm,两电极连线与Bi2Se3边垂直。
CVD生长的Bi2Se3的拉曼光谱如图1所示。图中在71.8 cm-1、174.3 cm-1和132.1cm-1波数处的三个峰峰分别为Bi2Se3的A11g、A21g、 E2g 声子峰。
异质结吸收光谱如图2所示,图中可以看出样品在200~900nm处有明显的吸收峰。异质结200~900nm光致发光谱如图3所示,图中可以看出450nm处的发光峰为商业GaN衬底的发光峰,550~750 nm处发光峰为Bi2Se3的发光峰。异质结的红外波段发光光谱如图4所示,图中可以看出样品在4μm处有明显的光致发光峰。综合图2~图4的结果,样品在200~4000nm 紫外-红外波段有明显的光谱信号。
Claims (9)
1.一种硒化铋/氮化镓紫外-红外宽波段探测器,其特征在于所述探测器包括GaN衬底、Bi2Se3层和金电极,GaN衬底上生长的Bi2Se3层,GaN与Bi2Se3之间形成Bi2Se3/GaN异质结,金电极设置在GaN衬底和Bi2Se3层上。
2.根据权利要求1所述的硒化铋/氮化镓紫外-红外宽波段探测器,其特征在于所述GaN衬底的厚度在2~4μm。
3.根据权利要求1所述的硒化铋/氮化镓紫外-红外宽波段探测器,其特征在于所述Bi2Se3层的厚度为2~3单原子层。
4.根据权利要求1所述的硒化铋/氮化镓紫外-红外宽波段探测器,其特征在于所述金电极分为顶电极和底电极,顶电极设置在Bi2Se3层上,底电极设置在GaN衬底上。
5.根据权利要求4所述的硒化铋/氮化镓紫外-红外宽波段探测器,其特征在于顶电极和底电极连线垂直于Bi2Se3层和GaN衬底交界面,电极之间间距2mm,顶电极距交界面1mm,底电极距交界面1mm。
6.根据权利要求1所述的硒化铋/氮化镓紫外-红外宽波段探测器,其特征在于所述金电极厚度为5μm。
7.一种权利要求1-6任一项所述硒化铋/氮化镓紫外-红外宽波段探测器的制备方法,其特征在于所述方法包括如下步骤:
步骤一、在蓝宝石衬底上利用CVD技术生长Bi2Se3层;
步骤二、利用磁控溅射技术在GaN衬底和Bi2Se3层表面沉积Au电极,得到Bi2Se3/GaN紫外-红外宽波段探测器。
8.根据权利要求7所述的硒化铋/氮化镓紫外-红外宽波段探测器的制备方法,其特征在于所述步骤一中,CVD工艺如下:(1)使用Bi2O3粉末作为Bi源,Se粒作Se源,100~300sccm氩气、10~30sccm氢气作为生长载气,生长设备使用双温区管式炉,将Bi2Se3放置在高温区,升温至600~800℃;(2)将Se放置在低温区,升温至200~400℃;(3)采用化学气相沉积法在GaN衬底上生长Bi2Se3薄膜,控制生长时间为1~3小时。
9.根据权利要求7所述的硒化铋/氮化镓紫外-红外宽波段探测器的制备方法,其特征在于所述步骤二中磁控溅射的功率为30~50W,压强为0.5~1.0 Pa,氩气流量为20~40sccm,溅射时间为1~2 min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110580066.2A CN113257933B (zh) | 2021-05-26 | 2021-05-26 | 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110580066.2A CN113257933B (zh) | 2021-05-26 | 2021-05-26 | 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113257933A true CN113257933A (zh) | 2021-08-13 |
CN113257933B CN113257933B (zh) | 2023-08-29 |
Family
ID=77184608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110580066.2A Active CN113257933B (zh) | 2021-05-26 | 2021-05-26 | 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113257933B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112490305A (zh) * | 2020-11-25 | 2021-03-12 | 天津津航技术物理研究所 | 一种可见-紫外双色探测器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103979505A (zh) * | 2014-05-16 | 2014-08-13 | 厦门大学 | 一种少数层硒化铋纳米片的制备方法 |
CN112420876A (zh) * | 2020-12-03 | 2021-02-26 | 哈尔滨工业大学 | 一种从日盲紫外到近红外的宽波段探测器的制备方法 |
-
2021
- 2021-05-26 CN CN202110580066.2A patent/CN113257933B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103979505A (zh) * | 2014-05-16 | 2014-08-13 | 厦门大学 | 一种少数层硒化铋纳米片的制备方法 |
CN112420876A (zh) * | 2020-12-03 | 2021-02-26 | 哈尔滨工业大学 | 一种从日盲紫外到近红外的宽波段探测器的制备方法 |
Non-Patent Citations (1)
Title |
---|
SWANAND V. SOLANKE等: "UV/Near-IR dual band photodetector based on p-GaN/α-In2Se3 heterojunction", 《SENSORS AND ACTUATORS A: PHYSICAL》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112490305A (zh) * | 2020-11-25 | 2021-03-12 | 天津津航技术物理研究所 | 一种可见-紫外双色探测器 |
CN112490305B (zh) * | 2020-11-25 | 2022-04-01 | 天津津航技术物理研究所 | 一种可见-紫外双色探测器 |
Also Published As
Publication number | Publication date |
---|---|
CN113257933B (zh) | 2023-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103280484B (zh) | p-型石墨烯薄膜/n-型Ge肖特基结近红外光电探测器及其制备方法 | |
CN106575685B (zh) | 利用石墨烯硅量子点混合结构的光电二极管及其制造方法 | |
CN109285911B (zh) | 一种短波/中波/长波三波段红外探测器及其制备方法 | |
CN109037374B (zh) | 基于NiO/Ga2O3的紫外光电二极管及其制备方法 | |
Liu et al. | Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire | |
CN109461790A (zh) | 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法 | |
CN104038177A (zh) | 用于紫外探测的薄膜体声波谐振器及其制备方法 | |
CN101533868A (zh) | 一种异质pn结型日盲紫外探测器 | |
CN112420876B (zh) | 一种从日盲紫外到近红外的宽波段探测器的制备方法 | |
CN113257933A (zh) | 硒化铋/氮化镓紫外-红外宽波段探测器及其制备方法 | |
TWI750549B (zh) | 一種製備氮化鋁-氧化鋅紫外光檢測電極之方法 | |
CN103730523A (zh) | 一种石墨烯基碲镉汞复合薄膜材料及其制备方法 | |
CN102376812A (zh) | 一种天线耦合碲镉汞太赫兹探测器 | |
CN109244173B (zh) | 一种自供电双波段紫外光电探测器件及其制备方法 | |
CN113193069B (zh) | 一种hBN/BAlN异质结紫外探测器及其制备方法 | |
CN113299778B (zh) | 硒化铋/碲化铋超晶格红外双波段探测器及其制备方法 | |
Petukhov et al. | Pulsed laser deposition of conductive indium tin oxide thin films | |
CN107546288A (zh) | 一种新型镉锌碲/钙钛矿/单晶硅太阳能电池及其制备方法 | |
CN109524491B (zh) | 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法 | |
CN112310238A (zh) | 基于二维碲化铂纳米薄膜与硅的自驱动肖特基结型超宽波段光电探测器及其制备方法 | |
CN113299779A (zh) | 一种二硫化钼/二硫化钨红外双色探测器及其制备方法 | |
CN105870242A (zh) | 一种n型ZnO纳米棒/p型金刚石紫外光伏探测器及其制备方法 | |
CN114744061B (zh) | 一种蓝光探测器及其制备方法和应用 | |
CN102386281B (zh) | ZnO/纳米晶金刚石薄膜异质结光电探测器的制备方法 | |
Ievtushenko et al. | Ultraviolet detectors based on ZnO: N thin films with different contact structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |