CN107369763A - 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法 - Google Patents

基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法 Download PDF

Info

Publication number
CN107369763A
CN107369763A CN201710412534.9A CN201710412534A CN107369763A CN 107369763 A CN107369763 A CN 107369763A CN 201710412534 A CN201710412534 A CN 201710412534A CN 107369763 A CN107369763 A CN 107369763A
Authority
CN
China
Prior art keywords
preparation
photodetector
layer
titanium ore
ore bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710412534.9A
Other languages
English (en)
Other versions
CN107369763B (zh
Inventor
贾仁需
董林鹏
栾苏珍
庞体强
张玉明
汪钰成
刘银涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710412534.9A priority Critical patent/CN107369763B/zh
Publication of CN107369763A publication Critical patent/CN107369763A/zh
Application granted granted Critical
Publication of CN107369763B publication Critical patent/CN107369763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于Ga2O3/钙钛矿异质结的光电探测器的制备方法,包括:选取半绝缘半透明衬底;在所述衬底表面淀积形成底电极;在所述底电极表面淀积Ga2O3层;在所述Ga2O3层表面旋涂钙钛矿层;在所述钙钛矿层表面淀积形成顶电极,以完成所述光电探测器的制备。本发明提供的基于Ga2O3/钙钛矿异质结的光电探测器,可以探测从深紫外到近红外的宽范围光谱;具有较高的响应度和探测率,同时具有低的暗电流密度和高的外量子效率;该探测器结构简单、效率高、响应快、工作稳定、使用寿命长,生产成本低,无需昂贵的仪器设备等优点。

Description

基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
技术领域
本发明属光电探测技术领域,特别涉及一种基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法。
背景技术
光电探测器是一种新型的探测技术,广泛应用于天文学、环境监测、国防军事和通信等领域。光电探测器在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。
目前使用的光探测器体积较大,工作电压高,设备昂贵。近年来一种基于钙钛矿结构的卤化物材料在最近几年引起了光伏研究领域的极大关注,并且广泛应用于高效太阳电池的技术研究。经过短短6年的发展,到目前为止,钙钛矿太阳电池的最高认证效率已达到了22%以上。因其突飞猛进的光电转换效率和极为丰富的材料来源,被《Science》评选为2013年十大科学突破之一。同时,该材料也已经用于光探测器的应用研究,这种材料从可见光到近红外都有较高的响应。然而,这些光电探测器不能覆盖全部可见光的光谱吸收和紫外光谱,这些限制了钙钛矿材料在更宽光谱范围的应用。
因此选择何种材料及工艺制备高质量的光电探测器变的尤为重要。
发明内容
本发明的目的是针对现有技术的缺陷,提供一种基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法。可以很好的实现更宽光谱范围的光响应。
本发明的一个实施例提供了一种基于Ga2O3/钙钛矿异质结的光电探测器的制备方法,包括:
(a)选取半绝缘半透明衬底;
(b)在所述衬底表面淀积形成底电极;
(c)在所述底电极表面淀积Ga2O3层;
(d)在所述Ga2O3层表面旋涂钙钛矿层;
(e)在所述钙钛矿层表面淀积形成顶电极,以完成所述光电探测器的制备。
在本发明的一个实施例中,步骤(a)包括:
(a1)选取半绝缘半透明蓝宝石衬底;
(a2)利用RCA标准清洗工艺对所述蓝宝石衬底进行清洗。
在本发明的一个实施例中,步骤(b)包括:
(b1)利用磁控溅射工艺,在所述衬底的抛光面溅射厚度为50-200nm的金属Ti材料;
(b2)在氮气和氩气的气氛下,利用快速热退火工艺在所述衬底的抛光面与所述金属Ti材料接触处形成欧姆接触以完成所述底电极的制备。
在本发明的一个实施例中,步骤(c)包括:利用磁控溅射工艺,在所述底电极表面生长厚度为150-250nm的所述Ga2O3层。
在本发明的一个实施例中,步骤(d)包括:
(d1)制备旋涂前驱体溶液;
(d2)利用旋涂法在所述Ga2O3层旋涂厚度为200-350nm的杂化钙钛矿材料形成所述钙钛矿层。
在本发明的一个实施例中,步骤(e)包括:
(e1)利用磁控溅射工艺,在所述钙钛矿层表面溅射金属Au材料;
(e2)在氮气和氩气的气氛下,利用快速热退火工艺在所述钙钛矿层与所述金属Au材料接触处形成欧姆接触以完成所述顶电极的制备。
本发明的另一个实施例提供了一种基于Ga2O3/钙钛矿异质结的光电探测器,依次包括:蓝宝石衬底、底电极、Ga2O3层、钙钛矿层以及顶电极。
其中,所述底电极的厚度为50-200nm。
在本发明的一个实施例中,所述Ga2O3层的厚度为150-250nm。
在本发明的一个实施例中,所述钙钛矿层的厚度为200-350nm。
现有技术相比,本发明具有以下有益效果:
1、可以探测从深紫外到近红外的宽范围光谱;
2、具有较高的响应度和探测率,同时具有低的暗电流密度和高的外量子效率;
3、该探测器结构简单、效率高、响应快、工作稳定、使用寿命长,生产成本低,无需昂贵的仪器设备等优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种基于Ga2O3/钙钛矿异质结的光电探测器的制备方法流程图;
图2为本发明实施例提供的一种基于Ga2O3/钙钛矿异质结的光电探测器结构示意图;
图3为本发明实施例提供的一种光电探测器截面结构示意图;
图4a-图4e为本发明实施例的一种基于Ga2O3/钙钛矿异质结的光电探测器的制备工艺示意图;
图5为本发明实施例提供的另一种基于Ga2O3/钙钛矿异质结的光电探测器的制备方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
请参见图1,图1为本发明实施例提供的一种基于Ga2O3/钙钛矿异质结的光电探测器的制备方法流程图,包括:
(a)选取半绝缘半透明衬底;
(b)在所述衬底表面淀积形成底电极;
(c)在所述底电极表面淀积Ga2O3层;
(d)在所述Ga2O3层表面旋涂钙钛矿层;
(e)在所述钙钛矿层表面淀积形成顶电极,以完成所述光电探测器的制备。
优选地,步骤(a)可以包括:
(a1)选取半绝缘半透明蓝宝石衬底;
(a2)利用RCA标准清洗工艺对所述蓝宝石衬底进行清洗。
优选地,步骤(b)可以包括:
(b1)利用磁控溅射工艺,在所述衬底的抛光面溅射厚度为50-200nm的金属Ti材料;
(b2)在氮气和氩气的气氛下,利用快速热退火工艺在所述衬底的抛光面与所述金属Ti材料接触处形成欧姆接触以完成所述底电极的制备。
进一步地,步骤(c)可以包括:利用磁控溅射工艺,在所述底电极表面生长厚度为150-250nm的所述Ga2O3层。
优选地,步骤(d)可以包括:
(d1)制备旋涂前驱体溶液;
(d2)利用旋涂法在所述Ga2O3层旋涂厚度为200-350nm的杂化钙钛矿材料形成所述钙钛矿层。
优选地,步骤(e)可以包括:
(e1)利用磁控溅射工艺,在所述钙钛矿层表面溅射金属Au材料;
(e2)在氮气和氩气的气氛下,利用快速热退火工艺在所述钙钛矿层与所述金属Au材料接触处形成欧姆接触以完成所述顶电极的制备。
本发明提供的基于Ga2O3/钙钛矿异质结的光电探测器的制备方法,具有对于日盲区的深紫外光波响应度高,反应灵敏度高,暗电流小等特点,杂化钙钛矿材料光吸收系数和载流子扩散长度大,禁带宽度可调,对可见- 近红外光波响应快,因此该异质结探测器可以实现从深紫外到近红外的宽谱响应,同时具有暗电流小,响应率和探测率高,快速等优点,制作成本低廉和制备简单。
实施例二
请参照图2,图2为本发明实施例提供的一种基于Ga2O3/钙钛矿异质结的光电探测器结构示意图;该光电探测器采用实施例一的制备方法制成,依次包括:蓝宝石衬底201、底电极202、Ga2O3层203、钙钛矿层204以及顶电极205。
其中,所述底电极202的厚度为50-200nm。
在本发明的一个实施例中,所述Ga2O3层203的厚度为150-250nm。
在本发明的一个实施例中,所述钙钛矿层204的厚度为200-350nm。
实施例三
请参照图3,图3为本发明实施例提供的一种光电探测器截面结构示意图;包括:半绝缘半透明衬底301,底电极302,Ga2O3层303,杂化钙钛矿层304以及顶电极305。
其中,半绝缘半透明衬底301为单面抛光蓝宝石衬底;Ga2O3层303为掺杂Sn、Si、Al的N型β-Ga2O3材料,掺杂浓度1017cm-3量级;杂化钙钛矿层304为CH3NH3PbI3、CH3NH3PbCl3、CH3NH3SnI3等材料,为弱P型,载流子浓度为1016cm-3量级。
其中,底电极302和顶电极305为Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属材料;也可以是包含以上金属中2种以上合金或导电性化合物形成;进一步地,底电极302和顶电极305也可以是具有由不同的2种以上金属构成的2层结构。
本实施提供的光电探测器,具有对于日盲区的深紫外光波响应度高,反应灵敏度高,暗电流小等特点,杂化钙钛矿材料光吸收系数和载流子扩散长度大,禁带宽度可调,对可见-近红外光波响应快,因此该异质结探测器可以实现从深紫外到近红外的宽谱响应,同时具有暗电流小,响应率和探测率高,快速等优点,制作成本低廉和制备简单。
实施例四
请参照图4a-图4e,图4a-图4e为本发明实施例的一种基于Ga2O3/钙钛矿异质结的光电探测器的制备工艺示意图,包括:
步骤1、选取蓝宝石衬底401;
步骤2、在蓝宝石衬底表面淀积第一金属材料形成底电极层402;
步骤3、在底电极层表面生长Ga2O3第一光吸收层403;
步骤4、在第一光吸收层表面制备杂化钙钛矿第二光吸收层404;
步骤5、在第二光吸收层表面生长顶电极层405。
其中,如图4a所示,步骤1可以包括:
步骤1.1、选取半绝缘半透明单面抛光材料作为蓝宝石衬底401;
步骤1.2、利用RCA标准清洗工艺对蓝宝石衬底401进行清洗。
优选地,如图4b所示,步骤2可以包括:
步骤2.1、利用磁控溅射工艺在蓝宝石衬底401的抛光面溅射金属材料;
步骤2.2、在氮气和氩气的气氛下,利用快速热退火工艺在蓝宝石衬底 401的抛光面与金属材料表面处形成欧姆接触以完成底电极层402的制备。
进一步地,步骤2.1可以包括:以Ti材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为80W,真空度为5×10-4~6×10-3Pa 的条件下,在蓝宝石衬底401的抛光面溅射Ti材料以作为金属材料。
优选地,如图4c所示,步骤3可以包括:
步骤3.1、利用磁控溅射工艺在底电极层402上生长Ga2O3材料,作为第一光吸收层403;
进一步地,步骤3.1可以包括:将Ga2O3靶材放置在射频磁控溅射系统的靶位置,将腔体抽至真空状态(5×10-6Pa),加热蓝宝石衬底401,通入气体Ar,调整真空腔内的压强;其中,Ga2O3靶材与蓝宝石衬底401的距离为10厘米,溅射功率为50-70W,沉积时间为1-1.5h。
优选地,如图4d所示,步骤4可以包括:
步骤4.1、将0.415g的CH3NH3I和1.223g的PbI2溶于4mL的DMF溶液中制备旋涂前驱体溶液,在50℃搅拌10-12h;
步骤4.2、以3000rpm的转速将步骤4.1前驱体溶液旋涂到Ga2O3第一光吸收层403;
步骤4.3、在90℃下退火0.5h,制成CH3NH3PbI3薄膜,作为第二光吸收层404。
优选地,如图4e所示,步骤5可以包括:
步骤5.1、采用物理掩膜板,利用磁控溅射工艺在第二光吸收层404上生长顶电极金属材料;
步骤5.2、在氮气和氩气的气氛下,利用快速热退火工艺在第二光吸收层404的上表面与顶电极金属材料表面处形成欧姆接触以完成顶电极层405 的制备。
其中,步骤5.1可以包括:以Au材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为60~80W,在真空度为5×10-4~6×10-3Pa 的条件下,在第二光吸收层404表面溅射形成Au顶电极金属材料。
本发明采用Ga2O3/杂化钙钛矿异质结作为光电探测器材料的优势为:宽禁带半导体材料Ga2O3,因材料在日盲区的光透率可达80%甚至90%以上而极适合于深紫外光日盲区的光电探测,其光电灵敏度高,透明性和导电性性能好,是实现光电探测器的理想材料。有机无机杂化钙钛矿材料因其载流子扩散长度长、光吸收系数大,禁带宽度可调而非常适合可见-近红外光探测,暗电流小、噪声电流小是作为光电探测器材料的优选。
实施例五
请参见图5,图5为本发明实施例提供的另一种基于Ga2O3/钙钛矿异质结的光电探测器的制备方法流程图,包括:
S501:衬底清洗
将半绝缘半透明蓝宝石衬底放在丙酮、乙醇和去离子水中分别进行超声清洗,并真空干燥;
S502:放置靶材和衬底
将清洗处理后的蓝宝石衬底固定在样品托盘上,放进真空腔,将底靶材放置在射频磁控溅射系统的靶位置,开始抽真空;
S503:淀积底电极
先将腔体抽至真空状态(5×10-6Pa),加热蓝宝石衬底,调整腔内气压:其中,底靶材与蓝宝石衬底的距离为10cm,溅射功率为50W,沉积时间为 0.5h-1h;
S504:Ga2O3薄膜淀积
将Ga2O3靶材放置在射频磁控溅射系统的靶位置,将腔体抽至真空状态(5×10- 6Pa),加热蓝宝石衬底,通入气体Ar,调整真空腔内的压强;其中,Ga2O3靶材与蓝宝石衬底的距离为10cm,溅射功率为50-70W,沉积时间为1-1.5h;
S505:旋涂杂化钙钛矿薄膜
将0.415g的CH3NH3I和1.223g的PbI2溶于4mL的DMF溶液中制备旋涂前驱体溶液,并在50℃搅拌10-12h,以3000rpm的转速将前驱体溶液旋涂到Ga2O3薄膜上,然后在90℃下退火0.5h,制成CH3NH3PbI3薄膜。
S506:淀积顶层电极
利用掩膜版并通过射频磁控溅射技术在钙钛矿薄膜上面沉积一层厚度为100nm的Au薄膜电极作为顶层电极,先将腔体抽至真空状态(5×10-6Pa),加热样品,调整腔内气压:其中,靶材与样品的距离为10厘米,溅射功率为50W,沉积时间为1h-2h。
综上,本文中应用了具体个例对本发明一种基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制,本发明的保护范围应以所附的权利要求为准。

Claims (10)

1.一种基于Ga2O3/钙钛矿异质结的光电探测器的制备方法,其特征在于,包括:
(a)选取半绝缘半透明衬底;
(b)在所述衬底表面淀积形成底电极;
(c)在所述底电极表面淀积Ga2O3层;
(d)在所述Ga2O3层表面旋涂钙钛矿层;
(e)在所述钙钛矿层表面淀积形成顶电极,以完成所述光电探测器的制备。
2.根据权利要求1所述的制备方法,其特征在于,步骤(a)包括:
(a1)选取半绝缘半透明蓝宝石衬底;
(a2)利用RCA标准清洗工艺对所述蓝宝石衬底进行清洗。
3.根据权利要求1所述的制备方法,其特征在于,步骤(b)包括:
(b1)利用磁控溅射工艺,在所述衬底的抛光面溅射厚度为50-200nm的金属Ti材料;
(b2)在氮气和氩气的气氛下,利用快速热退火工艺在所述衬底的抛光面与所述金属Ti材料接触处形成欧姆接触以完成所述底电极的制备。
4.根据权利要求1所述的制备方法,其特征在于,步骤(c)包括:利用磁控溅射工艺,在所述底电极表面生长厚度为150-250nm的所述Ga2O3层。
5.根据权利要求1所述的制备方法,其特征在于,步骤(d)包括:
(d1)制备旋涂前驱体溶液;
(d2)利用旋涂法在所述Ga2O3层上旋涂厚度为200-350nm的杂化钙钛矿材料形成所述钙钛矿层。
6.根据权利要求1所述的制备方法,其特征在于,步骤(e)包括:
(e1)利用磁控溅射工艺,在所述钙钛矿层表面溅射金属Au材料;
(e2)在氮气和氩气的气氛下,利用快速热退火工艺在所述钙钛矿层与所述金属Au材料接触处形成欧姆接触以完成所述顶电极的制备。
7.一种基于Ga2O3/钙钛矿异质结的光电探测器,其特征在于,依次包括:蓝宝石衬底、底电极、Ga2O3层、钙钛矿层以及顶电极。
8.根据权利要求7所述的光电探测器,其特征在于,所述底电极的厚度为50-200nm。
9.根据权利要求7所述的光电探测器,其特征在于,所述Ga2O3层的厚度为150-250nm。
10.根据权利要求7所述的光电探测器,其特征在于,所述钙钛矿层的厚度为200-350nm。
CN201710412534.9A 2017-06-05 2017-06-05 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法 Active CN107369763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710412534.9A CN107369763B (zh) 2017-06-05 2017-06-05 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710412534.9A CN107369763B (zh) 2017-06-05 2017-06-05 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN107369763A true CN107369763A (zh) 2017-11-21
CN107369763B CN107369763B (zh) 2020-02-18

Family

ID=60305342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710412534.9A Active CN107369763B (zh) 2017-06-05 2017-06-05 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN107369763B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400244A (zh) * 2018-03-06 2018-08-14 郑州大学 一种基于无铅双钙钛矿薄膜的深紫外光探测器及制备方法
CN108682747A (zh) * 2018-05-16 2018-10-19 西安电子科技大学 一种双异质结钙钛矿光电器件及其制备方法
CN108735833A (zh) * 2018-05-30 2018-11-02 张权岳 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法
CN108767116A (zh) * 2018-06-06 2018-11-06 华南师范大学 一种自驱动光电探测器及其制备方法
CN108807692A (zh) * 2018-06-01 2018-11-13 华中科技大学 一种抑制钙钛矿探测器暗电流的方法
CN109713126A (zh) * 2018-12-26 2019-05-03 西安电子科技大学 基于宽禁带半导体/钙钛矿异质结的宽频光电探测器
CN110993707A (zh) * 2019-11-25 2020-04-10 西北工业大学 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN111081886A (zh) * 2019-11-25 2020-04-28 西北工业大学 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
CN111192960A (zh) * 2018-11-14 2020-05-22 苏州大学 一种紫外-可见光双波段光电探测器件及其制备方法
CN108520919B (zh) * 2018-03-13 2020-05-22 华南理工大学 一种有机/无机杂化钙钛矿光电探测器及其制备方法
CN112635678A (zh) * 2020-12-22 2021-04-09 哈尔滨工业大学 一种基于甲胺基氯化铅/氧化镓异质结的高效自供能uva波段紫外光电探测器及其制备方法
CN112670366A (zh) * 2020-12-22 2021-04-16 中国科学院半导体研究所 GeSn/钙钛矿异质结宽光谱探测器及其制作方法
CN112909126A (zh) * 2021-02-02 2021-06-04 中南大学 一种PVK-TMDCs范德华异质结及其制备方法
CN113066901A (zh) * 2021-03-24 2021-07-02 北京邮电大学 增强VOx-Ga2O3异质结自供电光响应性能的方法
CN113328005A (zh) * 2021-05-27 2021-08-31 中国科学技术大学 一种光电探测器及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022046891A1 (en) * 2020-08-26 2022-03-03 Board Of Regents, The University Of Texas System Radiation detectors having perovskite films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428438A (zh) * 2015-05-18 2016-03-23 北京科技大学 一种高效钙钛矿太阳能电池及其制备方法
CN106409987A (zh) * 2016-12-08 2017-02-15 西安电子科技大学 基于Ir2O3/Ga2O3的深紫外APD探测二极管及其制作方法
US20170125172A1 (en) * 2015-10-30 2017-05-04 The University Of Akron Perovskite hybrid solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428438A (zh) * 2015-05-18 2016-03-23 北京科技大学 一种高效钙钛矿太阳能电池及其制备方法
US20170125172A1 (en) * 2015-10-30 2017-05-04 The University Of Akron Perovskite hybrid solar cells
CN106409987A (zh) * 2016-12-08 2017-02-15 西安电子科技大学 基于Ir2O3/Ga2O3的深紫外APD探测二极管及其制作方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400244A (zh) * 2018-03-06 2018-08-14 郑州大学 一种基于无铅双钙钛矿薄膜的深紫外光探测器及制备方法
CN108520919B (zh) * 2018-03-13 2020-05-22 华南理工大学 一种有机/无机杂化钙钛矿光电探测器及其制备方法
CN108682747A (zh) * 2018-05-16 2018-10-19 西安电子科技大学 一种双异质结钙钛矿光电器件及其制备方法
CN108735833A (zh) * 2018-05-30 2018-11-02 张权岳 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法
CN108807692A (zh) * 2018-06-01 2018-11-13 华中科技大学 一种抑制钙钛矿探测器暗电流的方法
CN108767116A (zh) * 2018-06-06 2018-11-06 华南师范大学 一种自驱动光电探测器及其制备方法
CN108767116B (zh) * 2018-06-06 2020-07-03 华南师范大学 一种自驱动光电探测器及其制备方法
CN111192960B (zh) * 2018-11-14 2022-12-02 苏州大学 一种紫外-可见光双波段光电探测器件及其制备方法
CN111192960A (zh) * 2018-11-14 2020-05-22 苏州大学 一种紫外-可见光双波段光电探测器件及其制备方法
CN109713126A (zh) * 2018-12-26 2019-05-03 西安电子科技大学 基于宽禁带半导体/钙钛矿异质结的宽频光电探测器
CN111081886A (zh) * 2019-11-25 2020-04-28 西北工业大学 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
CN111081886B (zh) * 2019-11-25 2021-03-23 西北工业大学 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
CN110993707B (zh) * 2019-11-25 2021-06-15 西北工业大学 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN110993707A (zh) * 2019-11-25 2020-04-10 西北工业大学 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN112635678A (zh) * 2020-12-22 2021-04-09 哈尔滨工业大学 一种基于甲胺基氯化铅/氧化镓异质结的高效自供能uva波段紫外光电探测器及其制备方法
CN112670366A (zh) * 2020-12-22 2021-04-16 中国科学院半导体研究所 GeSn/钙钛矿异质结宽光谱探测器及其制作方法
CN112635678B (zh) * 2020-12-22 2022-10-04 哈尔滨工业大学 一种基于甲胺基氯化铅/氧化镓异质结的自供能uva波段紫外光电探测器及其制备方法
CN112909126A (zh) * 2021-02-02 2021-06-04 中南大学 一种PVK-TMDCs范德华异质结及其制备方法
CN113066901A (zh) * 2021-03-24 2021-07-02 北京邮电大学 增强VOx-Ga2O3异质结自供电光响应性能的方法
CN113066901B (zh) * 2021-03-24 2022-10-11 北京邮电大学 增强VOx-Ga2O3异质结自供电光响应性能的方法
CN113328005A (zh) * 2021-05-27 2021-08-31 中国科学技术大学 一种光电探测器及其制备方法

Also Published As

Publication number Publication date
CN107369763B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
CN108470675A (zh) 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN102694052B (zh) 半导体器件及其制造方法
CN106229373A (zh) 基于β‑Ga2O3/NSTO异质结可零功耗工作的日盲紫外光电探测器及其制备方法
CN107644939A (zh) 宽谱响应光电探测器及其制备方法
CN106340551A (zh) 一种基于Mg:β‑Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN102709395A (zh) 一种CdZnTe薄膜紫外光探测器的制备方法
CN107302054A (zh) 双异质结光探测器及其制备方法
CN106784124A (zh) 一种基于P‑NiO/N‑ZnO:Al异质结结构的紫外探测器及其制备方法
CN111564509B (zh) 一种全氧化物柔性光电探测器及其制备方法与应用
CN109755342A (zh) 一种直接型x射线探测器及其制备方法
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN112103354A (zh) 透明Ga2O3的p-i-n异质结构日盲型紫外光探测器及其制备方法
CN109148635A (zh) CuAlO2/Ga2O3紫外光电二极管及制备方法
CN107425090A (zh) 垂直型光电探测器及其制备方法
CN110808296A (zh) 一种双层半导体结构的光电导型深紫外单色光电探测器
CN106206829B (zh) 一种基于锰掺杂氮化铜薄膜的可见光探测器
CN102569486B (zh) 一种肖特基栅场效应紫外探测器及其制备方法
CN110467230A (zh) 相变温度可调的RuxV1-xO2合金半导体薄膜材料、制备方法及其在智能窗中的应用
CN110265501A (zh) 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法
CN109301026A (zh) 氮掺杂氧化镍-氧化锌近紫外光探测器
CN110323291A (zh) 基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法
CN109524491A (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant