CN109301026A - 氮掺杂氧化镍-氧化锌近紫外光探测器 - Google Patents

氮掺杂氧化镍-氧化锌近紫外光探测器 Download PDF

Info

Publication number
CN109301026A
CN109301026A CN201811086492.5A CN201811086492A CN109301026A CN 109301026 A CN109301026 A CN 109301026A CN 201811086492 A CN201811086492 A CN 201811086492A CN 109301026 A CN109301026 A CN 109301026A
Authority
CN
China
Prior art keywords
nio
black light
zno
zinc oxide
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811086492.5A
Other languages
English (en)
Inventor
黄仕华
陆肖励
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201811086492.5A priority Critical patent/CN109301026A/zh
Publication of CN109301026A publication Critical patent/CN109301026A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种氮掺杂氧化镍‑氧化锌近紫外光探测器,具有如下的结构:Ag/NiO:N/ZnO/FTO导电玻璃,其中FTO为掺氟的氧化铟。这种探测器提高了NiO中的载流子浓度,增加了电导率,增强了内建电场,另一方面,减少了禁带宽度,吸收波长向长波方向移动,对微弱UVA近紫外光有较高的灵敏度。

Description

氮掺杂氧化镍-氧化锌近紫外光探测器
技术领域
本发明涉及一种氮掺杂氧化镍-氧化锌近紫外光探测器,属于光电探测器技 术领域。
背景技术
紫外探测技术在导弹预警、制导、紫外通讯、高压电晕监测、火焰探测、污 染检测、太阳照度检测等军事和民用领域有着广泛的应用,是红外和激光探测技 术之后快速发展的军民两用光电探测技术。目前最常用的紫外探测器是硅基探测 器,但由于硅的禁带宽度比较窄,为了避免可见光和近红外光等低能量辐射对探 测器的响应,通常要钝化层和滤光层,这会导致器件的有效面积减少。宽禁带半 导体材料,如GaN、AlN、ZnS、SiC等,由于禁带宽度较大对可见光不吸收、 抗紫外辐射能力强等特点,基于宽禁带半导体紫外探测器具有信噪比高、响应速 度快、稳定性好等特点引起了人们的日益重视。
氧化锌(ZnO)是宽禁带(3.3eV)直接带隙的半导体,拥有高的激子束缚 能(60meV),在紫外探测器方面有着广泛的应用。在制备过程中由于氧空位在 氧化锌禁带中引入施主能级,因此,非有意掺杂的氧化锌是n型半导体材料。由 于强烈的自补偿效,p型氧化锌制备比较困难。氧化镍(NiO)也是一种宽禁带 (3.8eV)直接带隙的半导体,激子束缚能(110meV)比ZnO、GaN(26meV) 高,非有意掺杂的NiO是p型半导体。同时,由于高功函数,NiO通常在有机 光伏器件中作为空穴传输层,具有良好的传输空穴和阻挡电子的能力。因此,p型NiO与n型ZnO构成的NiO/ZnO异质结是紫外光探测器较为理想的结构。
目前国内外已经对NiO/ZnO紫外光探测器进行一些研究,取得了较好的成 果,但是在微弱的紫外光和UVA近紫外光(波长为300~420nm)的探测方面还 存在一定的困难。其原因在于非有意掺杂的NiO是弱p型半导体,载流子浓度 很低,导致NiO的电导率低以及NiO/ZnO之间的内建电场弱。另外,NiO的禁 带宽度大,对波长大于330nm的紫外光是不吸收的,也就是透明的,因此, NiO/ZnO探测器在探测UVA近紫外光方面的效率很低。太阳光中的UVA能穿 透臭氧层和云层到达地球表面,能穿透大部分透明的玻璃以及塑料,可以直达肌肤的真皮层,破坏弹性纤维和胶原蛋白纤维,将皮肤灼伤并引起皮肤癌。因此, 探测微弱的UVA近紫外光有着十分重要的意义。
发明内容
在本发明中,为了提高NiO/ZnO探测器在微弱紫外光和UVA近紫外光等方 面探测性能,提出了在NiO中掺氮(N)的方案,制备了氮掺杂氧化镍(NiO:N) /氧化锌近紫外光探测器,具体的技术方案是这样的:氮掺杂氧化镍-氧化锌近紫 外光探测器,其特征在于具有如下的结构:Ag/NiO:N/ZnO/FTO导电玻璃,其中 FTO为掺氟的氧化铟。
本发明的探测器结构,其制备方法详见实施例。
这种探测器提高了NiO中的载流子浓度,增加了电导率,增强了内建电场, 另一方面,减少了禁带宽度,吸收波长向长波方向移动,对微弱UVA近紫外光 有较高的灵敏度。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为本发明的结构示意图。
具体实施方式
实施例:
1)探测器的制备
本实施例中的氮掺杂氧化镍/氧化锌近紫外光探测器的结构为Ag电极1、 NiO:N层2(30nm)、ZnO层3(70nm)和FTO层4,其中ZnO、NiO:N、Ag 薄膜依次在多靶磁控溅射沉积系统中生长。衬底为FTO导电玻璃,方块电阻 6~10Ω,尺寸40×40mm2。靶材分别是金属银(Ag)、金属镍(Ni)和ZnO,溅 射气体为氩气、氧气和氮气,靶材和气体的纯度为99.999%。溅射腔的本底真空 为5×10-4Pa,靶材与衬底之间的距离为6.0~8.0cm,衬底温度为室温,工作气压 为0.1~0.5Pa。射频电源的频率为13.56MHz,溅射薄膜厚度由膜厚测量仪监控。
(1)衬底和靶材的清洗:首先用专用玻璃洗涤剂、丙酮、无水乙醇依次对 FTO导电玻璃衬底进行超声清洗,每次清洗后用去离子水冲洗多遍,最后用氮 气吹干后再放入溅射腔。靶材在放入溅射腔之前,依次用丙酮、乙醇进行清洗, 再用去离子水进行冲洗,再用氮气吹干。每次薄膜生长之前,先对靶材进行预溅 射10分钟,去除靶材表面的污染。
(2)ZnO薄膜生长:氩气为溅射工作气体,射频溅射功率为0.5~0.8W/cm2, ZnO薄膜厚度为70nm。
(3)氮掺杂氧化镍生长:ZnO薄膜生长完之后,打开氧气和氮气阀门,在 气体混合腔与氩气经过充分混合以后,进入溅射腔。氩气、氧气和氮气混合气体 的总流量为30sccm,其中氧气的流量5~10sccm,氮气的流量为0.2~2sccm。沉 积速率为1.35~1.50nm/min,沉积时间为7min,厚度为9.5~10.5nm。直流溅射 功率为0.1~0.2W/cm2,氮掺杂氧化镍薄膜为30nm。
(4)Ag电极的生长:利用掩膜板在NiO薄膜上面溅射一层指叉状的银电 极,溅射功率为2.0~3.0W/cm2,薄膜厚度为500nm。
(5)退火处理:所有薄膜生长完毕之后,在未破真空的情况下,样品在 200~250℃温度下原位退火3~5分钟。
2)性能测试
为了评估探测器的光电响应,使用波长为400nm的LED脉冲光源照射(从 Ag电极端入射),光强为30μW/cm2,样品两端施加反向直流电压5V(FTO导 电层为电源正极)。探测器的响应时间如下:探测器的上升沿时间(从峰值的10% 上升到90%所需时间)约为53ms,下降沿时间(从峰值的90%下降到10%所 需时间)约为120ms。相比于未掺杂的NiO/ZnO紫外探测器,响应时间缩短了 50~80%,响应波长向长波方向移动了将近100nm,而且在光强低至2μW/cm2的情况下,探测器的信噪比还比较高。

Claims (1)

1.氮掺杂氧化镍-氧化锌近紫外光探测器,其特征在于:具有如下的结构:
Ag/NiO:N/ZnO/FTO导电玻璃,其中FTO为掺氟的氧化铟。
CN201811086492.5A 2018-09-18 2018-09-18 氮掺杂氧化镍-氧化锌近紫外光探测器 Pending CN109301026A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811086492.5A CN109301026A (zh) 2018-09-18 2018-09-18 氮掺杂氧化镍-氧化锌近紫外光探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811086492.5A CN109301026A (zh) 2018-09-18 2018-09-18 氮掺杂氧化镍-氧化锌近紫外光探测器

Publications (1)

Publication Number Publication Date
CN109301026A true CN109301026A (zh) 2019-02-01

Family

ID=65163541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811086492.5A Pending CN109301026A (zh) 2018-09-18 2018-09-18 氮掺杂氧化镍-氧化锌近紫外光探测器

Country Status (1)

Country Link
CN (1) CN109301026A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法
CN112582486A (zh) * 2020-12-15 2021-03-30 广西大学 一种NiO紫外光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244010A (zh) * 2011-06-03 2011-11-16 桂林电子科技大学 一种玻璃衬底p-CuAlO2/n-ZnO:Al透明薄膜异质结的制备方法
CN104218098A (zh) * 2013-10-23 2014-12-17 天津职业技术师范大学 一种NiO:Cu/ZnO异质pn结二极管
CN104485364A (zh) * 2015-01-04 2015-04-01 天津职业技术师范大学 一种NiO:Ag/ZnO异质pn结二极管
CN104835853A (zh) * 2015-04-15 2015-08-12 天津职业技术师范大学 一种NiO:Al/ZnO异质pn结二极管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244010A (zh) * 2011-06-03 2011-11-16 桂林电子科技大学 一种玻璃衬底p-CuAlO2/n-ZnO:Al透明薄膜异质结的制备方法
CN104218098A (zh) * 2013-10-23 2014-12-17 天津职业技术师范大学 一种NiO:Cu/ZnO异质pn结二极管
CN104485364A (zh) * 2015-01-04 2015-04-01 天津职业技术师范大学 一种NiO:Ag/ZnO异质pn结二极管
CN104835853A (zh) * 2015-04-15 2015-08-12 天津职业技术师范大学 一种NiO:Al/ZnO异质pn结二极管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KERAUDY, J.等: "Nitrogen doping on NiO by reactive magnetron sputtering: A new pathway to dynamically tune the optical and electrical properties", 《APPLIED SURFACE SCIENCE》 *
MAZHAR ALI ABBASI等: "Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures", 《MATERIALS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法
CN112582486A (zh) * 2020-12-15 2021-03-30 广西大学 一种NiO紫外光电探测器及其制备方法
CN112582486B (zh) * 2020-12-15 2023-09-26 广西大学 一种NiO紫外光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN110444618B (zh) 基于非晶氧化镓薄膜的日盲紫外探测器及其制备方法
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
CN105870225B (zh) 一种单片集成的多功能紫外/日盲紫外双色探测器及其制备方法
Ferhati et al. Highly sensitive, ultra-low dark current, self-powered solar-blind ultraviolet photodetector based on ZnO thin-film with an engineered rear metallic layer
CN104576805A (zh) 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
Zhao et al. Ultraviolet photodetector based on a MgZnO film grown by radio-frequency magnetron sputtering
CN106340551A (zh) 一种基于Mg:β‑Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN107644939A (zh) 宽谱响应光电探测器及其制备方法
CN112103354A (zh) 透明Ga2O3的p-i-n异质结构日盲型紫外光探测器及其制备方法
CN106098820B (zh) 一种新型硒化锑薄膜太阳能电池及其制备方法
CN106206832B (zh) 一种单级阻挡结构窄带通紫外探测器
CN109301026A (zh) 氮掺杂氧化镍-氧化锌近紫外光探测器
Chaoudhary et al. Laser ablation fabrication of a p-nio/n-si heterojunction for broadband and self-powered UV–visible–nir photodetection
Hu et al. Improved photoelectric performance with self-powered characteristics through TiO2 surface passivation in an α-Ga2O3 nanorod array deep ultraviolet photodetector
CN111864005A (zh) 氧化镓基pn结光电探测器、远程电晕监测系统及制作方法
CN113066931B (zh) spiro-MeOTAD/Ga2O3/Si p-i-n型日盲紫外探测器及其制备方法
Lu et al. Photoelectric characteristics of Al-doped ZnO/p-Si diode prepared by radio frequency magnetron sputtering
CN102569486B (zh) 一种肖特基栅场效应紫外探测器及其制备方法
CN109755341B (zh) 基于β-Ga2O3/FTO异质结的日盲紫外光电探测器及其制备
CN106206829A (zh) 一种基于锰掺杂氮化铜薄膜的可见光探测器
CN109524491A (zh) 具有ZnTe过渡层的GaN-CdZnTe复合结构组件、应用及其制备方法
Naseem et al. Indium tin oxide/gallium arsenide solar cells
Lin et al. Nanoscale-Thick a-Ga2O3 Films on GaN for High-Performance Self-Powered Ultraviolet Photodetectors
CN108878552A (zh) 一种带隙纵向梯度分布Al和Fe共掺杂Ga2O3薄膜的制法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190201