CN110265501A - 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法 - Google Patents

一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN110265501A
CN110265501A CN201910589692.0A CN201910589692A CN110265501A CN 110265501 A CN110265501 A CN 110265501A CN 201910589692 A CN201910589692 A CN 201910589692A CN 110265501 A CN110265501 A CN 110265501A
Authority
CN
China
Prior art keywords
deep ultraviolet
ultraviolet light
noncrystal membrane
flexible
light electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910589692.0A
Other languages
English (en)
Other versions
CN110265501B (zh
Inventor
何云斌
黎明锴
鄂文涛
程阳
常钢
卢寅梅
李派
张清风
陈俊年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Ruilian Zhichuang Photoelectric Co Ltd
Hubei University
Original Assignee
Wuhan Ruilian Zhichuang Photoelectric Co Ltd
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Ruilian Zhichuang Photoelectric Co Ltd, Hubei University filed Critical Wuhan Ruilian Zhichuang Photoelectric Co Ltd
Priority to CN201910589692.0A priority Critical patent/CN110265501B/zh
Publication of CN110265501A publication Critical patent/CN110265501A/zh
Application granted granted Critical
Publication of CN110265501B publication Critical patent/CN110265501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及一种基于BexZn1‑xO非晶薄膜的柔性深紫外光电探测器及其制备方法,属于光电探测器技术领域。本发明的柔性深紫外光电探测器从下至上依次包括透明柔性衬底、有源层、一对平行金属电极,所述有源层为BexZn1‑xO非晶薄膜,其中:0<x<1,所述有源层的厚度为100~200nm。本发明通过将Be掺杂进入ZnO成功调高了BexZn1‑xO合金光学带隙,更重要的是实现了光电性能优良的非晶BexZn1‑xO合金薄膜在柔性衬底上的沉积,成功制备了能够探测波长小于280nm的深紫外辐射信号的柔性深紫外光电探测器,且本发明制得的器件满足可折叠、可穿戴、轻便和便携等要求。

Description

一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制 备方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法。
背景技术
紫外辐射作为电磁辐射的重要组成部分在人类生活中起到重要的作用。一般紫外线辐射可以分为三个波段UVA(320nm~400nm),UVB(280nm~320nm),UVC(200nm~280nm)。探测不同波段的紫外辐射信号的紫外光电探测器可应用于不同领域,如在安全通信,环境污染监测,火焰检测,导弹探测等方面具备广泛的应用前景。而其中UVC紫外光电探测器可以有效地监测南极臭氧洞的变化以及应用于一些特殊的领域。目前传统的紫外光电探测器多为刚性器件,与之相比,满足可折叠,可穿戴,轻便和便携等要求的柔性紫外光电探测器在实际应用方面更受欢迎。
ZnO作为一种宽带隙氧化物,由于其具备较好的生物相容性、低成本制备技术等性质,一直被视为开发紫外光电探测器的热门材料。然而其3.37eV的光学带隙无法满足制备成探测UVC波段信号的紫外光电探测器的条件。BeO具备高达10.6eV的光学带隙,理论上可以通过将ZnO与BeO合金化来调节带隙,将BeZnO带隙调高至能够探测UVC波段信号的程度。但是由于BeO与ZnO之间晶格失配程度大,掺杂过程中容易发生相分离,Be难以掺杂进ZnO中,所以关于BeZnO深紫外光电探测器的研究报告较少。而基于BeZnO非晶薄膜的柔性深紫外光电探测器更是未见报道。
透明柔性衬底材料,例如PET、PEN、PVC等高分子薄膜具有优异的物理、化学性能,且具有尺寸稳定性、透明性,可广泛地应用于磁记录、感光材料、电子、电气绝缘、工业用膜、包装装饰、屏幕保护、光学级镜面表面保护等领域。其具备良好的机械柔性,所以被选择作为本发明的衬底来满足所制备的深紫外光电探测器具备柔性的需求。
发明内容
本发明的目的在于提供一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法。
为了实现本发明的上述第一个目的,本发明采用的技术方案如下:
一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器,从下至上依次包括透明柔性衬底、有源层、一对平行金属电极,所述有源层为BexZn1-xO非晶薄膜,其中:0<x<1。
进一步地,上述技术方案,所述透明柔性衬底材料为聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚氯乙烯(PVC)、聚醚酰亚胺(PEI)或聚二甲基硅氧烷(PDMS)等中的任一种。
进一步地,上述技术方案,所述有源层的厚度为100~200nm。
进一步地,上述技术方案,所述平行电极的厚度为40~100nm。
进一步地,上述技术方案,所述平行电极的间距为10~100μm。
进一步地,上述技术方案,所述平行金属电极材料可以为Au、Ag、Pt或Al中的任一种,优选为Al。
本发明的另一目的在于提供上述所述基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器的制备方法,所述方法包括以下步骤:
(1)选择合适大小的柔性衬底,并对所述衬底进行清洁和干燥预处理;
(2)在预处理后的柔性衬底上表面制备BexZn1-xO非晶薄膜层;
(3)在所述BexZn1-xO非晶薄膜上表面制备平行金属电极。
进一步地,上述技术方案,步骤(2)所述BexZn1-xO非晶薄膜层可采用脉冲激光烧蚀法沉积制得,还可利用磁控溅射或电子束蒸发方法制得。
更进一步地,上述技术方案,步骤(2)所述BexZn1-xO非晶薄膜优选采用脉冲激光烧蚀沉积方法制得,具体工艺如下:
利用BexZn1-xO陶瓷作为靶材,控制衬底温度为0~52℃,脉冲激光能量为300~400mJ/Pulse,氧压为0~10Pa,在预处理后的柔性衬底表面沉积形成BexZn1-xO非晶薄膜。
优选地,上述技术方案,所述BexZn1-xO陶瓷靶材是采用固相烧结法制得,具体方法如下:
按配比将ZnO、BeO粉体原料混合均匀,球磨、干燥后压成圆片,然后置于管式炉中于1100~1400℃条件下烧制2~5h制得陶瓷靶材。
更优选地,上述技术方案,所述ZnO、BeO粉体原料的摩尔比为90:10~20:80。
与现有技术相比,本发明涉及的一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法具有如下有益效果:
(1)本发明通过将Be掺杂进入ZnO成功调高了其光学带隙,更重要的是将BexZn1-xO非晶薄膜在不影响其光电特性的前提下成功将其沉积在柔性衬底上,成功制备了能够探测波长低于280nm的深紫外辐射信号的柔性深紫外光电探测器。
(2)本发明制备的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器具有重复弯曲、折叠可恢复性,可以应用于可穿戴探测设备、弯曲屏交互设备等领域,可以大幅提高深紫外光电探测系统的便携性、设置及设计的自由度。
(3)本发明的柔性深紫外光电探测器有源层材料为BexZn1-xO非晶薄膜,其自身特有的可弯曲、柔韧特性保证了柔性深紫外探测器在弯曲状态下的探测稳定性。
(4)本发明提供的制备柔性紫外光电探测器的方法所需的设备和操作工艺较为简单,原材料廉价易得,且无需在较高温度条件下制备,不仅满足了大规模工业化生产的条件,生产成本低,而且所需的能源消耗较低,有利于降低电子器件和探测设备的整体生产成本。所以本发明提供的基于BexZn1-xO非晶薄膜柔性深紫外光电探测器及其制备方法具有良好实际应用前景。
附图说明
图1是本发明的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器的结构示意图;
图2是本发明实施例1~4制得的BexZn1-xO非晶薄膜的XRD测试图谱;
图3是本发明实施例1制得的基于Be0.15Zn0.85O非晶薄膜的柔性深紫外光电探测器的I-V曲线;
图4是本发明实施例1制得的基于Be0.15Zn0.85O非晶薄膜的柔性深紫外光电探测器的时间-电流光电响应曲线;
图5是本发明实施例2制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器的I-V曲线;
图6是本发明实施例制2得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器的时间-电流光电响应曲线;
图7是本发明实施例3制得的基于Be0.4Zn0.6O非晶薄膜的柔性深紫外光电探测器的I-V曲线;
图8是本发明实施例3制得的基于Be0.4Zn0.6O非晶薄膜的柔性深紫外光电探测器的时间-电流光电响应曲线;
图9是本发明实施例4制得的基于Be0.5Zn0.5O非晶薄膜的柔性深紫外光电探测器的I-V曲线;
图10是本发明实施例4制得的基于Be0.5Zn0.5O非晶薄膜的柔性深紫外光电探测器的时间-电流光电响应曲线;
图11是本发明实施例5制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器的XRD测试图谱;
图12是是本发明实施例5制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器的I-V曲线;
图13是本发明实施例5制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器的时间-电流光电响应曲线;
图14是本发明实施例5制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器进行机械弯曲实验的示意图;
图15本发明实施例5制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器进行一定频率相同幅度弯曲200次后在265nm紫外光照条件下的I-V曲线;
图16本发明实施例5制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器进行一定频率相同幅度弯曲200次后的时间-电流光电响应曲线。
具体实施方式
下面通过实施案例和附图对本发明作进一步详细说明。本实施案例在以本发明技术为前提下进行实施,现给出详细的实施方式和具体的操作过程来说明本发明具有创造性,但本发明的保护范围不限于以下的实施案例。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。
实施例1
如图1所示,本实施例的一种基于Be0.15Zn0.85O非晶薄膜的柔性深紫外光电探测器,所述探测器从下至上依次包括柔性PET衬底、有源层、一对平行金属Al电极;其中:所述有源层为Be0.15Zn0.85O非晶薄膜,所述有源层的厚度为150nm,Al电极厚度为80nm,所述平行电极间距为100μm。
本实施例上述所述的基于Be0.15Zn0.85O非晶薄膜的柔性深紫外光电探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用固相烧结法制备Be0.15Zn0.85O陶瓷靶材
1.1按摩尔比ZnO:BeO=85:15称取9.89g ZnO粉末和0.54g BeO粉末,混合后,加入20g去离子水,随后置于行星式球磨罐(球磨介质为氧化锆陶瓷球)中,球磨8小时,得到混合粉末溶液;
1.2将所述混合粉末溶液筛去氧化锆球后置于干燥箱中,在110℃条件下干燥10小时,随后取出冷却至室温,加入1g乙醇,用碾钵充分研磨均匀后使用压片机在10MPa压强下压成直径27.5mm的圆形坯片;
1.3将上述所述坯片置于管式炉中的坩埚内,在空气气氛下将管式炉升温至1200℃并保温2小时,随后自然冷却至室温,得到本发明所述的Be0.15Zn0.85O陶瓷靶材。
步骤2:利用Be0.15Zn0.85O陶瓷靶材制备紫外光电探测器
2.1以步骤1制得的Be0.15Zn0.85O陶瓷靶材作为激光烧蚀靶材,和经过丙酮、无水乙醇与去离子水分别超声清洗15分钟并经氮气干燥过的柔性PET衬底一起放入真空腔,并抽真空至气压低于10-4Pa;
2.2调节衬底温度至30℃,通入氧气,使得气压在稍后整个薄膜沉积过程中维持在3Pa;然后开启衬底和靶台自转,设定激光器输出能量为350mJ/pulse,脉冲重复频率为5Hz,设定激光沉积薄膜30分钟。随后排出腔内氧气,通入大气待真空腔内气压与外界气压相等时打开真空腔取出样品;
2.3利用XRD对所制薄膜样品进行全谱扫描表征。图2为制得的Be0.15Zn0.85O非晶薄膜的XRD测试图谱。随后将薄膜样品与掩膜板安装到真空蒸镀机的真空腔内,安装钨舟并在上面放上0.2g蒸发源金属铝,关闭真空腔,开启机械泵、前级阀、分子泵抽真空至气压低于10-4Pa。打开蒸发电源,缓慢稳定的调节蒸发源电流上升至130A,待金属铝融化后继续保持电流恒定3分钟,随后缓慢稳定的降低蒸发源电流至0,关闭蒸发电源,然后依次关闭分子泵、前级阀、机械泵,打开空气阀门,待真空腔气压与外界气压相等时打开真空腔取出样品,得到基于Be0.15Zn0.85O非晶薄膜的柔性深紫外光电探测器。
在本实施例制得的器件电极之间施加20V的偏压进行光电测试。结果表明该器件对270nm波段的深紫外光具有明显的探测能力。测试结果分别见图3和图4。
从图2本实施例的XRD测试图谱可以看到,全谱中除了柔性衬底在26度存在的晶体衍射峰外,图谱中再无其他明显结晶峰,说明所制备的样品为非晶薄膜。
图3为本实施例制得的基于Be0.15Zn0.85O非晶薄膜的柔性深紫外光电探测器的I-V曲线,可以明显看出在270nm深紫外光照条件下的I-V曲线是线性的,说明Al与所制得Be0.15Zn0.85O薄膜之间形成了欧姆接触。
图4为本实施例制得的基于Be0.15Zn0.85O非晶薄膜的柔性深紫外光电探测器的时间电流光电响应测试曲线。从图中可以看到在20V偏压下,所制备的器件对波长为270nm的UVC深紫外光具备较好的响应,其光电流高达1.15μA。我们使用双指数弛豫方程对曲线进行拟合得到了响应时间。
实施例2
本实施例的一种基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器,所述探测器从下至上依次包括柔性PET衬底、有源层、一对平行金属Al电极;其中:所述有源层为Be0.3Zn0.7O非晶薄膜,所述有源层的厚度为170nm,所述平行电极的厚度为72nm,间距为100μm。
本实施例上述的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用固相烧结法制备Be0.3Zn0.7O陶瓷靶材
1.1按摩尔比ZnO:BeO=70:30称取9.072g ZnO粉末和1.2g BeO粉末,混合后,加入20g去离子水,随后置于行星式球磨罐(球磨介质为氧化锆陶瓷球)中,球磨8小时,得到混合粉末溶液;
1.2将所述混合粉末溶液筛去氧化锆球后置于干燥箱中,在110℃条件下干燥10小时,随后取出冷却至室温,加入1g乙醇,用碾钵充分研磨均匀后使用压片机在10MPa压强下压成直径27.5mm的圆形坯片;
1.3将上述所述坯片置于管式炉中的坩埚内,在空气气氛下将管式炉升温至1200℃并保温2小时,随后自然冷却至室温,得到本发明所述的Be0.3Zn0.7O陶瓷靶材。
步骤2:利用Be0.3Zn0.7O陶瓷靶材制备紫外光电探测器
2.1以步骤1制得的Be0.3Zn0.7O陶瓷靶材作为激光烧蚀靶材,和经过丙酮、无水乙醇与去离子水分别超声清洗15分钟并经氮气吹干过的柔性PET衬底一起放入真空腔,并抽真空至气压低于10-4Pa;
2.2调节衬底温度至30℃,通入氧气,使得气压在稍后整个薄膜沉积过程中维持在3Pa;然后开启衬底和靶台自转,设定激光器输出能量为350mJ/pulse,脉冲重复频率为5Hz,设定激光沉积薄膜35分钟。随后排出腔内氧气,通入大气待真空腔内气压与外界气压相等时打开真空腔取出样品;
2.3利用XRD对所制薄膜样品进行全谱扫描表征。图2为XRD测试图谱。随后将薄膜样品与掩膜版安装到真空蒸镀机的真空腔内,安装钨舟并在上面放上0.18g蒸发源金属铝,关闭真空腔,开启机械泵、前级阀、分子泵抽真空至气压低于10-4Pa。打开蒸发电源,缓慢稳定地调节蒸发源电流上升至130A,待金属铝融化后继续保持电流恒定3分钟,随后缓慢稳定地降低蒸发源电流至0,关闭蒸发电源,然后依次关闭分子泵、前级阀、机械泵,打开空气阀门,待真空腔气压与外界气压相等时打开真空腔取出样品,得到基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器。
在本实施例制得的器件电极之间施加20V的偏压进行光电测试。结果表明该器件对260nm波段的深紫外光具有明显的探测能力和较快的响应速度。测试结果分别见图5和图6。
从图2本实施例所测的XRD图谱我们可以看到全谱中除了柔性衬底在26度存在的晶体衍射峰外,图谱中再无其他明显结晶峰,说明所制备的样品为非晶薄膜。
图5为本实施例制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器的在260nm紫外光照条件下的I-V曲线。
图6为本实施例制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器的时间电流光电响应测试曲线。从图中可以看到在20V偏压下,所制备的器件对波长为260nm的UVC深紫外光具备较好的响应,其光电流达到1.2nA。我们使用双指数弛豫方程对曲线进行拟合,发现所制备的光电探测器弛豫响应时间τr1,τr2及τd1均小于1s,响应速度较快。
实施例3
本实施例的一种基于Be0.4Zn0.6O非晶薄膜的柔性深紫外光电探测器,所述探测器从下至上依次包括柔性PET衬底、有源层、一对平行金属Al电极,其中:所述有源层为Be0.4Zn0.6O非晶薄膜,所述有源层厚度为156nm,所述平行电极厚度为40nm,间距为100μm。
本实施例上述的基于Be0.4Zn0.6O非晶薄膜的柔性深紫外光电探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用固相烧结法制备Be0.4Zn0.6O陶瓷靶材
1.1按摩尔比ZnO:BeO=60:40的比例称取8.748g ZnO粉末和1.8g BeO粉末,混合后,加入20g去离子水,随后置于行星式球磨罐(球磨介质为氧化锆陶瓷球)中,球磨8小时,得到混合粉末溶液;
1.2将所述混合粉末溶液筛去氧化锆球后置于干燥箱中,在110℃条件下干燥10小时,随后取出冷却至室温,加入1g乙醇,用碾钵充分研磨均匀后使用压片机在10MPa压强下压成直径27.5mm的圆形坯片;
1.3将上述所述坯片置于管式炉中的坩埚内,在空气气氛下将管式炉升温至1200℃并保温2小时,随后自然冷却至室温,得到本发明所述的Be0.4Zn0.6O陶瓷靶材。
步骤2:利用Be0.4Zn0.6O陶瓷靶材制备紫外光电探测器
2.1以步骤1制得的Be0.4Zn0.6O陶瓷靶材作为激光烧蚀靶材,和经过丙酮、无水乙醇与去离子水分别超声清洗15分钟并经氮气吹干过的柔性PET衬底一起放入真空腔,并抽真空至气压低于10-4Pa;
2.2调节衬底温度至30℃,通入氧气,使得气压在稍后整个薄膜沉积过程中维持在3Pa;然后开启衬底和靶台自转,设定激光器输出能量为350mJ/pulse,脉冲重复频率为5Hz,开启激光沉积薄膜32分钟;随后排出腔内氧气,通入大气待真空腔内气压与外界气压相等时打开真空腔取出样品;
2.3利用XRD对所制薄膜样品进行全谱扫描表征。随后将薄膜样品与掩膜板安装到真空蒸镀机的真空腔内,安装钨舟并在上面放上0.1g蒸发源金属铝,关闭真空腔,开启机械泵、前级阀、分子泵抽真空至气压低于10-4Pa。打开蒸发电源,缓慢稳定地调节蒸发源电流上升至130A,待金属铝融化后继续保持电流恒定3分钟,随后缓慢稳定降低蒸发源电流至0,关闭蒸发电源,然后依次关闭分子泵、前级阀、机械泵,打开空气阀门,待真空腔气压与外界气压相等时打开真空腔取出样品,得到基于Be0.4Zn0.6O非晶薄膜的柔性深紫外光电探测器。
在本实施例制得的器件电极之间施加20V的偏压进行光电测试。结果表明该器件对240nm波段的深紫外光具有明显的探测能力和较快的响应速度。测试结果分别见图7和图8。
从图2本实施例所测的XRD图谱我们可以看到,全谱中除了柔性衬底在26度存在的晶体衍射峰外,图谱中再无其他明显结晶峰,说明所制备的样品为非晶薄膜,非晶薄膜沉积在柔性衬底上保障了器件在发生机械形变时Be0.4Zn0.6O薄膜结构不会被破坏,从而器件探测性能不会受到影响,这是所制备器件能够展现柔性的条件之一。
图7给出本实施例制得的基于Be0.4Zn0.6O非晶薄膜的柔性深紫外光电探测器在240nm光照条件下的I-V曲线,可以看出在240nm深紫外光照条件下的I-V曲线是线性的,说明Al与所制得Be0.4Zn0.6O薄膜之间形成了欧姆接触。
图8是本实施例制得的基于Be0.4Zn0.6O非晶薄膜的柔性深紫外光电探测器的时间-电流光电响应测试曲线。从图中可以看到在20V偏压下,所制备的器件对波长为240nm的UVC深紫外光具备较好的响应,其光电流达到50pA。用双指数弛豫方程对曲线进行拟合,发现所制备的光电探测器弛豫响应时间τr1和τd1均小于1s,响应速度较快。
实施例4
本实施例的一种基于Be0.5Zn0.5O非晶薄膜的柔性深紫外光电探测器,所述探测器从下至上依次包括柔性PET衬底、有源层、一对平行金属Al电极,其中:所述有源层为Be0.5Zn0.5O非晶薄膜,所述有源层厚度为140nm,所述平行电极厚度为100nm,间距为100μm。
本实施例上述的基于Be0.5Zn0.5O非晶薄膜的柔性深紫外光电探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用固相烧结法制备Be0.5Zn0.5O陶瓷靶材
1.1按摩尔比ZnO:BeO=50:50的比例称取8.100g ZnO粉末和2.5g BeO粉末,混合后,加入20g去离子水,随后置于行星式球磨罐(球磨介质为氧化锆陶瓷球)中,球磨8小时,得到混合粉末溶液;
1.2将所述混合粉末溶液筛去氧化锆球后置于干燥箱中,在110℃条件下干燥10小时,随后取出冷却至室温,加入1g乙醇,用碾钵充分研磨均匀后使用压片机在10MPa压强下压成直径27.5mm的圆形坯片;
1.3将上述所述坯片置于管式炉中的坩埚内,在空气气氛下将管式炉升温至1200℃并保温2小时,随后自然冷却至室温,得到本发明所述的Be0.5Zn0.5O陶瓷靶材。
步骤2:利用Be0.5Zn0.5O陶瓷靶材制备紫外光电探测器
2.1以步骤1制得的Be0.5Zn0.5O陶瓷靶材作为激光烧蚀靶材,和经过丙酮、无水乙醇与去离子水分别超声清洗15分钟并经氮气吹干的柔性PET衬底一起放入真空腔,并抽真空至气压低于10-4Pa;
2.2调节衬底温度至30℃,通入氧气,使得气压在稍后整个薄膜沉积过程中维持在3Pa;然后开启衬底和靶台自转,设定激光器输出能量为350mJ/pulse,脉冲重复频率为5Hz,开启激光沉积薄膜40分钟;随后排出腔内氧气,通入大气待真空腔内气压与外界气压相等时打开真空腔取出样品;
2.3利用XRD对所制薄膜样品进行全谱扫描表征。随后将薄膜样品与掩膜板安装到真空蒸镀机的真空腔内,安装钨舟并在上面放上0.25g蒸发源金属铝,关闭真空腔,开启机械泵、前级阀、分子泵抽真空至气压低于10-4Pa。打开蒸发电源,缓慢稳定调节蒸发源电流上升至130A,待金属铝融化后继续保持电流恒定3分钟,随后缓慢稳定地降低蒸发源电流至0,关闭蒸发电源,然后依次关闭分子泵、前级阀、机械泵,打开空气阀门,待真空腔气压与外界气压相等时打开真空腔取出样品,得到基于Be0.5Zn0.5O非晶薄膜的柔性深紫外光电探测器。
在本实施例制得的器件电极之间施加20V的偏压进行光电测试。结果表明该器件对240nm波段的深紫外光具有明显的探测能力和较快的响应速度。测试结果分别见图9和图10。
从图2本实施例所测的XRD图谱我们可以看到,全谱中除了柔性衬底在26度存在的晶体衍射峰外,图谱中再无其他明显结晶峰,说明所制备的样品为非晶薄膜,非晶薄膜沉积在柔性衬底上保障了器件在发生机械形变时Be0.5Zn0.5O薄膜结构不会被破坏,从而器件探测性能不会受到影响,这是所制备器件能够展现柔性的条件之一。
图9给出本实施例制得的基于Be0.5Zn0.5O非晶薄膜的柔性深紫外光电探测器在240nm光照条件下的I-V曲线,可以看出在240nm深紫外光照条件下的I-V曲线是线性的,说明Al与所制得Be0.5Zn0.5O薄膜之间形成了欧姆接触。
图10给出本实施例制得的基于Be0.5Zn0.5O非晶薄膜的柔性深紫外光电探测器的时间电流光电响应测试曲线。从图中可以看到在20V偏压下,所制备的器件对波长为240nm的UVC深紫外光具备较好的响应,其光电流达到134pA。用双指数弛豫方程对曲线进行拟合,发现所制备的光电探测器弛豫响应时间τr1,τr2和τd1,τd2均小于1s,响应速度较快。
实施例5
本实施例的一种基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器,所述探测器从下至上依次包括柔性PEN衬底、有源层、一对平行金属Al电极,其中:所述有源层为Be0.3Zn0.7O非晶薄膜,所述有源层厚度为170nm,所述平行电极厚度为72nm,间距为100μm。
本实施例上述的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用固相烧结法制备Be0.3Zn0.7O陶瓷靶材
1.1按摩尔比ZnO:BeO=70:30的比例称取9.072g ZnO粉末和1.2g BeO粉末,混合后,加入20g去离子水,随后置于行星式球磨罐(球磨介质为氧化锆陶瓷球)中,球磨8小时,得到混合粉末溶液;
1.2将所述混合粉末溶液筛去氧化锆球后置于干燥箱中,在110℃条件下干燥10小时,随后取出冷却至室温,加入1g乙醇,用碾钵充分研磨均匀后使用压片机在10MPa压强下压成直径27.5mm的圆形坯片;
1.3将上述所述坯片置于管式炉中的坩埚内,在空气气氛下将管式炉升温至1200℃并保温2小时,随后自然冷却至室温,得到本发明所述的Be0.3Zn0.7O陶瓷靶材。
步骤2:利用Be0.3Zn0.7O陶瓷靶材制备紫外光电探测器
2.1以步骤1制得的Be0.3Zn0.7O陶瓷靶材作为激光烧蚀靶材,和经过丙酮、无水乙醇与去离子水分别超声清洗15分钟并经氮气吹干的柔性PEN衬底一起放入真空腔,并抽真空至气压低于10-4Pa;
2.2调节衬底温度至30℃,通入氧气,使得气压在稍后整个薄膜沉积过程中维持在3Pa;然后开启衬底和靶台自转,设定激光器输出能量为350mJ/pulse,脉冲重复频率为5Hz,开启激光沉积薄膜30分钟;随后排出腔内氧气,通入大气待真空腔内气压与外界气压相等时打开真空腔取出样品;
2.3利用XRD对所制薄膜样品进行全谱扫描表征。随后将薄膜样品与掩膜板安装到真空蒸镀机的真空腔内,安装钨舟并在上面放上0.2g蒸发源金属铝,关闭真空腔,开启机械泵、前级阀、分子泵抽真空至气压低于10-4Pa。打开蒸发电源,缓慢稳定调节蒸发源电流上升至130A,待金属铝融化后继续保持电流恒定3分钟,随后缓慢稳定降低蒸发源电流至0,关闭蒸发电源,然后依次关闭分子泵、前级阀、机械泵,打开空气阀门,待真空腔气压与外界气压相等时打开真空腔取出样品,得到基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器。
在本实施例制得的器件电极之间施加20V的偏压进行光电测试。结果表明该器件对265nm波段的深紫外光具有明显的探测能力和较快的响应速度。测试结果分别见图12和图13。
在本实施例制得的器件以1次/秒的频率、弯曲曲率半径为4mm(弯曲示意图如图14)弯曲200次后,器件完美恢复原状后再次在电极之间施加20V的偏压进行光电测试。结果表明该器件以1次/秒的频率、弯曲曲率半径为4mm弯曲200次后,器件能够完美恢复原状,器件机械性能稳定,且对265nm波段的深紫外光的探测性能无明显的衰减,具体测试结果分别见图15和图16。
从图11本实施例所测的XRD图谱我们可以看到,全谱中除了柔性衬底在26度附近存在的晶体衍射峰外,图谱中再无其他明显结晶峰,说明所制备的样品为非晶薄膜。
图12给出本实施例制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器在265nm光照条件下的I-V曲线。
图13给出本实施例制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器的时间电流光电响应测试曲线。从图中可以看到在20V偏压下,所制备的器件对波长为265nm的UVC深紫外光具备较好的响应,其光电流达到3.03nA。用双指数弛豫方程对曲线进行拟合,发现所制备的光电探测器弛豫响应时间τr1,τr2和τd1,τd2均小于1s,响应速度较快。
图15为本实施例制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器以1次/秒的频率、弯曲曲率半径为4mm弯曲200次且器件完全恢复原状后在265nm紫外光照条件下的I-V曲线。将图15和图12进行对比可知,弯曲前后其265nm光照条件下的I-V曲线几乎保持一致,即其I-V特性保持不变。
图16为本实施例制得的基于Be0.3Zn0.7O非晶薄膜的柔性深紫外光电探测器进行1次/秒的频率、弯曲曲率半径为4mm弯曲200次器件恢复原状后的时间电流光电响应测试曲线。从图中可以看到经过反复机械弯曲后的紫外光电探测器对波长为265nm的UVC深紫外光仍然具备良好的响应性能,其光电流为3.20nA,与弯曲前紫外光电探测器的光电流几乎一致。用双指数弛豫方程对曲线进行拟合,发现光电探测器弛豫响应时间τr1,τd1均小于1s,而τr2,τd2分别为107.0ms,101.1ms,响应速度仍然十分快。综上所述,进行一定频率相同幅度弯曲200次后的柔性紫外光电探测器对于深紫外光仍然具备高效快速的响应性能。

Claims (10)

1.一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器,其特征在于:所述探测器从下至上依次包括透明柔性衬底、有源层、一对平行金属电极,所述有源层为BexZn1-xO非晶薄膜,其中:0<x<1。
2.根据权利要求1所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器,其特征在于:所述透明柔性衬底材料为聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰亚胺、聚氯乙烯、聚醚酰亚胺或聚二甲基硅氧烷中的任一种。
3.根据权利要求1所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器,其特征在于:所述有源层的厚度为100~200nm。
4.根据权利要求1所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器,其特征在于:所述平行电极的厚度为40~100nm。
5.根据权利要求1所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器,其特征在于:所述平行电极的间距为10~100μm。
6.根据权利要求1所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器,其特征在于:所述平行金属电极材料可以为Au、Ag、Pt或Al中的任一种。
7.权利要求1所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器的制备方法,其特征在于:所述方法包括以下步骤:
(1)选择合适大小的柔性衬底,并对所述衬底进行清洁和干燥预处理;
(2)在预处理后的柔性衬底上表面制备BexZn1-xO非晶薄膜层;
(3)在所述BexZn1-xO非晶薄膜上表面制备平行金属电极。
8.根据权利要求7所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器的制备方法,其特征在于:步骤(2)所述BexZn1-xO非晶薄膜优选采用脉冲激光烧蚀沉积方法制得,具体工艺如下:利用BexZn1-xO陶瓷作为靶材,控制衬底温度为0~52℃,脉冲激光能量为300~400mJ/Pulse,氧压为0~10Pa,在预处理后的柔性衬底表面沉积形成BexZn1-xO非晶薄膜。
9.根据权利要求8所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器的制备方法,其特征在于:所述BexZn1-xO陶瓷靶材是采用固相烧结法制得,具体方法如下:按配比将ZnO、BeO粉体原料混合均匀,球磨、干燥后压成陶瓷圆片,然后置于管式炉中于1100~1400℃条件下烧结2~5h制得。
10.根据权利要求9所述的基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器的制备方法,其特征在于:所述ZnO、BeO粉体原料的摩尔比为90:10~20:80。
CN201910589692.0A 2019-07-02 2019-07-02 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法 Active CN110265501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910589692.0A CN110265501B (zh) 2019-07-02 2019-07-02 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910589692.0A CN110265501B (zh) 2019-07-02 2019-07-02 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110265501A true CN110265501A (zh) 2019-09-20
CN110265501B CN110265501B (zh) 2020-06-23

Family

ID=67923829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910589692.0A Active CN110265501B (zh) 2019-07-02 2019-07-02 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110265501B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111994866A (zh) * 2020-09-08 2020-11-27 中国石油大学(华东) 一种弯曲应变增强的紫外光电位置传感器及其制备方法
CN113937181A (zh) * 2021-09-22 2022-01-14 香港城市大学成都研究院 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807619A (zh) * 2010-03-19 2010-08-18 河南大学 一种透明柔性紫外探测器及其制备方法
CN102412334A (zh) * 2011-11-10 2012-04-11 中山大学 基于BeZnO的MSM结构的紫外光探测器及制备方法
CN105800671A (zh) * 2016-03-08 2016-07-27 湖北大学 一种带隙可调BeCdZnO化合物半导体材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807619A (zh) * 2010-03-19 2010-08-18 河南大学 一种透明柔性紫外探测器及其制备方法
CN102412334A (zh) * 2011-11-10 2012-04-11 中山大学 基于BeZnO的MSM结构的紫外光探测器及制备方法
CN105800671A (zh) * 2016-03-08 2016-07-27 湖北大学 一种带隙可调BeCdZnO化合物半导体材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111994866A (zh) * 2020-09-08 2020-11-27 中国石油大学(华东) 一种弯曲应变增强的紫外光电位置传感器及其制备方法
CN113937181A (zh) * 2021-09-22 2022-01-14 香港城市大学成都研究院 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法
CN113937181B (zh) * 2021-09-22 2024-04-23 香港城市大学成都研究院 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法

Also Published As

Publication number Publication date
CN110265501B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
Li et al. Surface morphology and photoelectric properties of fluorine-doped tin oxide thin films irradiated with 532 nm nanosecond laser
CN109713058A (zh) 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
CN111293181B (zh) 一种MSM型α-Ga2O3基日盲紫外光探测器
Ahmadi et al. An all-sputtered photovoltaic ultraviolet photodetector based on co-doped CuCrO2 and Al-doped ZnO heterojunction
Spasevska et al. Optimised In2S3 thin films deposited by spray pyrolysis
CN110265501A (zh) 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法
CN109755342A (zh) 一种直接型x射线探测器及其制备方法
CN101866983B (zh) 一种n型掺杂ZnO薄膜的快速响应紫外探测器的制作方法
CN111564509B (zh) 一种全氧化物柔性光电探测器及其制备方法与应用
Li et al. Effects of nanosecond laser irradiation on photoelectric properties of AZO/FTO composite films
Addonizio et al. Microstructure evolution of room-temperature-sputtered ITO films suitable for silicon heterojunction solar cells
Adedokun Review on Transparent Conductive Oxides Thin Films deposited by Sol-gel spin coating technique
Yuan et al. Stable indium tin oxide with high mobility
Zhang et al. Low-Temperature Solution-Processed Lu 2 O 3 Films for Deep-UV Photovoltaic Detectors With High Sensitivity
Calixto-Rodriguez et al. A comparative study of the physical properties of Sb2S3 thin films treated with N2 AC plasma and thermal annealing in N2
CN109585593A (zh) 一种基于BeZnOS四元合金的自发极化场增强型紫外光探测器及其制备方法
CN103617831A (zh) 一种高迁移率的铝掺杂氧化锌透明导电薄膜及其制备方法
Patel et al. Preparation and characterization of SnO2 thin film coating using rf-plasma enhanced reactive thermal evaporation
CN110323291A (zh) 基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法
Sathyamoorthy et al. Photoelectrical properties of crystalline titanium dioxide thin films after thermo‐annealing
CN110335914A (zh) 一种MSM型(GaMe)2O3三元合金日盲紫外光探测器及其制备方法
Singh et al. Structural, morphological and optical properties of sol gel processed CdZnO nanostructured films: effect of precursor solvents
Alamgir et al. Characterization of cadmium selenide thin film for solar cell application
Zhao et al. Effect of substrate temperature on photoelectric properties of AZO thin films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant