CN113937181A - 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法 - Google Patents

一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法 Download PDF

Info

Publication number
CN113937181A
CN113937181A CN202111106506.7A CN202111106506A CN113937181A CN 113937181 A CN113937181 A CN 113937181A CN 202111106506 A CN202111106506 A CN 202111106506A CN 113937181 A CN113937181 A CN 113937181A
Authority
CN
China
Prior art keywords
ultraviolet light
light detector
zinc oxide
oxide nanoparticle
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111106506.7A
Other languages
English (en)
Other versions
CN113937181B (zh
Inventor
于欣格
高瞻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Research Institute Of City University Of Hong Kong
Original Assignee
Chengdu Research Institute Of City University Of Hong Kong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Research Institute Of City University Of Hong Kong filed Critical Chengdu Research Institute Of City University Of Hong Kong
Priority to CN202111106506.7A priority Critical patent/CN113937181B/zh
Publication of CN113937181A publication Critical patent/CN113937181A/zh
Application granted granted Critical
Publication of CN113937181B publication Critical patent/CN113937181B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法,该紫外光探测器,包括从上到下依次设置的共面电极层、感光层、柔性衬底;所述共面电极层采用银纳米线分散液作为原料,利用金属掩膜版辅助,利用喷涂法制备出共面电极图案;所述感光层采用ZnO纳米颗粒悬浮液掺杂单层MoS2乙醇分散液作为原料,利用金属掩膜版辅助,喷涂法制备成膜;所述柔性衬底采用PDMS薄膜。通过上述方案,本发明极大的缩短了器件的光响应时间,增强了器件光响应率,具有很高的实用价值和推广价值。

Description

一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法
技术领域
本发明属于半导体光探测器件技术领域,具体地讲,是涉及一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法。
背景技术
紫外薄膜光探测器具有结构简单,室温工作等优点,被广泛运用于天文学,环境监测,防火防灾和国防军事领域。在众多材料中,氧化锌(ZnO)纳米颗粒具有宽带隙(3.37ev),高激子束缚能(60meV),低成本,易于制备等优点,被广泛的运用于高性能紫外薄膜光探测器的研制当中。
ZnO纳米颗粒的光电导效应受表面氧化分子的吸附和解吸控制,在没有紫外光的情况下,吸附在氧化物材料表面的氧化分子会产生电子耗尽层,从而降低其电导性。当存在紫外线照射时,光生空穴移动到其表面并中和带负电的氧化分子,这种光吸收过程使其表面电导率显著增加。当紫外光不再照射时,薄膜表面氧化分子发生吸附,薄膜表面电导率再次降低。因此表面缺陷以及缓慢的氧气吸收/解吸过程会导致器件的响应/回复时间的增加,导致器件性能下降。另外,目前的ZnO纳米颗粒薄膜制备工艺繁琐,设备昂贵,无法满足大面积制备的需求;且制备的薄膜质量低,重复性差。这些因素都大大限制了ZnO纳米颗粒紫外薄膜光探测器的市场推广。因此如何解决现有技术存在的问题是本领域技术人员亟需解决的问题。
发明内容
本发明的目的在于提供一种柔性氧化锌纳米颗粒紫外光探测器及制备方法,主要解决现有技术中存在的ZnO纳米颗粒紫外薄膜光探测器光响应/回复慢且ZnO纳米颗粒薄膜制备工艺繁琐的问题。
为了实现上述目的,本发明采用的技术方案如下:
一种柔性氧化锌纳米颗粒紫外光探测器,包括从上到下依次设置的共面电极层、感光层、柔性衬底;
所述共面电极层采用银纳米线分散液作为原料,利用金属掩膜版辅助,利用喷涂法制备出共面电极图案;
所述感光层采用ZnO纳米颗粒悬浮液掺杂单层MoS2乙醇分散液作为原料,利用金属掩膜版辅助,喷涂法制备成膜;
所述柔性衬底采用PDMS薄膜。
进一步地,所述共面电极层厚度满足195-205nm。
进一步地,所述感光层中ZnO纳米颗粒悬浮液和MoS2乙醇分散液是按照体积比1:4配制。
进一步地,所述感光层厚度为300nm。
一种柔性氧化锌纳米颗粒紫外光探测器的制备方法,包括如下步骤:
(S1)对固化后的PDMS衬底进行Plasma处理10min,增强柔性衬底亲水性;
(S2)在PDMS衬底上喷涂ZnO:MoS2溶液,形成透明光敏的感光层;
(S3)利用金属掩膜版,在ZnO:MoS2薄膜上喷涂银纳米线溶液形成透明的共面电极层;
(S4)测试所制备器件的电流-时间特性曲线以及机械性能。
进一步地,所述步骤(S1)中PDMS采用PDMS:固化剂=20:1配制。
进一步地,所述步骤(S2)中喷涂气压为30psi,其中,ZnO NP溶液与MoS2溶液的比例为1:4。
具体地,所述步骤(S3)中银纳米线溶液的浓度为5mg/ml。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过在ZnO纳米颗粒薄膜中掺杂具有良好载流子传输能力的单层MoS2,在紫外光照射时,加速光生空穴在薄膜中的传输速度,极大的缩短了器件的光响应时间,增强了器件光响应率,制备了高性能的紫外光探测器。
(2)本发明中将喷涂工艺运用在感光层和共面电极层的制备当中,实现了低成本,高效率的制备工艺,并且由于采用喷涂的方式,各功能层之间(共面电极层,感光层,柔性衬底)相对平稳,可以大面积喷涂,因而可以大面积制备光电探测器。
(3)本发明所选用的制备材料均为柔性透明材料,所制备的器件具有良好的机械性能,为下一代柔性透明电子的发展提供了新的技术思路。
附图说明
图1为本发明紫外光探测器的结构示意图。
图2为本发明紫外光探测器的电流-时间特性曲线图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,本发明的实施方式包括但不限于下列实施例。
实施例
如图1与图2所示,一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法,包括从上到下依次设置的共面电极层、感光层、柔性衬底;所述共面电极层采用银纳米线分散液作为原料,利用金属掩膜版辅助,利用喷涂法制备出共面电极图案,其厚度满足195-205nm;所述感光层采用ZnO纳米颗粒悬浮液掺杂单层MoS2乙醇分散液作为原料,并利用金属掩膜版辅助,喷涂法制备成膜,并且感光层厚度为300nm;所述柔性衬底采用PDMS薄膜。
具体制备紫外光探测器方法如下:
(S1)对固化后的PDMS衬底进行Plasma处理10min,增强柔性衬底亲水性,其中,采用PDMS:固化剂=20:1配制;
(S2)在PDMS衬底上喷涂ZnO:MoS2溶液,形成透明光敏薄膜的感光层,喷涂气压为30psi,其中,ZnO NP溶液与MoS2溶液的比例为1:4;
(S3)利用金属掩膜版,在ZnO:MoS2薄膜上喷涂浓度为5mg/ml的银纳米线溶液形成透明的共面电极层,获得紫外光探测器。
测试所制备的探测器的电流-时间特性曲线以及机械性能
图2显示了探测器的电流-时间特性;表1显示了探测器的弯折次数与最大光电流之间的关系。
表1探测器弯折性能测试
弯折次数 最大光电流(μA)
10 15.12
20 15.05
30 14.93
50 14.88
70 14.79
100 14.58
可以看出,本发明制备的紫外光探测器,不仅具有较强的光响应率,同时还具有良好的机械性能,即使弯折次数达到了100次,其最大光电流依然较弯折10次时相差不大。
本发明通过合理的设计,解决了ZnO纳米颗粒紫外探测器响应时间慢的技术难题,从而制得了高性能的紫外光探测器。同时将喷涂工艺运用在感光层和共面电极层的制备当中,实现了低成本,高效率的制备工艺。并且由于采用喷涂的方式,共面电极层、感光层、柔性衬底的表面相对平稳,喷涂时不会存在喷涂的原料往一处流的情况,同时因为采用喷涂的方式,可以大面积喷涂从而实现光电探测器大面积制备。
上述实施例仅为本发明的优选实施例,并非对本发明保护范围的限制,但凡采用本发明的设计原理,以及在此基础上进行非创造性劳动而做出的变化,均应属于本发明的保护范围之内。

Claims (8)

1.一种柔性氧化锌纳米颗粒紫外光探测器,其特征在于,包括从上到下依次设置的共面电极层、感光层、柔性衬底;
所述共面电极层采用银纳米线分散液作为原料,利用金属掩膜版辅助,利用喷涂法制备出共面电极图案;
所述感光层采用ZnO纳米颗粒悬浮液掺杂单层MoS2乙醇分散液作为原料,利用金属掩膜版辅助,喷涂法制备成膜;
所述柔性衬底采用PDMS薄膜。
2.根据权利要求1所述的一种柔性氧化锌纳米颗粒紫外光探测器,其特征在于,所述共面电极层厚度满足195-205nm。
3.根据权利要求2所述的一种柔性氧化锌纳米颗粒紫外光探测器,其特征在于,所述感光层中ZnO纳米颗粒悬浮液和MoS2乙醇分散液是按照体积比1:4配制。
4.根据权利要求3所述的一种柔性氧化锌纳米颗粒紫外光探测器,其特征在于,所述感光层厚度为300nm。
5.根据权利要求4所述的一种柔性氧化锌纳米颗粒紫外光探测器的制备方法,其特征在于,包括如下步骤:
(S1)对固化后的PDMS衬底进行Plasma处理10min,增强柔性衬底亲水性;
(S2)在PDMS衬底上喷涂ZnO:MoS2溶液,形成透明光敏的感光层;
(S3)利用金属掩膜版,在ZnO:MoS2薄膜上喷涂银纳米线溶液形成透明的共面电极层;
(S4)测试所制备器件的电流-时间特性曲线以及机械性能。
6.根据权利要求5所述的一种柔性氧化锌纳米颗粒紫外光探测器的制备方法,其特征在于,所述步骤(S1)中PDMS采用PDMS:固化剂=20:1配制。
7.根据权利要求6所述的一种柔性氧化锌纳米颗粒紫外光探测器的制备方法,其特征在于,所述步骤(S2)中喷涂气压为30psi,其中,ZnO NP溶液与MoS2溶液的比例为1:4。
8.根据权利要求7所述的一种柔性氧化锌纳米颗粒紫外光探测器的制备方法,其特征在于,所述步骤(S3)中银纳米线溶液的浓度为5mg/ml。
CN202111106506.7A 2021-09-22 2021-09-22 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法 Active CN113937181B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111106506.7A CN113937181B (zh) 2021-09-22 2021-09-22 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111106506.7A CN113937181B (zh) 2021-09-22 2021-09-22 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113937181A true CN113937181A (zh) 2022-01-14
CN113937181B CN113937181B (zh) 2024-04-23

Family

ID=79276208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111106506.7A Active CN113937181B (zh) 2021-09-22 2021-09-22 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113937181B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020055003A1 (en) * 1998-08-03 2002-05-09 The Curators Of The University Of Missouri Zinc oxide films containing p-type dopant and process for preparing same
CN103579415A (zh) * 2013-10-22 2014-02-12 华中科技大学 一种氧化锌纳米线阵列紫外光电探测器的制备方法
US20160322530A1 (en) * 2015-05-01 2016-11-03 North Carolina State University Oxide heterojunction for detection of infrared radiation
CN107799623A (zh) * 2017-09-27 2018-03-13 南京理工大学 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法
CN110265501A (zh) * 2019-07-02 2019-09-20 湖北大学 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法
KR20200015080A (ko) * 2018-08-02 2020-02-12 광주과학기술원 고효율 자외선 광 트랜지스터 및 이의 제조방법
US20200197897A1 (en) * 2017-05-26 2020-06-25 King Abdullah University Of Science And Technology Method and apparatus for fabricating high performance optoelectronic devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020055003A1 (en) * 1998-08-03 2002-05-09 The Curators Of The University Of Missouri Zinc oxide films containing p-type dopant and process for preparing same
CN103579415A (zh) * 2013-10-22 2014-02-12 华中科技大学 一种氧化锌纳米线阵列紫外光电探测器的制备方法
US20160322530A1 (en) * 2015-05-01 2016-11-03 North Carolina State University Oxide heterojunction for detection of infrared radiation
US20200197897A1 (en) * 2017-05-26 2020-06-25 King Abdullah University Of Science And Technology Method and apparatus for fabricating high performance optoelectronic devices
CN107799623A (zh) * 2017-09-27 2018-03-13 南京理工大学 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法
KR20200015080A (ko) * 2018-08-02 2020-02-12 광주과학기술원 고효율 자외선 광 트랜지스터 및 이의 제조방법
CN110265501A (zh) * 2019-07-02 2019-09-20 湖北大学 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法

Also Published As

Publication number Publication date
CN113937181B (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
Li et al. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine
Atta et al. Structural and physical properties of polyaniline/silver oxide/silver nanocomposite electrode for supercapacitor applications
Li et al. Carbon quantum dots/TiO x electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%
Chou et al. Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells
Basu et al. Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes
Wang et al. TiO2 surface modification and characterization with nanosized PbS in dye-sensitized solar cells
Gao et al. High performance, self-powered UV-photodetector based on ultrathin, transparent, SnO2–TiO2 core–shell electrodes
Batmunkh et al. Carbonaceous dye‐sensitized solar cell photoelectrodes
Zhou et al. CuInS 2 quantum dot-sensitized TiO 2 nanorod array photoelectrodes: synthesis and performance optimization
Guan et al. A self-powered UV photodetector based on the hydrovoltaic and photoelectric coupling properties of ZnO nanowire arrays
US20100084007A1 (en) Modified carbon nanotube grafted by living polymer, carbon nanotube electrode and dye-sensitized solar cell using the same, and each preparation method thereof
Wu et al. Synergistic effect of silver plasmon resonance and pn heterojunction enhanced photoelectrochemical aptasensing platform for detecting chloramphenicol
CN103400699B (zh) 一种量子点修饰ZnO纳米棒阵列电极及其制备方法
Peiris et al. Stacked rGO–TiO2 photoanode via electrophoretic deposition for highly efficient dye-sensitized solar cells
CN114108131A (zh) 一种用于柔性压力传感器的静电纺丝膜及其制备和应用
Yin et al. A novel three-dimensional Ag nanoparticles/reduced graphene oxide microtubular field effect transistor sensor for NO2 detections
Yang et al. Sunscreen-inspired ZnO/PEG composites for flexible ultraviolet photodetectors with a giant on–off ratio
Khoa et al. Facile fabrication of thermally reduced graphene oxide–platinum nanohybrids and their application in catalytic reduction and dye-sensitized solar cells
CN109301068B (zh) 基于光伏和水伏效应的自驱动光电探测器及制备方法
CN113937181B (zh) 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法
KR20120020938A (ko) 염료감응 태양전지용 광전극, 이의 제조방법 및 이를 포함하는 염료감응 태양전지
Dissanayake et al. Highly efficient, PbS: Hg quantum dot–sensitized, plasmonic solar cells with TiO 2 triple-layer photoanode
CN103736500A (zh) 一种二氧化钛/硫化镉/二氧化钛复合薄膜及其应用
KR101406427B1 (ko) 우수한 촉매활성도와 전기전도도를 갖는 염료 감응형 태양전지용 전도성 고분자-탄소 복합체 전극과 이를 이용한 염료 감응형 태양전지 및 이들의 제조방법
KR100821524B1 (ko) 염료 감응 태양전지용 산화물 전극의 제조방법 및 이를이용한 염료 감응 태양전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant