CN107799623A - 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法 - Google Patents

一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法 Download PDF

Info

Publication number
CN107799623A
CN107799623A CN201710889922.6A CN201710889922A CN107799623A CN 107799623 A CN107799623 A CN 107799623A CN 201710889922 A CN201710889922 A CN 201710889922A CN 107799623 A CN107799623 A CN 107799623A
Authority
CN
China
Prior art keywords
zinc oxide
wire
fabric
nano silver
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710889922.6A
Other languages
English (en)
Inventor
邹友生
朱正峰
曾海波
刘舒婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710889922.6A priority Critical patent/CN107799623A/zh
Publication of CN107799623A publication Critical patent/CN107799623A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法。传统纤维状光探测器多基于长在大体积金属丝衬底上的无机半导体材料而制得,柔性较差。此外,若直接将其编织成用于可穿戴的织物将不可避免地会破坏表面从而导致探测器性能降低。因此,实现纤维状光探测器的有效编织对可穿戴领域应用至关重要。本发明具体涉及一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法,本发明以细金属丝织物作为基底,在其表面沿垂直方向生长氧化锌纳米棒阵列,然后在表面沉积一层银纳米线,之后在其外表面覆盖单层石墨烯薄膜,并用银浆与石墨烯接触引出电极。本发明解决了纤维状探测器编织的问题,直接构建高柔性、高密度编织的光探测器织物以实现柔性可穿戴的应用。

Description

一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫 外光探测器织物及制备方法
技术领域
本发明涉及紫外探测技术领域,特别是一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法。
背景技术
随着摩登电子时代的发展,比如电子皮肤、可伸缩电路器件等柔性可穿戴的电子器件在我们日常生活中起到了越来越大的作用。由于纤维本身具有轻质、柔韧并且容易编织的特点,纤维状的能源器件已经被广泛研究,包括纤维状超级电容器、锂电池和太阳能电池等,但是这些能源器件主要是为了相应的功能性器件服务,比如显示、照明、监测和传感等。传感器是信息传输很重要的一部分,而光探测器作为传感器的一员,在军事探测、生物传感、光通信等方面已经有着极为广泛的应用,纤维状探测器也有了广泛的研究,但其中存在的问题也很明显。传统纤维状光探测器多基于长在体积大的金属丝衬底上的无机半导体材料制得的,柔性较差,从Dong等(Nano Energy,2016,30:173-179.)和Zhu等(ACS AppliedMaterials&Interfaces,2017,9(13):12092-12099)已有的研究结果中就可以看出来。此外,若直接将其编织成用于可穿戴的织物将不可避免地会破坏表面从而导致很差的探测器性能。因此,目前急需一种实现纤维状光探测器的有效编织方法。
发明内容
本发明的目的在于提供一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法,以期可以实现纤维状光探测器的有效编织从而实现高柔性的可穿戴应用。
实现本发明目的的技术解决方案为:一种基于氧化锌纳米棒阵列/银纳米线/ 石墨烯多层结构的紫外光探测器织物,包括基底、氧化锌薄膜、氧化锌纳米棒阵列、银纳米线、绝缘层、单层石墨烯薄膜,所述基底为金属丝织物,金属丝织物的金属丝表面沉积均匀致密的氧化锌薄膜,氧化锌薄膜表面垂直方向生长有氧化锌纳米棒阵列,氧化锌纳米棒阵列表面覆盖银纳米线,上述结构上表面的一侧设置绝缘层单层石墨烯薄膜设置在上述结构的最外层,单层石墨烯薄膜上设置银浆,该银浆与石墨烯直接接触用于引出电极。
一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法,具体步骤为:
(1)将金属丝丝织物用异丙醇超声清洗30分钟并干燥,然后用原子层沉积技术在金属丝表面沉积一定厚度的氧化锌薄膜作为种子层,继而用水热法在种子层表面沿垂直方向生长氧化锌纳米棒阵列。
(2)配置一定浓度的银纳米线溶液,用抽滤成膜的方式,将银纳米线负载到长有氧化锌纳米棒阵列的金属丝织物表面。
(3)转移单层石墨烯薄膜浮于水面,继而用修饰好的金属丝织物从水中捞取石墨烯薄膜,使其覆盖在织物表面,然后烘干,器件便制备完成。
与现有技术相比,本发明的有益效果为:1)传统方法是先制备基于金属丝的纤维状探测器,然后再编织成织物,势必会破坏表面的半导体活性材料,并且无法做到高密度编织。而本发明在已经高密度、有序编织好的金属丝织物上生长半导体材料,实现了探测器活性层的有效编织,继而组装成探测器织物,对半导体材料本身没有任何损坏作用,确保了制备出来的探测器织物的性能。2)本发明使用的银纳米线不仅作为导电通道,并且利用其表面等离子共振特性近场增加氧化锌从而进一步提升了探测的性能。3)本发明制备的探测器织物,柔性非常好,大幅度弯曲下仍可有效地工作,多次弯曲后性能基本不变,而传统的纤维状光探测器柔性较差。
附图说明
图1为本发明基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物的结构示意图。
图2为本发明基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物的制备流程示意图。
图3为本发明中实施例1所制备的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物的形貌图像。其中图(a)为制备的探测器织物的光学照片,图(b)为探测器织物的微观结构SEM俯视图,图(c)为SEM侧视图,图(d)为镍丝交界处的SEM截面图,图(e)为截面处放大的SEM图。
图4为本发明中实施例1所制备的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物在无光和波长365nm的紫外光照射下的电流与电压关系特性曲线。
图5为本发明中实施例1所制备的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物在波长365nm、光能量为1.55mW/cm2的紫外光照射、1V偏压时不同弯曲角度下的光响应曲线。
图6为本发明中实施例1所制备的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物在偏压1V时不同弯曲角度下的响应度曲线。
具体实施方式
本发明的一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法,在金属丝织物基底上生长氧化锌纳米棒阵列作为感光层;外面负载一层银纳米线增强导电性有利于载流子的传输,同时利用其表面等离子体共振的近场增强效应提升性能;最外层覆盖大面积的单层石墨烯,银浆与石墨烯直接接触作为外电极。
结合附图,本发明的一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物,包括基底、氧化锌薄膜2、氧化锌纳米棒阵列3、银纳米线4、绝缘层5、单层石墨烯薄膜6,所述基底为金属丝织物1,金属丝织物1 的金属丝表面沉积均匀致密的氧化锌薄膜2,氧化锌薄膜表面垂直方向生长有氧化锌纳米棒阵列3,氧化锌纳米棒阵列表面覆盖银纳米线4,上述结构上表面的一侧设置绝缘层5,单层石墨烯薄膜6设置在上述结构的最外层,单层石墨烯薄膜6上设置银浆7,该银浆与石墨烯直接接触用于引出电极。
所述金属丝织物为单一的银、钛、锌、铝或镍丝织物,金属丝直径为 0.025mm~0.5mm。
所述氧化锌薄膜2的厚度为50nm~200nm。
氧化锌纳米棒阵列3中氧化锌纳米棒的长度为500nm~2μm,直径为 50nm~100nm,相邻氧化锌纳米棒的间距为50~100nm。
银纳米线4的直径为20nm~100nm。
石墨烯薄膜6的方块电阻为300Ω/□~2000Ω/□。
一种制造上述紫外光探测器织物的方法,包括以下步骤:
步骤1、用异丙醇对金属丝织物超声清洗并干燥,然后用原子层沉积方法在金属丝表面沉积氧化锌薄膜作为种子层,继而用水热法在种子层表面沿垂直方向生长氧化锌纳米棒阵列;
氧化锌薄膜的厚度为50nm~200nm;氧化锌纳米棒阵列中氧化锌纳米棒的长度为500nm~2μm,直径为50nm~100nm,相邻氧化锌纳米棒的间距为50~100nm;所述金属丝织物为单一的银、钛、锌、铝或镍丝织物,直径为0.025mm~0.5mm。
步骤2、配置一定浓度的银纳米线溶液,用抽滤成膜的方式,将银纳米线负载到长有氧化锌纳米棒阵列的金属丝织物表面;银纳米线溶液浓度为 0.02mg/mL~1mg/mL,银纳米线直径为20nm~100nm。
步骤3、转移单层石墨烯薄膜浮于水面,继而用修饰好的金属丝织物从水中捞取石墨烯薄膜,使其覆盖在织物表面,然后烘干,器件便制备完成。石墨烯方块电阻为300Ω/□~2000Ω/□,烘干温度为40~80℃。
本发明解决了纤维状探测器编织的问题,直接构建高柔性、高密度编织的光探测器织物以实现柔性可穿戴的应用。
下面结合实施例对本发明做进一步详细的描述。
实施例1
参见图1,本实施例是一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物具有如下结构:金属丝织物作为基底,基底的表面沉积均匀致密的氧化锌薄膜,氧化锌薄膜表面垂直方向生长有氧化锌纳米棒阵列,氧化锌纳米棒阵列外覆盖一层银纳米线,单层石墨烯薄膜设置在上述结构的最外层,与石墨烯直接接触的银浆引出电极。
本实施例是一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物的制备方法是按照如下步骤进行,其制备流程图如图2所示:
(1)将直径为25μm的镍丝织物用异丙醇超声清洗30分钟并干燥,然后用原子层沉积技术在金属丝表面沉积厚度为150nm氧化锌薄膜作为种子层,继而用水热法在种子层表面沿垂直方向生长氧化锌纳米棒阵列,氧化锌纳米棒的长度为1.1μm,直径为60nm。
(2)配置浓度为0.1mg/mL的银纳米线溶液,其中银纳米线直径为50nm,用抽滤成膜的方式,将银纳米线负载到长有氧化锌纳米棒阵列的金属丝织物表面。
(3)转移电阻率为800Ω/□单层石墨烯薄膜浮于水面,继而用修饰好的金属丝织物从水中捞取石墨烯薄膜,使其覆盖在织物表面,然后60℃下烘干,器件便制备完成。
本实施例所制备的一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物,其微观结构如图3所示。从图中可以看出,镍丝织物上均匀地长着氧化锌纳米棒阵列,每一根镍丝上的阵列非常致密,交界处也完整地覆盖有阵列,没有出现任何损坏,实现了纤维状活性层的编织。此外,超柔的石墨烯薄膜平整地铺在织物上作为表面电极,紧密地贴在织物表面。
在无光下和365nm波段的紫外光照射下,探测器织物的电流与电压关系特性曲线如图4所示。当波长为365nm、入射光能量为1.55mW/cm2时,产生了明显的光电流,体现了器件优越的光电探测特性。
图5为本实施例所制备的探测器织物在波长365nm、入射光能量为 1.55mW/cm2、偏压为1V下不弯曲和不同弯曲角度下的光响应曲线;从图中可以看出,器件很稳定,可重复地反映出对光的开关,并且体现了器件非常好的柔性。
图6为探测器织物在1V偏压下不同弯曲角度下的响应度曲线,从图中可以看出,不同弯曲角度下曲线几乎重合,响应度几乎没有变化,器件很稳定,体现出了器件非常好的柔性。
实施例2
本实施例是一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物的制备方法是按照如下步骤进行:
(1)将直径为0.2mm的铝丝织物用异丙醇超声清洗30分钟并干燥,然后用原子层沉积技术在金属丝表面沉积厚度为100nm氧化锌薄膜作为种子层,继而用水热法在种子层表面沿垂直方向生长氧化锌纳米棒阵列,氧化锌纳米棒的长度为800nm,直径为50nm。
(2)配置浓度为0.2mg/mL的银纳米线溶液,其中银纳米线直径为30nm,用抽滤成膜的方式,将银纳米线负载到长有氧化锌纳米棒阵列的金属丝织物表面。
(3)转移电阻率为1000Ω/□单层石墨烯薄膜浮于水面,继而用修饰好的金属丝织物从水中捞取石墨烯薄膜,使其覆盖在织物表面,然后50℃下烘干,器件便制备完成。
通过该方法制备的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物对紫外光有良好的响应。
实施例3
本实施例是一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物的制备方法是按照如下步骤进行:
(1)将直径为0.3mm的锌丝织物用异丙醇超声清洗30分钟并干燥,然后用原子层沉积技术在金属丝表面沉积厚度为80nm氧化锌薄膜作为种子层,继而用水热法在种子层表面沿垂直方向生长氧化锌纳米棒阵列,氧化锌纳米棒的长度为1.5μm,直径为80nm。
(2)配置浓度为0.3mg/mL的银纳米线溶液,其中银纳米线直径为80nm,用抽滤成膜的方式,将银纳米线负载到长有氧化锌纳米棒阵列的金属丝织物表面。
(3)转移电阻率为1200Ω/□单层石墨烯薄膜浮于水面,继而用修饰好的金属丝织物从水中捞取石墨烯薄膜,使其覆盖在织物表面,然后70℃下烘干,器件便制备完成。
通过该方法制备的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物对紫外光有良好的响应。
实施例4
本实施例是一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物的制备方法是按照如下步骤进行:
(1)将直径为0.1mm的钛丝织物用异丙醇超声清洗30分钟并干燥,然后用原子层沉积技术在金属丝表面沉积厚度为120nm氧化锌薄膜作为种子层,继而用水热法在种子层表面沿垂直方向生长氧化锌纳米棒阵列,氧化锌纳米棒的长度为900μm,直径为70nm。
(2)配置浓度为0.15mg/mL的银纳米线溶液,其中银纳米线直径为40nm,用抽滤成膜的方式,将银纳米线负载到长有氧化锌纳米棒阵列的金属丝织物表面。
(3)转移电阻率为500Ω/□单层石墨烯薄膜浮于水面,继而用修饰好的金属丝织物从水中捞取石墨烯薄膜,使其覆盖在织物表面,然后55℃下烘干,器件便制备完成。
通过该方法制备的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物对紫外光有良好的响应。
实施例5
本实施例是一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物的制备方法是按照如下步骤进行:
(1)将直径为0.4mm的银丝织物用异丙醇超声清洗30分钟并干燥,然后用原子层沉积技术在金属丝表面沉积厚度为90nm氧化锌薄膜作为种子层,继而用水热法在种子层表面沿垂直方向生长氧化锌纳米棒阵列,氧化锌纳米棒的长度为700μm,直径为50nm。
(2)配置浓度为0.25mg/mL的银纳米线溶液,其中银纳米线直径为90nm,用抽滤成膜的方式,将银纳米线负载到长有氧化锌纳米棒阵列的金属丝织物表面。
(3)转移电阻率为1100Ω/□单层石墨烯薄膜浮于水面,继而用修饰好的金属丝织物从水中捞取石墨烯薄膜,使其覆盖在织物表面,然后65℃下烘干,器件便制备完成。
通过该方法制备的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物对紫外光有良好的响应。

Claims (10)

1.一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物,其特征在于,包括基底、氧化锌薄膜(2)、氧化锌纳米棒阵列(3)、银纳米线(4)、绝缘层(5)、单层石墨烯薄膜(6),所述基底为金属丝织物(1),金属丝织物(1)的金属丝表面沉积均匀致密的氧化锌薄膜(2),氧化锌薄膜表面垂直方向生长有氧化锌纳米棒阵列(3),氧化锌纳米棒阵列表面覆盖银纳米线(4),上述结构上表面的一侧设置绝缘层(5),单层石墨烯薄膜(6)设置在上述结构的最外层,单层石墨烯薄膜(6)上设置银浆(7),该银浆与石墨烯直接接触用于引出电极。
2.根据权利要求1所述的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物,其特征在于,所述金属丝织物为单一的银、钛、锌、铝或镍丝织物,金属丝直径为0.025mm~0.5mm。
3.根据权利要求1所述的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物,其特征在于,所述氧化锌薄膜(2)的厚度为50nm~200nm。
4.根据权利要求1所述的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物,其特征在于,氧化锌纳米棒阵列(3)中氧化锌纳米棒的长度为500nm~2μm,直径为50nm~100nm,相邻氧化锌纳米棒的间距为50~100nm。
5.根据权利要求1所述的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物,其特征在于,银纳米线(4)的直径为20nm~100nm。
6.根据权利要求1所述的基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物,其特征在于,石墨烯薄膜(6)的方块电阻为300Ω/□~2000Ω/□。
7.一种制造上述紫外光探测器织物的方法,其特征在于,包括以下步骤:
步骤1、用异丙醇对金属丝织物超声清洗并干燥,然后用原子层沉积方法在金属丝表面沉积氧化锌薄膜作为种子层,继而用水热法在种子层表面沿垂直方向生长氧化锌纳米棒阵列;
步骤2、配置一定浓度的银纳米线溶液,用抽滤成膜的方式,将银纳米线负载到长有氧化锌纳米棒阵列的金属丝织物表面;
步骤3、转移单层石墨烯薄膜浮于水面,继而用修饰好的金属丝织物从水中捞取石墨烯薄膜,使其覆盖在织物表面,然后烘干,器件便制备完成。
8.根据权利要求7所述的方法,其特征在于,步骤1中氧化锌薄膜的厚度为50nm~200nm;氧化锌纳米棒阵列中氧化锌纳米棒的长度为500nm~2μm,直径为50nm~100nm,相邻氧化锌纳米棒的间距为50~100nm;所述金属丝织物为单一的银、钛、锌、铝或镍丝织物,直径为0.025mm~0.5mm。
9.根据权利要求7所述的方法,其特征在于,步骤2中银纳米线溶液浓度为0.02mg/mL~1mg/mL,银纳米线直径为20nm~100nm。
10.根据权利要求7所述的的方法,其特征在于,步骤3中石墨烯方块电阻为300Ω/□~2000Ω/□,烘干温度为40~80℃。
CN201710889922.6A 2017-09-27 2017-09-27 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法 Pending CN107799623A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710889922.6A CN107799623A (zh) 2017-09-27 2017-09-27 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710889922.6A CN107799623A (zh) 2017-09-27 2017-09-27 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法

Publications (1)

Publication Number Publication Date
CN107799623A true CN107799623A (zh) 2018-03-13

Family

ID=61532557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710889922.6A Pending CN107799623A (zh) 2017-09-27 2017-09-27 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法

Country Status (1)

Country Link
CN (1) CN107799623A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463297A (zh) * 2020-04-16 2020-07-28 杭州紫芯光电有限公司 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法
CN112310239A (zh) * 2019-07-31 2021-02-02 哈尔滨工业大学 一种ALD结合银纳米线增强法制备高性能ZnO薄膜紫外探测器的方法
CN112382686A (zh) * 2020-10-27 2021-02-19 华南理工大学 一种ZnO/Ti3C2Tx线形紫外探测器及其制备方法
CN113224186A (zh) * 2021-05-10 2021-08-06 南京邮电大学 一种基于石墨烯/氧化锌异质结的柔性自驱动纤维紫外光电探测器
CN113937181A (zh) * 2021-09-22 2022-01-14 香港城市大学成都研究院 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法
CN114544726A (zh) * 2022-02-21 2022-05-27 浙江理工大学 一种丝素蛋白检测用pn型纤维状光电探测器的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346199A (zh) * 2013-07-10 2013-10-09 合肥工业大学 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346199A (zh) * 2013-07-10 2013-10-09 合肥工业大学 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AZAM KHAN • MUSHTAQUE: ""Analysis of junction properties of gold–zinc oxide nanorods-based Schottky diode by means of frequency dependent electrical characterization on textile"", 《J MATER SCI》 *
V.PANDIYARASAN: ""Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications"", 《APPLIED SURFACE SCIENCE》 *
YEONG HWAN KO: ""Facile fabrication of forest-like ZnO hierarchical structures ZnO hierarchical structures"", 《PHYS. STATUS SOLIDI RRL》 *
ZHENGFENG ZHU: ""Improving Wearable Photodetector Textiles via Precise Energy Level Alignment and Plasmonic Effect"", 《ADVANCED ELECTRONIC MATERIALS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310239A (zh) * 2019-07-31 2021-02-02 哈尔滨工业大学 一种ALD结合银纳米线增强法制备高性能ZnO薄膜紫外探测器的方法
CN111463297A (zh) * 2020-04-16 2020-07-28 杭州紫芯光电有限公司 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法
CN111463297B (zh) * 2020-04-16 2021-10-12 杭州紫芯光电有限公司 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法
CN112382686A (zh) * 2020-10-27 2021-02-19 华南理工大学 一种ZnO/Ti3C2Tx线形紫外探测器及其制备方法
CN113224186A (zh) * 2021-05-10 2021-08-06 南京邮电大学 一种基于石墨烯/氧化锌异质结的柔性自驱动纤维紫外光电探测器
CN113937181A (zh) * 2021-09-22 2022-01-14 香港城市大学成都研究院 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法
CN113937181B (zh) * 2021-09-22 2024-04-23 香港城市大学成都研究院 一种柔性氧化锌纳米颗粒紫外光探测器及其制备方法
CN114544726A (zh) * 2022-02-21 2022-05-27 浙江理工大学 一种丝素蛋白检测用pn型纤维状光电探测器的制备方法
CN114544726B (zh) * 2022-02-21 2024-05-03 浙江理工大学 一种丝素蛋白检测用pn型纤维状光电探测器的制备方法

Similar Documents

Publication Publication Date Title
CN107799623A (zh) 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法
Liu et al. Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks
Nguyen et al. Advances in flexible metallic transparent electrodes
Han et al. Uniform self‐forming metallic network as a high‐performance transparent conductive electrode
Huang et al. Highly thermostable, flexible, transparent, and conductive films on polyimide substrate with an AZO/AgNW/AZO structure
Liu et al. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes
CN102203950B (zh) 用于光电装置的基质
ES2496186T3 (es) Dispositivo que comprende contactos eléctricos y su proceso de producción
Bao et al. In situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared
Veeralingam et al. Enhanced carrier separation assisted high-performance piezo-phototronic self-powered photodetector based on core-shell ZnSnO3@ In2O3 heterojunction
CN104505149A (zh) 一种叠层透明电极及其制备方法
US20160319463A1 (en) Method of manufacturing transparent electrode using electrospinning method, and transparent electrode formed using same
WO2014136039A1 (en) Composition, substrates and methods thereof
KR101514325B1 (ko) 전기 방사 방법을 이용한 투명 전극의 제조 방법
Yang et al. High-performance transparent conducting metal network electrodes for perovksite photodetectors
Zhu et al. Boosting fiber-shaped photodetectors via “soft” interfaces
KR101782733B1 (ko) 페로브스카이트 태양전지
CN107123468B (zh) 一种含有功能调节层的透明导电薄膜
CN107610814B (zh) 一种基于超薄金属网格的透明电极及其制备方法
Mun et al. Strain-induced photocurrent enhancement in photodetectors based on nanometer-thick ZnO films on flexible polydimethylsiloxane substrates
Zhao et al. Highly reliable flexible transparent conductors prepared with Cu/Ni grid by vacuum-free solution process
Li et al. Fabrication and application of indium-tin-oxide nanowire networks by polystyrene-assisted growth
CN109904243A (zh) 基于界面优化的类纸基柔性紫外光探测器及其制备方法
Yue et al. Transparent and conductive PEDOT: PSS/Ag NW/PEDOT: PSS hybrid films prepared by spin-coating at room temperature
Wang et al. Electrospun assembly: A nondestructive nanofabrication for transparent photosensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180313

RJ01 Rejection of invention patent application after publication