CN111463297A - 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法 - Google Patents

基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN111463297A
CN111463297A CN202010297420.6A CN202010297420A CN111463297A CN 111463297 A CN111463297 A CN 111463297A CN 202010297420 A CN202010297420 A CN 202010297420A CN 111463297 A CN111463297 A CN 111463297A
Authority
CN
China
Prior art keywords
metal wire
tio
flexible
nano
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010297420.6A
Other languages
English (en)
Other versions
CN111463297B (zh
Inventor
陶江伟
王顺利
张丽滢
徐金阳
郭道友
常裕鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Zixin Photoelectric Co ltd
Original Assignee
Hangzhou Zixin Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Zixin Photoelectric Co ltd filed Critical Hangzhou Zixin Photoelectric Co ltd
Priority to CN202010297420.6A priority Critical patent/CN111463297B/zh
Publication of CN111463297A publication Critical patent/CN111463297A/zh
Application granted granted Critical
Publication of CN111463297B publication Critical patent/CN111463297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法,探测器从下至上依次包括下PE保护膜、柔性Ti金属丝下电极、TiO2/β‑Ga2O3纳米柱阵列、石墨烯/Ag纳米线复合电极、Ag上电极以及上PE保护膜,其中柔性Ti金属丝为圆柱体,且所述Ti金属丝外部有TiO2,β‑Ga2O3纳米柱位于所述TiO2顶部,形成TiO2/β‑Ga2O3纳米柱阵列。本发明的PN结结构日盲紫外探测器,具有三维空间结构,柔性可弯曲,日盲特性稳定,重复性良好,具有优异的化学和热稳定性,封装后的器件与衬底结合力强,可大面积制备,重复性好,有望在可穿戴、便捷式的紫外探测器领域广泛应用。

Description

基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其 制备方法
技术领域
本发明属于紫外光电探测器技术领域,具体涉及一种基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法。
技术背景
氧化镓为一种直接带隙的Ⅲ-Ⅳ族宽带隙半导体材料,其禁带宽度为4.2-4.9eV,带边发射波长为295-254nm,在深紫外光电探测领域具有独特的优势,而且其化学和热稳定性好,是近年来第三代新型半导体材料的研究热门之一。与薄膜材料相比,氧化镓纳米材料由于具有高的表面和体积比,极大地提高了其对光谱和气体的探测灵敏度。当前柔性光电子产品为一种研究热点,越来越受关注,需要有弹性,且具有一定曲率表面,而氧化镓基光电探测器件通常是在硅片、蓝宝石和石英衬底等刚性衬底上生长薄膜或纳米材料,这些器件均无法弯曲,限制了器件的应用范围。虽然现已有文献报道了在PEN高分子柔性衬底上生长非晶氧化镓薄膜,并制作了柔性日盲紫外探测器,但是非晶态薄膜的光电性能明显逊色于晶态高取向的材料,而且目前大部分的柔性衬底都是高分子类化合物,无法承受高温,且柔性不高,因此,选择一种可耐高温的柔性衬底制备单晶或多晶氧化镓材料,是实现高性能氧化镓基柔性紫外光电探测器件的关键。
到目前为止,已有相关实验(专利号:201710012296.2)基于柔性氧化镓纳米带的日盲紫外光电探测器的报道,但是此类探测器是将已经合成的氧化镓纳米带转移到柔性基底上,具有电极贴合不牢固、稳定性差和电极制作难度大等缺点。
发明内容
本发明的目的是提供一种柔性可弯曲、灵敏度高、稳定性好、响应快速,贴合牢固的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法。
本发明的技术方案为:基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,包括柔性PE保护膜,Ag上电极,柔性Ti金属丝下电极,位于Ti金属丝圆柱体表面的TiO2/β-Ga2O3纳米柱阵列以及石墨烯/Ag纳米线复合电极,具体结构为从下至上依次包括下PE保护膜、柔性Ti金属丝下电极、TiO2/β-Ga2O3纳米柱阵列、石墨烯/Ag纳米线复合电极、Ag上电极以及上PE保护膜,其中柔性Ti金属丝为圆柱体,且所述Ti金属丝外部有TiO2,β-Ga2O3纳米柱位于所述TiO2顶部,形成TiO2/β-Ga2O3纳米柱阵列。所述柔性Ti金属丝下电极为多个柔性Ti金属丝排列组成。所述TiO2/β-Ga2O3纳米柱阵列镶嵌于石墨烯/Ag纳米线复合电极内部。由多个柔性带有TiO2/β-Ga2O3纳米柱阵列Ti金属丝排列组成,可借助于Ti金属丝以及石墨烯/Ag纳米线复合电极的可弯折性,形成柔性结构,且采用多个Ti金属丝排列,避免整个薄膜的整体性,克服其平面间的应力,可进一步提高其弯曲性,即改善柔性。
进一步地,所述的TiO2/β-Ga2O3纳米柱阵列由p型TiO2薄膜和n型β-Ga2O3纳米柱阵列结构成,形成PN结,进而改善器件灵敏度性能。
进一步地,所述的柔性Ti金属丝作为制备TiO2薄膜和β-Ga2O3纳米柱阵列的基底,所述β-Ga2O3纳米柱沿着TiO2薄膜的圆柱体表面生长,形成弧形的纳米柱阵列结构。可有效提高β-Ga2O3纳米柱的整体比表面积,改善器件光电性能,且表面为纳米柱结构,可增加与石墨烯/Ag纳米线复合电极的接触面积,提高贴合度,牢固性高。
进一步地,所述TiO2薄膜的厚度为200~300nm;所述的柔性Ti金属丝的直径为0.05~0.10mm。
进一步地,所述β-Ga2O3纳米柱的直径为200~300nm,长度为2.0~3.0μm。
进一步地,所述β-Ga2O3纳米柱阵列是由若干β-Ga2O3纳米柱构成;所述石墨烯/Ag纳米线复合电极由石墨烯片和Ag纳米线复合而成,形成透明导电电极,并串联周围所有的β-Ga2O3纳米柱阵列,且形成的Ti/TiO2/β-Ga2O3纳米柱阵列镶嵌于石墨烯/Ag纳米线复合电极内部,可以借助纳米柱与复合电极的接触面积大,以及原位生长Ti/TiO2/β-Ga2O3纳米柱阵列,很好地提高器件的结合牢固性,进而提高稳定性。石墨烯/Ag纳米线复合电极位于双层PE保护膜之间;所述PE保护膜的厚度为0.1~0.2mm;所述Ag上电极位于石墨烯/Ag纳米线复合电极的上方。
上述基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,柔性可弯曲,性能稳定,可以检测200~280nm的日盲紫外光,可应用于便捷式可穿戴紫外线检测设备。
进一步地,本发明还包括基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的制备方法,其特征在于,包括以下步骤:
(1)将钛金属丝依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干,避免Ti金属丝表明杂质的干扰,利于后期的氧化均匀性;将清洗干净的Ti金属丝置入氧等离子体室中,氧等离子体处理的放电功率为50W,氧气流量为30Sccm,处理时间为20~30分钟使Ti金属丝表面氧化,形成一层致密的TiO2薄膜,待用;
(2)取浓度为0.5~1.0mol/L的异丙醇镓溶液置于反应釜内胆中,然后将若干条步骤(1)所得的TiO2/Ti金属丝悬挂于反应釜内胆中,并浸没于异丙醇镓溶液中,选择此步骤可以使TiO2/Ti金属丝周围均匀地浸泡在异丙醇镓溶液中,便于TiO2/Ti金属丝周围均匀生长β-Ga2O3
(3)将反应釜转移至烘箱中,在150℃下反应6-8h,随后取出样品,用去离子水和无水乙醇交替清洗3次,烘干后在高温炉中700~800℃退火1-2小时,获得TiO2/β-Ga2O3纳米柱阵列,采用上述温度和时间可以有效得到均匀的TiO2/β-Ga2O3纳米柱阵列;
(4)将若干条步骤(3)得到的长有TiO2/β-Ga2O3纳米柱阵列的Ti金属丝转移至下PE保护膜上,并在上方旋涂一层石墨烯/Ag纳米线复合电极,使生长有TiO2/β-Ga2O3纳米柱阵列的Ti金属丝完全镶嵌于石墨烯/Ag纳米线复合电极中,并在80℃下真空干燥箱中烘干,制作石墨烯/Ag纳米线复合透明导电电极;选用旋涂可以有效改善复合电极的厚度均匀性以及表面平整性。
(5)在步骤(4)所得的石墨烯/Ag纳米线复合电极上方沉积一滴银胶作为上电极,刮去钛金属丝一端表面的氧化物,露出钛金属表面,作为柔性探测器的下电极,可借助原位生成TiO2,进而提高电极与TiO2/β-Ga2O3纳米柱阵列PN结的结合度,并且也节省电极的制备步骤。
(6)在步骤(5)所得的样品上方覆盖一层上PE保护膜,用塑封机进行塑封,制备获得具有PE/Ti/TiO2/β-Ga2O3/C/Ag/PE的PN结结构的柔性日盲紫外探测器。
所述的步骤(4)中银纳米线溶液的浓度为0.5~1.0mol/L,石墨烯的浓度为5~10g/L。
进一步地,所述步骤(3)采用水热法制备β-Ga2O3纳米柱阵列。在TiO2/Ti金属丝表面生长GaOOH纳米柱阵列,并进一步退火,将GaOOH纳米柱阵列退火转化为β-Ga2O3纳米柱阵列,形成PN结结构的TiO2/β-Ga2O3纳米柱阵列。
本发明的有益效果:
1、本发明的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,可借助Ti金属丝以及石墨烯/Ag纳米线复合电极的柔性,达到可弯曲,直接形成柔性日盲紫外探测器,无需基底转移,直接在Ti金属丝为基底,原位形成的Ti/TiO2/β-Ga2O3纳米柱阵列,并将Ti/TiO2/β-Ga2O3纳米柱阵列镶嵌于石墨烯/Ag纳米线复合电极内部,提高接触面积,进而提高电极贴合牢固性,减少下电极形成步骤,使器件性能稳定,并借助TiO2/β-Ga2O3纳米柱阵列的PN结的改善,提高器件的灵敏度,耐温性能高,具有优异的日盲光电特性。且采用的制备方法,简单快捷,无需高难度设备,仅需多个Ti金属丝,采用氧等离子体,使Ti金属丝表面氧化,并采用液相法,直接在Ti金属丝表面的原位生长的TiO2表面形成均匀有序的β-Ga2O3相结纳米柱阵列,结合牢固,纳米柱尺寸可控。
2、本发明的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,石墨烯/Ag纳米线复合电极增强器件导电性和透光率,易获得加工,导电性良好,串联了周边所有的纳米柱阵列,提高了日盲紫外探测器整体的性能。
3、本发明基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的制备方法,采用水热法制备直接Ti金属丝表面的TiO2表面上形成氧化镓纳米柱阵列,该方法具有成本低、工艺可控、可大面积制备、重复性好。
4、本发明的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,可探测200-280nm的日盲紫外光,可弯曲和折叠,可应用于便捷式可穿戴紫外线检测设备。
5、本发明在柔性钛金属丝上原位合成氧化钛/氧化镓纳米柱阵列,并采用柔性PE保护膜双面塑封,制作成具有PE/Ti/TiO2/β-Ga2O3/C/Ag/PE的PN结结构的日盲紫外探测器,具有三维空间结构,柔性可弯曲,日盲特性稳定,重复性良好,具有优异的化学和热稳定性,封装后的器件与衬底结合力强。该探测器的制备工艺可控性强,易操作,封装后的器件与衬底结合力强,可以大面积制备在可穿戴设备、紫外线检测等领域具有很大的应用前景。
附图说明
图1是基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的俯视图;
图2是基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的侧视图;
图3是β-Ga2O3纳米柱阵列的XRD图谱;
图4是β-Ga2O3纳米柱阵列的SEM照片;
图5是基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器在254nm紫外光照下的I-t图。
具体实施方式
下面结合附图对本发明的内容进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。居于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他实施例,都属于本发明保护的范围。
如图1-2所示,基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,包括柔性PE保护膜,Ag上电极5,柔性Ti金属丝2下电极,位于Ti金属丝2圆柱体表面的TiO2/β-Ga2O3纳米柱阵列以及石墨烯/Ag纳米线复合电极4,具体结构为从下至上依次为下PE保护膜1、柔性Ti金属丝2下电极、TiO2/β-Ga2O3纳米柱阵列3、石墨烯/Ag纳米线复合电极4、Ag上电极5以及上PE保护膜6,其中柔性Ti金属丝2为圆柱体,且所述Ti金属丝2外部包覆有TiO2薄膜31,β-Ga2O3纳米柱32位于所述TiO2薄膜31顶部,形成TiO2/β-Ga2O3纳米柱阵列3。所述柔性Ti金属丝2下电极为多个柔性Ti金属丝2排列组成。所述TiO2/β-Ga2O3纳米柱阵列3镶嵌于石墨烯/Ag纳米线复合电极4内部。由多个柔性Ti金属丝2排列组成,可借助于Ti金属丝2以及石墨烯/Ag纳米线复合电极4的可弯折性,形成柔性结构,且采用多个Ti金属丝2排列,避免整个薄膜的整体性,克服其平面间的应力,可进一步提高其弯曲性,即改善柔性。所述的TiO2/β-Ga2O3纳米柱阵列3由p型TiO2薄膜31和n型β-Ga2O3纳米柱阵列32结构成,形成PN结,进而改善器件光电性能。所述的柔性Ti金属丝2作为制备TiO2薄膜31和β-Ga2O3纳米柱阵列32的基底,所述β-Ga2O3纳米柱沿着TiO2薄膜31的圆柱体表面生长,形成弧形的纳米柱阵列结构。可有效提高β-Ga2O3纳米柱的整体比表面积,改善器件光电性能。所述TiO2薄膜的厚度为200~300nm;所述的柔性Ti金属丝2的直径为0.05~0.10mm。所述β-Ga2O3纳米柱的直径为200~300nm,长度为2.0~3.0μm。所述β-Ga2O3纳米柱阵列32是由若干β-Ga2O3纳米柱构成;所述石墨烯/Ag纳米线复合电极4由石墨烯片和Ag纳米线复合而成,形成透明导电电极,并串联周围所有的β-Ga2O3纳米柱阵列32,且形成的Ti/TiO2/β-Ga2O3纳米柱阵列镶嵌于石墨烯/Ag纳米线复合电极4内部,可以很好地提高器件的粘结牢固性,进而提高稳定性。石墨烯/Ag纳米线复合电极4位于双层PE保护膜之间;所述PE保护膜的厚度为0.1~0.2mm;所述Ag上电极5位于石墨烯/Ag纳米线复合电极4的上方。
实施例1
基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的制备方法,包括以下步骤:
(1)将Ti金属丝依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,用干燥的氮气吹干;将清洗干净的钛金属丝置入氧等离子体中,使钛金属丝表面氧化,形成一层致密的TiO2薄膜,待用;
(2)取20mL浓度为0.5mol/L的异丙醇镓溶液置于反应釜内胆中,然后将若干条步骤(1)所得的TiO2/Ti金属丝悬挂于反应釜内胆中,并浸没于异丙醇镓溶液中;选择此步骤可以使TiO2/Ti金属丝周围均匀地浸泡在异丙醇镓溶液中,便于TiO2/Ti金属丝周围均匀生长纳米柱
(3)将反应釜转移至烘箱中,在150℃下反应6h,随后取出样品,在该温度下反应,可以得到尺寸均匀的纳米柱结构,高于或低于此温度,可能会导致不能得到纳米柱或尺寸不均匀,用去离子水和无水乙醇交替清洗3次,烘干后在高温炉中750℃退火1小时,获得TiO2/β-Ga2O3纳米柱阵列;借助于水热法,可简单可控地,大规模地形成均匀的TiO2/β-Ga2O3纳米柱阵列,成本低。
(4)将若干条步骤(3)得到的长有TiO2/β-Ga2O3纳米柱阵列的Ti金属丝转移至下PE保护膜上,并在上方旋涂一层石墨烯/Ag纳米线复合电极,使长有TiO2/β-Ga2O3纳米柱阵列的Ti金属丝完全镶嵌于石墨烯/Ag纳米线复合电极中,使石墨烯/Ag纳米线复合电极完全覆盖TiO2/β-Ga2O3纳米柱阵列,连接TiO2/β-Ga2O3纳米柱阵列,并在80℃下真空干燥箱中烘干,制作石墨烯/Ag纳米线复合透明导电电极;可有效利用旋涂法厚度可控,且表面平整,避免表表面不平对器件性能的影响,并且可以有效提高电极之间的贴合牢固性,利于柔性弯曲。
(5)在步骤(4)所得的石墨烯/Ag纳米线复合电极上方沉积一滴银胶作为上电极,刮去钛金属丝一端表面的氧化物,露出钛金属表面,作为柔性探测器的下电极。
(6)在步骤(5)所得的样品上方覆盖一层上PE保护膜,用塑封机进行塑封,制备获得具有PE/Ti/TiO2/β-Ga2O3/C/Ag/PE的PN结结构的柔性日盲紫外探测器。
具体地,所述步骤(1)中氧等离子体处理的放电功率为50W,氧气流量为30Sccm,处理时间为30分钟。所述的步骤(4)中银纳米线溶液的浓度为0.5mol/L,石墨烯的浓度为5g/L。
进一步地,所述的步骤(3)采用水热法制备α/β-Ga2O3相结纳米柱阵列。在TiO2/Ti片衬底生长GaOOH纳米柱阵列,并进一步退火,将GaOOH纳米柱阵列在不同的退火温度下分步转化为α/β-Ga2O3相结纳米柱阵列,最终形成多异质结结构的TiO2/α/β-Ga2O3相结纳米柱阵列。
将步骤(3)中退火后所得样品进行XRD分析,从图3中可以看出,(-201)、(400)、(002)、(-111)、(111)、(401)、(-311)、(-112)、(-312)、(510)、(-403)、(203)、(-313)、(020)、(710)和(403)衍射峰均为β-Ga2O3相的特征峰(图3),没有发现其它杂质的特征峰,表明在750℃退火后得到的是β-Ga2O3材料。将步骤(3)中所得样品在扫描电镜中观察,发现纳米柱沿着钛金属丝圆柱体表面均匀生长,如图4所示,显示β-Ga2O3纳米柱的直径为200~300nm,高度为2.0~3.0μm。
对步骤(6)中所得的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器进行光电性能测试。图5给出了其在2V偏压下光强为1.5mW/cm2的254nm光照下通过不断开关光源测得的I-t曲线图,重复测试4个I-t循环,均表现出很好的重复性。其中开光源后最大光电流为85nA,关光源后光电流为1.2nA,光暗比达到71,表明该探测器具有优异的光响应特性,相较于单纯的β-Ga2O3纳米阵列,灵敏度更优,且牢固性更好,具有柔性结构。同样条件下探测器在360nm光照下基本没有光响应,表明该探测器具有日盲特性。氧化镓纳米柱阵列具有长径比高和电子传输速度快等特点,展现出优秀的光电特性。同时,在外力作用下,线性的几何结构具有很好的弹性,当材料发生形变后,表面不会产生裂纹,结合柔性钛金属丝衬底,非常适合柔性光电器件的设计和制作,有望在移动可穿戴等紫外探测等领域得到广泛应用。
实施例2
步骤(1)、(5)和(6)均与实施例1相同。步骤(2)中异丙醇镓溶液的浓度为0.5mol/L,步骤(3)中在150℃下反应7h,水热生长羟基氧化镓,随后将GaOOH转移到高温炉中800℃退火1.5小时,获得TiO2/β-Ga2O3纳米柱阵列。步骤(4)中银纳米线溶液的浓度为0.5mol/L,石墨烯的浓度为10g/L。所得TiO2/β-Ga2O3纳米柱阵列的晶体结构、化学成分以及基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的光电特性均与实例1类似。
实施例3
步骤(1)、(5)和(6)均与实施例1相同。步骤(2)中异丙醇镓溶液的浓度为0.8mol/L,步骤(3)中在150℃下反应8h,水热生长羟基氧化镓,随后将GaOOH转移到高温炉中800℃退火1小时,获得TiO2/β-Ga2O3纳米柱阵列。步骤(4)中银纳米线溶液的浓度为0.7mol/L,石墨烯的浓度为7g/L。所得TiO2/β-Ga2O3纳米柱阵列的晶体结构、化学成分以及基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的光电特性均与实例1类似。
实施例4
步骤(1)、(5)和(6)均与实施例1相同。步骤(2)中异丙醇镓溶液的浓度为0.9mol/L,步骤(3)中在150℃下反应6h,水热生长羟基氧化镓,随后将GaOOH转移到高温炉中700℃退火2小时,获得TiO2/β-Ga2O3纳米柱阵列。步骤(4)中银纳米线溶液的浓度为1mol/L,石墨烯的浓度为5g/L。所得TiO2/β-Ga2O3纳米柱阵列的晶体结构、化学成分以及基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的光电特性均与实例1类似。
实施例5
步骤(1)、(5)和(6)均与实施例1相同。步骤(2)中异丙醇镓溶液的浓度为1.0mol/L,步骤(3)中在150℃下反应7h,水热生长羟基氧化镓,随后将GaOOH转移到高温炉中780℃退火1.5小时,获得TiO2/β-Ga2O3纳米柱阵列。步骤(4)中银纳米线溶液的浓度为0.8mol/L,石墨烯的浓度为6g/L。所得TiO2/β-Ga2O3纳米柱阵列的晶体结构、化学成分以及基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的光电特性均与实例1类似。
本发明方法制备的一种基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,柔性可弯曲,可探测200-280nm的日盲紫外光,可应用于便捷式可穿戴紫外线检测设备。且本发明的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,可借助Ti金属丝以及石墨烯/Ag纳米线复合电极的柔性,达到可弯曲,直接形成柔性日盲紫外探测器,无需基底转移,直接在Ti金属丝为基底,形成的Ti/TiO2/β-Ga2O3纳米柱阵列,并将Ti/TiO2/β-Ga2O3纳米柱阵列镶嵌于石墨烯/Ag纳米线复合电极内部,进而提高电极贴合牢固性,使器件性能稳定,并借助TiO2/β-Ga2O3纳米柱阵列的PN结的改善,提高器件的灵敏度,耐温性能高,具有优异的日盲光电特性。且采用的制备方法,简单快捷,无需高难度器件,仅需多个Ti金属丝,采用氧等离子体,使Ti金属丝表面氧化,并采用液相法,直接在Ti金属丝表面的TiO2表面形成均匀有序的β-Ga2O3相结纳米柱阵列,纳米柱尺寸可控。借助石墨烯/Ag纳米线复合电极增强器件导电性和透光率,易获得加工,导电性良好,串联了周边所有的纳米柱阵列,提高了日盲紫外探测器整体的性能。采用水热法制备直接Ti金属丝表面的TiO2表面上形成氧化镓纳米柱阵列,该方法具有成本低、工艺可控、可大面积制备、重复性好。
本发明在柔性钛金属丝上原位合成氧化钛/氧化镓纳米柱阵列,并采用柔性PE保护膜双面塑封,制作成基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器。该探测器的制备工艺可控性强,易操作,封装后的器件与衬底结合力强,柔性可弯曲,可以大面积制备,重复性好,在可穿戴设备、紫外线检测等领域具有很大的应用前景。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上、在本发明的方法和原则之内,所作的任何修改等同替换、改进,均应包含在本发明的保护范围之内。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,其特征在于,从下至上依次包括下PE保护膜、柔性Ti金属丝下电极、TiO2/β-Ga2O3纳米柱阵列、石墨烯/Ag纳米线复合电极、Ag上电极以及上PE保护膜,其中柔性Ti金属丝为圆柱体,且所述Ti金属丝外部有TiO2,β-Ga2O3纳米柱位于所述TiO2顶部,形成TiO2/β-Ga2O3纳米柱阵列。
2.根据权利要求1所述的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,其特征在于,所述柔性Ti金属丝下电极为多个带有TiO2/β-Ga2O3纳米柱阵列的柔性Ti金属丝排列组成。
3.根据权利要求1或2所述的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,其特征在于,所述TiO2/β-Ga2O3纳米柱阵列镶嵌于石墨烯/Ag纳米线复合电极内部。
4.根据权利要求1或2所述的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,其特征在于,所述的TiO2/β-Ga2O3纳米柱阵列由p型TiO2薄膜和n型β-Ga2O3纳米柱阵列结构成。
5.根据权利要求3所述的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,其特征在于,所述的柔性Ti金属丝作为制备TiO2薄膜和β-Ga2O3纳米柱阵列的基底,所述β-Ga2O3纳米柱沿着TiO2薄膜的圆柱体表面生长,形成弧形的纳米柱阵列结构。
6.根据权利要求1所述的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,其特征在于,所述TiO2薄膜的厚度为200~300nm;所述的柔性Ti金属丝的直径为0.05~0.10mm。
7.根据权利要求1所述的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器,其特征在于,所述β-Ga2O3纳米柱的直径为200~300nm,长度为2.0~3.0μm。
8.一种如权利要求1-7任一项所述的基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器的制备方法,其特征在于,包括以下步骤:
(1)将Ti金属丝依次浸泡到丙酮、乙醇、去离子水中并超声清洗,取出干燥;将清洗干净的Ti金属丝置入氧等离子体中,使钛金属丝表面氧化,形成一层致密的TiO2薄膜,形成TiO2/Ti金属丝,待用;
(2)取浓度为0.5~1.0mol/L的异丙醇镓溶液置于反应釜内胆中,然后将若干条步骤(1)所得的TiO2/Ti金属丝悬挂于反应釜内胆中,并浸没于异丙醇镓溶液中;
(3)将反应釜转移至烘箱中,在150℃下反应6~8h,随后取出样品,用去离子水和无水乙醇交替清洗多次,烘干后在高温炉中700~800℃退火1-2小时,获得TiO2/β-Ga2O3纳米柱阵列;
(4)将若干条步骤(3)得到的长有TiO2/β-Ga2O3纳米柱阵列的Ti金属丝转移至下PE保护膜上,并在上方旋涂一层石墨烯/Ag纳米线复合电极,使生长有TiO2/β-Ga2O3纳米柱阵列的Ti金属丝完全镶嵌于石墨烯/Ag纳米线复合电极中,烘干,制作石墨烯/Ag纳米线复合透明导电电极;
(5)在步骤(4)所得的石墨烯/Ag纳米线复合透明导电电极上方沉积银胶作为上电极,刮去Ti金属丝一端表面的氧化物,露出钛金属表面,形成柔性Ti金属丝下电极。
(6)在步骤(5)所得的样品上方覆盖一层上PE保护膜,用塑封机进行塑封,制备获得具有PE/Ti/TiO2/β-Ga2O3/C/Ag/PE的PN结结构的柔性日盲紫外探测器。
9.根据权利要求8所述的制备方法,其特征在于,所述的步骤(1)中氧等离子体处理的放电功率为50W,氧气流量为30Sccm,处理时间为20~30分钟。
10.根据权利要求8所述的制备方法,其特征在于,所述的步骤(4)中银纳米线溶液的浓度为0.5~1.0mol/L,石墨烯的浓度为5~10g/L。
CN202010297420.6A 2020-04-16 2020-04-16 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法 Active CN111463297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010297420.6A CN111463297B (zh) 2020-04-16 2020-04-16 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010297420.6A CN111463297B (zh) 2020-04-16 2020-04-16 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111463297A true CN111463297A (zh) 2020-07-28
CN111463297B CN111463297B (zh) 2021-10-12

Family

ID=71684606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010297420.6A Active CN111463297B (zh) 2020-04-16 2020-04-16 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111463297B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871750A (zh) * 2014-03-20 2014-06-18 华中科技大学 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN106847989A (zh) * 2017-03-17 2017-06-13 南京理工大学 基于界面优化的氧化锌纳米棒阵列/聚乙烯咔唑/石墨烯杂化的纤维状紫外光探测器及方法
CN107799623A (zh) * 2017-09-27 2018-03-13 南京理工大学 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法
CN108376716A (zh) * 2018-03-01 2018-08-07 无锡华亿投资有限公司 一种新型氧化镓基pin结构紫外光电探测器及其制备方法
CN108615784A (zh) * 2018-05-30 2018-10-02 金康康 一种玻璃纤维基自供电柔性氧化锡/氧化镓异质结薄膜紫外探测器及其制备方法
CN108767028A (zh) * 2018-05-30 2018-11-06 陈谦 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN108878553A (zh) * 2018-06-16 2018-11-23 复旦大学 一种纤维状可穿戴紫外光电探测器及其制备方法
CN108982600A (zh) * 2018-05-30 2018-12-11 杨丽娜 基于氧化镓/镓酸锌异质结纳米阵列的柔性气敏传感器及其制备方法
KR101946205B1 (ko) * 2018-07-16 2019-04-17 아주대학교산학협력단 태양광-블라인드 uv-c 광센서 및 이의 제조 방법
CN110828589A (zh) * 2019-11-17 2020-02-21 金华紫芯科技有限公司 一种柔性日盲紫外光电探测器及其制备方法
CN110854233A (zh) * 2019-11-17 2020-02-28 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871750A (zh) * 2014-03-20 2014-06-18 华中科技大学 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN106847989A (zh) * 2017-03-17 2017-06-13 南京理工大学 基于界面优化的氧化锌纳米棒阵列/聚乙烯咔唑/石墨烯杂化的纤维状紫外光探测器及方法
CN107799623A (zh) * 2017-09-27 2018-03-13 南京理工大学 一种基于氧化锌纳米棒阵列/银纳米线/石墨烯多层结构的紫外光探测器织物及制备方法
CN108376716A (zh) * 2018-03-01 2018-08-07 无锡华亿投资有限公司 一种新型氧化镓基pin结构紫外光电探测器及其制备方法
CN108615784A (zh) * 2018-05-30 2018-10-02 金康康 一种玻璃纤维基自供电柔性氧化锡/氧化镓异质结薄膜紫外探测器及其制备方法
CN108767028A (zh) * 2018-05-30 2018-11-06 陈谦 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN108982600A (zh) * 2018-05-30 2018-12-11 杨丽娜 基于氧化镓/镓酸锌异质结纳米阵列的柔性气敏传感器及其制备方法
CN108878553A (zh) * 2018-06-16 2018-11-23 复旦大学 一种纤维状可穿戴紫外光电探测器及其制备方法
KR101946205B1 (ko) * 2018-07-16 2019-04-17 아주대학교산학협력단 태양광-블라인드 uv-c 광센서 및 이의 제조 방법
CN110828589A (zh) * 2019-11-17 2020-02-21 金华紫芯科技有限公司 一种柔性日盲紫外光电探测器及其制备方法
CN110854233A (zh) * 2019-11-17 2020-02-28 金华紫芯科技有限公司 一种Ga2O3薄膜基日盲紫外探测器、制备方法及应用

Also Published As

Publication number Publication date
CN111463297B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
Wang et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector
Li et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application
CN111613691A (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN103441154B (zh) 一种ZnO纳米阵列紫外探测器及其制作方法
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN108767050B (zh) 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
Young et al. Self-powered ZnO nanorod ultraviolet photodetector integrated with dye-sensitised solar cell
CN108007977B (zh) 基于β-Ga2O3/CuGa2O4/[HONH3]PbI3异质结的气敏传感器
CN102142482B (zh) 肖特基接触型ZnO纳米阵列紫外光探测器件的制备方法
CN107195725A (zh) 石墨烯/TiO2纳米柱阵列肖特基结紫外光电探测器及其制备方法
Chetri et al. Improved photodetector performance of SnO2 nanowire by optimized air annealing
Gu et al. Structural, optical and photoelectric properties of Mn-doped ZnO films used for ultraviolet detectors
CN107658384B (zh) 基于有机-无机多异质结纳米阵列的广谱光电探测器及其制备方法
CN104183665B (zh) 基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法
CN112635587A (zh) 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
Chu et al. Enhanced nanogenerator performances of 1-D Al-doped ZnO nanorod arrays through ultrasonic wave systems
CN101789463B (zh) n型氧化锌纳米棒/p型金刚石异质结光电器件及制备方法
CN111463297B (zh) 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法
CN110828589B (zh) 一种柔性日盲紫外光电探测器及其制备方法
Peng et al. High-performance flexible transparent p-CuI film by optimized solid iodization
Zhang et al. Single-crystal Sb2S3 tube prepared by chemical vapor deposition for a 1 cm photodetector application
Zhu et al. In-situ composition development of Zn/In-doped Ga2O3 nanowire with ultrahigh responsivity and long-term stability for deep-UV photodetector
TW201212248A (en) A structure of photovoltaic cell
CN114744060B (zh) 一种电网电晕监测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant