CN110828589B - 一种柔性日盲紫外光电探测器及其制备方法 - Google Patents

一种柔性日盲紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN110828589B
CN110828589B CN201911123821.3A CN201911123821A CN110828589B CN 110828589 B CN110828589 B CN 110828589B CN 201911123821 A CN201911123821 A CN 201911123821A CN 110828589 B CN110828589 B CN 110828589B
Authority
CN
China
Prior art keywords
beta
flexible
solar blind
photoelectric detector
blind ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911123821.3A
Other languages
English (en)
Other versions
CN110828589A (zh
Inventor
王顺利
郭道友
孙翰林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhua Purple Core Technology Co ltd
Original Assignee
Jinhua Purple Core Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinhua Purple Core Technology Co ltd filed Critical Jinhua Purple Core Technology Co ltd
Priority to CN201911123821.3A priority Critical patent/CN110828589B/zh
Publication of CN110828589A publication Critical patent/CN110828589A/zh
Application granted granted Critical
Publication of CN110828589B publication Critical patent/CN110828589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种柔性日盲紫外光电探测器及其制备方法,所述探测器包括柔性衬底、位于柔性衬底上的β‑Ga2O3纳米线和位于所述β‑Ga2O3纳米线上的银电极。本发明制备的光电探测器具有良好的日盲紫外光响应。同时,光电探测器具有良好的稳定性和重复性,在不影响其性能的情况下实现不同程度的弯曲。本发明方法工艺简单,产品性能优异,可以实现工业化生产,在未来柔性光电探测器原材料生产中具有巨大的应用前景。

Description

一种柔性日盲紫外光电探测器及其制备方法
技术领域
本发明涉及一种日盲紫外光电探测器领域,具体是指一种柔性日盲紫外光电探测器及其制备方法。
背景技术
由于臭氧层的吸收,在地球表面几乎不存在波长介于200-280nm的深紫外光,该波段的光称为日盲紫外光,在该区域工作的光电探测器,即所谓的太阳盲光电探测器。由于不受太阳光背景的影响,日盲紫外探测可以全天候工作,具有灵敏度高、虚警率低的特点,在导弹预警跟踪、火箭尾焰探测、森林火情警报、臭氧层检测、医疗诊断、近地保密通讯、生物化学分析等众多领域具有许多广泛的应用。
固态日盲紫外探测器要求半导体材料的禁带宽度大于4.4eV,目前以GaN、ZnO、SiC、金刚石和Ga2O3为代表的宽禁带半导体材料近年来发展迅速。尤其是Ga2O3的带隙约为4.9eV,是一种天然的日盲材料,为直接带隙的Ⅲ-VI族宽带隙半导体,且易于与Al2O3和In2O3形成连续固溶体实现其在日盲区的完全覆盖,同时具有良好的化学稳定性和热稳定性等特点是一种非常适合于制备日盲紫外光电探测器的氧化物半导体候选材料,近年来受到了科研人员的关注。
目前基于单晶、薄膜、纳米线和纳米带等多种形式的β-Ga2O3的日盲光电探测器已经在刚性衬底上制备出来并得到了广泛的研究。然而这些光电探测器往往需要较厚的材料以实现较大的光电响应,而且具有易碎、价格昂贵以及苛刻的制备工艺和工作环境等诸多缺点,限制了其应用发展。
随着现代电子技术行业的快速发展,人们对便携化、娱乐化、健康化的可穿戴式电子设备不断追求,促使其相应的柔性电子器件向着高效、低成本、大面积制造等方向发展。以光电探测器为例,易于携带、优异的移植性、大面积兼容性、更高的可扩展性以及低制备成本等优点使其在便携式和可穿戴光电子设备、可变形显示器、人造仿生组织和智能皮肤等有着潜在的应用。
然而,多数Ga2O3薄膜在柔性衬底上为低温生长的非晶性质,由于薄膜和柔性衬底之间的物理不稳定性引起的接触问题使得器件显示出不稳定性。
发明内容
本发明的目的为了解决上述技术问题,提供一种柔性日盲紫外光电探测器及其制备方法。
实现本发明上述目的,本发明提供了一种柔性日盲紫外光电探测器,所述探测器包括柔性衬底、位于柔性衬底上的β-Ga2O3纳米线和位于所述β-Ga2O3纳米线上的银电极。
其中,所述β-Ga2O3纳米线交叉沉积于所述柔性衬底上。
其中,所述β-Ga2O3纳米线通过等离子增强化学气相沉积法在所述柔性衬底原位合成。
其中,所述β-Ga2O3纳米线直径为40nm~120nm,长度为1微米~100微米。
其中,所述柔性衬底包括柔性玻璃纤维布衬底。
本发明还包括第二种技术方案,提供一种制备上述的柔性日盲紫外光电探测器的方法,包括依次在柔性衬底上沉积一层金,在金层上以镓源为前驱体合成一层β-Ga2O3纳米线层,在β-Ga2O3纳米线层上设置两滴Ag混合浆料,干燥,形成两个银电极。
其中,所述在金层上以镓源为前驱体合成一层β-Ga2O3纳米线层包括:将柔性衬底/金层样品置于水平管式炉中,并通过机械旋转泵将管抽空,用500sccm的氩气吹扫;升温至500-600℃,同时将高纯度氩气和氧气的混合气体以及三氯化镓气体通入管中;打开射频电源,设置射频功率,在金层上沉积氧化镓材料,形成β-Ga2O3纳米线层。
其中,高纯度氩气、氧气和三氯化镓的纯度均为99.999%。
其中,所述升温至500-600℃的升温速度为30℃/min;所述在金层上沉积氧化镓材料的沉积时间为5h。
其中,所述抽真空后管内压强为1Pa;高纯度氩气和氧气的混合气体的比例约10:1。
其中,通入混合气体后腔体压强为3×101Pa;射频功率在50-300W。
其中,所述金层的厚度为10nm,所述金层通过射频磁控溅射沉积在柔性衬底上。
其中,所述柔性衬底为柔性玻璃纤维布。
进一步地,柔性玻璃纤维布衬底在上沉积一层金之前经过处理,分别用丙酮、无水乙醇、去离子水对柔性玻璃纤维布进行超声清洗10min,然后在60℃的烘箱中干燥12小时。
其中,每个Ag电极面积约为0.25mm2,两个电极之间的间隙约为5mm。
本发明的有益效果在于:
1、本发明的柔性日盲紫外光电探测器,是在柔性衬底上形成的β-Ga2O3纳米线,β-Ga2O3纳米线为晶相材料,其与柔性衬底结合牢固,使得探测器显示稳定,
2、本发明的柔性日盲紫外光电探测器,所使用的柔性玻璃纤维衬底是一种新型的无机非金属材料,与其他柔性衬底相比,具有耐高温、不易燃、高强度和耐化学腐蚀等优异的性能,满足了器件在高温条件下工作的基本要求。
3、本发明的柔性日盲紫外光电探测器,β-Ga2O3纳米线是在柔性衬底上原位合成得到的,所制备的基于β-Ga2O3纳米线柔性日盲光电探测器具有优良的日盲光电性能,如在254nm的光照下其光暗比约为260,响应时间仅为0.19s,同时,器件的性能不受弯曲条件的影响,具有高工作温度和高稳定性。
4、本发明柔性日盲紫外光电探测器,提出的等离子增强化学气相沉积法,借助辉光放电等离子体提高三氯化镓气体和衬底的活性,并显著降低反应温度,提高氧化镓材料的沉积效率和质量,其工艺流程简单、成本低廉、周期短、重复性好,为氧化镓纳米基材的大规模生产创造了良好的条件。
5、本发明的柔性日盲紫外光电探测器具有良好的稳定性和重复性,在不影响其性能的情况下实现不同程度的弯曲。本发明方法工艺简单,产品性能优异,可以实现工业化生产,在未来柔性光电探测器原材料生产中具有巨大的应用前景。
附图说明
图1为本发明的柔性日盲紫外光电探测器的结构示意图。
图2为本发明方法所使用的等离子增强化学气相沉积系统的结构示意图。
图3是本发明方法制得的β-Ga2O3纳米线的X射线衍射图。
图4是本发明方法制得的β-Ga2O3纳米线的紫外可见光吸收图谱,插图是计算得到的β-Ga2O3纳米线的带隙。
图5是本发明方法制得的β-Ga2O3纳米线的扫描电镜图。
图6是本发明方法制得的β-Ga2O3纳米线的透射电镜图。
图7是本发明方法制得的基于β-Ga2O3纳米线柔性日盲紫外光电探测器在黑暗和光照下的电流-电压特征线性和指数曲线图。
图8和图9分别是本发明方法制得的基于β-Ga2O3纳米线柔性日盲紫外光电探测器在20V偏压下,254nm光照下光电流随入射紫外光功率变化而变化的曲线图,其中每条线对应入射光功率规律的变化。
图10是本发明方法制得的基于β-Ga2O3纳米线柔性日盲紫外光电探测器在20V偏压下、不同的弯曲半径下测得电流-电压特征图,插图为器件在平坦和弯曲条件下的示意图。
具体实施方式
下面结合实施例和附图对本发明做进一步的解释。
实施例1
一种柔性日盲紫外光电探测器的制备方法如下:
(1)分别用丙酮、无水乙醇、去离子水对柔性玻璃纤维布进行超声清洗10min,然后在60℃的烘箱中干燥12小时;
(2)在真空下,通过射频磁控溅射技术在步骤(1)清洗后的柔性玻璃纤维布衬底上沉积约10nm厚度的Au的超薄膜;
(3)如图2所示,将步骤(2)处理后得到的样品41置于水平管式炉42中,并通过机械旋转泵将管抽空,用500sccm的氩气吹扫;然后以约30℃/min的速率将炉温升至600℃,同时将高纯度氩气和氧气的混合气体以及三氯化镓气体通入炉中,如图2中的箭头方向为气流方向;打开射频电源,设置射频44功率,在衬底上沉积氧化镓材料,反应5小时后,将炉子自然冷却至室温,在柔性玻璃纤维布/Au衬底的Au层上观察到白色的β-Ga2O3纳米线产物。其中,抽真空后腔体压强为1Pa;通入混合气体后腔体压强为3×101Pa;射频功率在50W;衬底的加热温度为600℃;高纯度氩气和氧气的混合气体的比列约为10:1,高纯度氩气、氧气和三氯化镓的纯度均为99.999%。
由图3所示的X射线衍射图可以看出得到的纳米线的成分是高纯度的单斜相β-Ga2O3。图4为β-Ga2O3纳米线的紫外可见光吸收谱图,插图为经过计算得到的带隙估计为4.98eV。可以看到β-Ga2O3纳米线的最大吸收边为249nm,对应所述日盲紫外光电探测器探测的紫外光波段。由图5和6可知,β-Ga2O3纳米线呈交叉缠绕状,其直径约为40~120nm,长度为1到100微米不等,沿(111)晶面生长。
(4)在步骤(3)合成的样品β-Ga2O3纳米线层上设置两滴Ag混合浆料,并在60℃下干燥,作为两个金属电极,并通过两根铜线连接到Ag电极构成柔性日盲紫外光电探测器(如图1)。其中每个Ag电极面积约为0.25mm2,两个电极之间的间隙约为5mm。
本发明实施例中,通过沉积金层,金层作为β-Ga2O3纳米线纳米线生长的催化剂。
如图1所示的本发明实施例方法制备出的柔性日盲紫外光电探测器,包括柔性玻璃纤维布1,位于柔性玻璃纤维布1上的β-Ga2O3纳米线2,位于β-Ga2O3纳米线2上的银电极3。本发明实施例的两个银电极3通过铜导线与电源连接。
本发明实施例中,β-Ga2O3纳米线3直径为40nm~120nm,长度为1微米~100微米,交叉沉积于柔性玻璃纤维布/金衬底1上,具有较大的比表面积,β-Ga2O3纳米线3通过等离子增强化学气相沉积法。本发明的柔性玻璃纤维布11是一种新型的无机非金属材料,具有耐高温、不易燃、高强度和耐化学腐蚀等独特性能。本发的柔性日盲紫外光电探测器为金属-半导体-金属型的柔性日盲紫外光电探测器,β-Ga2O3纳米线3的形成温度为600℃,使得β-Ga2O3纳米线3与柔性衬底结合牢固。
将本发明实施例的柔性日盲紫外光电探测器接入配有7W紫外灯作为光源的半导体表征系统(吉时利4200表)中进行光电化学性能测试。
本实施例的基于β-Ga2O3纳米线柔性日盲紫外光电探测器的性能特征:图7是本发明方法制得的基于β-Ga2O3纳米线柔性日盲紫外光电探测器在在黑暗和光照下的电流-电压特征线性和指数曲线图,其中包括使用不同的紫外光波长(254nm和365nm)作为对比。可以看出:在365nm光线下测得的IV曲线与黑暗中的IV曲线相比没有显示出明显的增加,而器件在254nm光照射时,电流呈现急剧跳跃,光照下其光暗比约为260,响应时间仅为0.19s,表现出强烈的光响应特性。图8和图9是本发明方法制得的基于β-Ga2O3纳米线柔性日盲紫外光电探测器在20V偏压下,254nm光照下光电流随入射紫外光功率变化而变化的曲线图。可以看出:基于β-Ga2O3纳米线柔性日盲紫外光电探测器的光响应度随入射紫外光功率的增大而增大。当工作电压为20V时,在光功率密度为1.2mW/cm2的254nm紫外光光照下,基于β-Ga2O3纳米线柔性日盲紫外光电探测器的光响应度为0.54A/W。图10是本发明方法制得的基于β-Ga2O3纳米线柔性日盲紫外光电探测器在平坦和不同弯曲半径下测得电流-电压特征图,采用三个不同弯折度分别为r1、r2、r3,可以看出不同弯曲状态下的器件都表现出与扁平状态几乎相同的性能,说明本发发明实施例的探测器的性能不受弯曲条件的影响,具有高稳定性。这些曲线中可忽略不计的差异应当是由于当器件弯曲时探针和电极之间的接触条件的不同引起的。
实施例2
一种柔性日盲紫外光电探测器的制备方法如下:
(1)分别用丙酮、无水乙醇、去离子水对柔性玻璃纤维布进行超声清洗10min,然后在60℃的烘箱中干燥12小时;
(2)在真空下,通过射频磁控溅射技术在步骤(1)清洗后的柔性玻璃纤维布衬底上沉积约10nm厚度的Au的超薄膜;
(3)将步骤(2)处理后得到的样品置于水平管式炉中,并通过机械旋转泵将管抽空,用500sccm的氩气吹扫;然后以约30℃/min的速率将炉温升至500℃,同时将高纯度氩气和氧气的混合气体以及三氯化镓气体通入炉中;打开射频电源,设置射频功率,在衬底上沉积氧化镓材料,反应5小时后,将炉子自然冷却至室温,在衬底上观察到白色的β-Ga2O3纳米线产物。其中,抽真空后腔体压强为1Pa;通入混合气体后腔体压强为3×101Pa;射频功率在200W;衬底的加热温度为500℃。
(4)在步骤(3)合成的样品上设置两滴Ag混合浆料,并在60℃下干燥,作为两个金属电极,并通过两根铜线连接到Ag电极构成柔性日盲紫外光电探测器。
具体地,步骤(3)所述的高纯度氩气和氧气的混合气体的比列约为10:1,高纯度氩气、氧气和三氯化镓的纯度均为99.999%。
进一步地,步骤(4)所述的每个Ag电极面积约为0.25mm2,两个电极之间的间隙约为5mm。
所得产物的化学成分、晶体结构、形貌以及光电性能均与实施例1类似。
如图1所示的本发明实施例方法制备出的柔性日盲紫外光电探测器,包括柔性玻璃纤维布1,位于柔性玻璃纤维布1上的β-Ga2O3纳米线2,位于β-Ga2O3纳米线2上的银电极3。本发明实施例的两个银电极3通过铜导线与电源连接。
本发明实施例中,β-Ga2O3纳米线3直径为40nm~120nm,长度为1微米~100微米,交叉沉积于柔性玻璃纤维布/金衬底1上,具有较大的比表面积,β-Ga2O3纳米线3通过等离子增强化学气相沉积法。本发明的柔性玻璃纤维布11是一种新型的无机非金属材料,具有耐高温、不易燃、高强度和耐化学腐蚀等独特性能。本发的柔性日盲紫外光电探测器为金属-半导体-金属型的柔性日盲紫外光电探测器,β-Ga2O3纳米线3的形成温度为500℃,使得β-Ga2O3纳米线3与柔性衬底结合牢固。
实施例3
一种柔性日盲紫外光电探测器的制备方法如下:
(1)分别用丙酮、无水乙醇、去离子水对柔性玻璃纤维布进行超声清洗10min,然后在60℃的烘箱中干燥12小时;
(2)在真空下,通过射频磁控溅射技术在步骤(1)清洗后的柔性玻璃纤维布衬底上沉积约10nm厚度的Au的超薄膜;
(3)将步骤(2)处理后得到的样品置于水平管式炉中,并通过机械旋转泵将管抽空,用500sccm的氩气吹扫;然后以约30℃/min的速率将炉温升至550℃,同时将高纯度氩气和氧气的混合气体以及三氯化镓气体通入炉中;打开射频电源,设置射频功率,在衬底上沉积氧化镓材料,反应5小时后,将炉子自然冷却至室温,在衬底上观察到白色的β-Ga2O3纳米线产物。其中,抽真空后腔体压强为1Pa;通入混合气体后腔体压强为3×101Pa;射频功率在300W;衬底的加热温度为550℃。
(4)在步骤(3)合成的样品上设置两滴Ag混合浆料,并在60℃下干燥,作为两个金属电极,并通过两根铜线连接到Ag电极构成柔性日盲紫外光电探测器。
具体地,步骤(3)所述的高纯度氩气和氧气的混合气体的比列约为10:1,高纯度氩气、氧气和三氯化镓的纯度均为99.999%。
进一步地,步骤(4)所述的每个Ag电极面积约为0.25mm2,两个电极之间的间隙约为5mm。
所得产物的化学成分、晶体结构、形貌以及光电性能均与实施例1类似。
如图1所示的本发明实施例方法制备出的柔性日盲紫外光电探测器,包括柔性玻璃纤维布1,位于柔性玻璃纤维布11上的β-Ga2O3纳米线2,位于β-Ga2O3纳米线2上的银电极3。本发明实施例的两个银电极3通过铜导线与电源连接。
本发明实施例中,β-Ga2O3纳米线3直径为40nm~120nm,长度为1微米~100微米,交叉沉积于柔性玻璃纤维布/金衬底1上,具有较大的比表面积,β-Ga2O3纳米线3通过等离子增强化学气相沉积法。本发明的柔性玻璃纤维布11是一种新型的无机非金属材料,具有耐高温、不易燃、高强度和耐化学腐蚀等独特性能。本发的柔性日盲紫外光电探测器为金属-半导体-金属型的柔性日盲紫外光电探测器,β-Ga2O3纳米线3的形成温度为550℃,使得β-Ga2O3纳米线3与柔性衬底结合牢固。
实施例4
一种柔性日盲紫外光电探测器的制备方法如下:
(1)分别用丙酮、无水乙醇、去离子水对柔性玻璃纤维布进行超声清洗10min,然后在60℃的烘箱中干燥12小时;
(2)在真空下,通过射频磁控溅射技术在步骤(1)清洗后的衬底上沉积约10nm厚度的Au的超薄膜;
(3)将步骤(2)处理后得到的样品置于水平管式炉中,并通过机械旋转泵将管抽空,用500sccm的氩气吹扫;然后以约30℃/min的速率将炉温升至600℃,同时将高纯度氩气和氧气的混合气体以及三氯化镓气体通入炉中;打开射频电源,设置射频功率,在衬底上沉积氧化镓材料,反应5小时后,将炉子自然冷却至室温(如图2所示),在衬底上观察到白色的β-Ga2O3纳米线产物。其中,抽真空后腔体压强为1Pa;通入混合气体后腔体压强为3×101Pa;射频功率在100W;衬底的加热温度为600℃。
(4)在步骤(3)合成的样品上设置两滴Ag混合浆料,并在60℃下干燥,作为两个金属电极,并通过两根铜线连接到Ag电极构成柔性日盲紫外光电探测器。
具体地,步骤(3)所述的高纯度氩气和氧气的混合气体的比列约为10:1,高纯度氩气、氧气和三氯化镓的纯度均为99.999%。
进一步地,步骤(4)所述的每个Ag电极面积约为0.25mm2,两个电极之间的间隙约为5mm。
所得产物的化学成分、晶体结构、形貌以及光电性能均与实施例1类似。
如图1所示的本发明实施例方法制备出的柔性日盲紫外光电探测器,包括柔性玻璃纤维布1,位于柔性玻璃纤维布1上的β-Ga2O3纳米线2,位于β-Ga2O3纳米线2上的银电极3。本发明实施例的两个银电极3通过铜导线与电源连接。
本发明实施例中,β-Ga2O3纳米线3直径为40nm~120nm,长度为1微米~100微米,交叉沉积于柔性玻璃纤维布/金衬底1上,具有较大的比表面积,β-Ga2O3纳米线3通过等离子增强化学气相沉积法。本发明的柔性玻璃纤维布11是一种新型的无机非金属材料,具有耐高温、不易燃、高强度和耐化学腐蚀等独特性能。本发的柔性日盲紫外光电探测器为金属-半导体-金属型的柔性日盲紫外光电探测器,β-Ga2O3纳米线3的形成温度为600℃,使得β-Ga2O3纳米线3与柔性衬底结合牢固。
以上所公开或要求的实施例在不超过现有公开的实验手段的范围内可以制出或实施。本发明优选的实施方式所描述的所有的产物和/或方法,明白地指那些不违反本发明的概念、范围和精神的可以用于该产物和/或实验方法以及接下来的步骤。对所述的工艺中技术手段的所有的改动和改进,均属于本发明权利要求定义的概念、范围和精神。

Claims (6)

1.一种制备柔性日盲紫外光电探测器的方法,其特征在于,包括依次在柔性衬底上沉积一层金,在金层上以镓源为前驱体合成一层β-Ga2O3纳米线层,在β-Ga2O3纳米线层上设置两滴Ag混合浆料,干燥,形成两个银电极;
所述在金层上以镓源为前驱体合成一层β-Ga2O3纳米线层包括:将柔性衬底/金层样品置于水平管式炉中,并通过机械旋转泵将管抽空,用500sccm的氩气吹扫;升温至500-600℃,同时将高纯度氩气和氧气的混合气体以及三氯化镓气体通入管中;打开射频电源,设置射频功率,在金层上沉积氧化镓材料,形成β-Ga2O3纳米线层;所述升温至500-600℃的升温速度为30℃/min;所述在金层上沉积氧化镓材料的沉积时间为5h;抽真空后管内压强为1Pa;高纯度氩气和氧气的混合气体的比例为10:1;通入混合气体后腔体压强为3×101Pa;射频功率在50-300W,所述β-Ga2O3纳米线通过等离子增强化学气相沉积法在所述柔性衬底原位合成。
2.根据权利要求1所述的方法,其特征在于,所述金层的厚度为10nm,所述金层通过射频磁控溅射沉积在柔性衬底上;所述柔性衬底为柔性玻璃纤维布。
3.一种采用权利要求1或2任一项所述的制备方法制备的柔性日盲紫外光电探测器,其特征在于,所述探测器包括柔性衬底、位于柔性衬底上的β-Ga2O3纳米线和位于所述β-Ga2O3纳米线上的银电极。
4.根据权利要求3所述的柔性日盲紫外光电探测器,其特征在于,所述β-Ga2O3纳米线交叉沉积于所述柔性衬底上。
5.根据权利要求3-4任一项所述的柔性日盲紫外光电探测器,其特征在于,所述β-Ga2O3纳米线直径为40nm~120nm,长度为1微米~100微米。
6.根据权利要求3所述的柔性日盲紫外光电探测器,其特征在于,所述柔性衬底包括柔性玻璃纤维布。
CN201911123821.3A 2019-11-17 2019-11-17 一种柔性日盲紫外光电探测器及其制备方法 Active CN110828589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911123821.3A CN110828589B (zh) 2019-11-17 2019-11-17 一种柔性日盲紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911123821.3A CN110828589B (zh) 2019-11-17 2019-11-17 一种柔性日盲紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110828589A CN110828589A (zh) 2020-02-21
CN110828589B true CN110828589B (zh) 2021-08-03

Family

ID=69555957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911123821.3A Active CN110828589B (zh) 2019-11-17 2019-11-17 一种柔性日盲紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110828589B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463297B (zh) * 2020-04-16 2021-10-12 杭州紫芯光电有限公司 基于柔性钛金属丝/氧化镓纳米阵列的日盲紫外探测器及其制备方法
CN111900229A (zh) * 2020-05-25 2020-11-06 肇庆市华师大光电产业研究院 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754013A (zh) * 2003-02-24 2006-03-29 学校法人早稻田大学 β-Ga2O3单晶生长方法、薄膜单晶生长方法、Ga2O3发光器件及其制造方法
CN101135659A (zh) * 2006-09-01 2008-03-05 湖南大学 β-Ga2O3纳米线及其气体传感器的制备和实现快速响应的气体传感方法
CN105655434A (zh) * 2016-03-13 2016-06-08 金旺康 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法
CN105826433A (zh) * 2016-05-23 2016-08-03 中国科学院长春光学精密机械与物理研究所 一种β-氧化镓纳米线阵列薄膜及其制备方法
CN105826362A (zh) * 2016-03-13 2016-08-03 浙江理工大学 一种氧化镓纳米线阵列及其制备方法
CN108281509A (zh) * 2018-01-30 2018-07-13 电子科技大学 氧化物半导体基光电探测器及提高其性能的方法
CN108615672A (zh) * 2018-04-17 2018-10-02 中山大学 一种半导体结晶膜的制备方法及其半导体结晶膜
CN109950135A (zh) * 2019-03-25 2019-06-28 深圳第三代半导体研究院 一种氧化镓纳米材料转移方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182812B2 (en) * 2002-09-16 2007-02-27 University Of Louisville Direct synthesis of oxide nanostructures of low-melting metals
US7445671B2 (en) * 2000-06-29 2008-11-04 University Of Louisville Formation of metal oxide nanowire networks (nanowebs) of low-melting metals
US10741705B2 (en) * 2017-07-14 2020-08-11 The Board Of Trustees Of The University Of Illinois Optoelectronic device having an antireflective surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754013A (zh) * 2003-02-24 2006-03-29 学校法人早稻田大学 β-Ga2O3单晶生长方法、薄膜单晶生长方法、Ga2O3发光器件及其制造方法
CN101135659A (zh) * 2006-09-01 2008-03-05 湖南大学 β-Ga2O3纳米线及其气体传感器的制备和实现快速响应的气体传感方法
CN105655434A (zh) * 2016-03-13 2016-06-08 金旺康 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法
CN105826362A (zh) * 2016-03-13 2016-08-03 浙江理工大学 一种氧化镓纳米线阵列及其制备方法
CN105826433A (zh) * 2016-05-23 2016-08-03 中国科学院长春光学精密机械与物理研究所 一种β-氧化镓纳米线阵列薄膜及其制备方法
CN108281509A (zh) * 2018-01-30 2018-07-13 电子科技大学 氧化物半导体基光电探测器及提高其性能的方法
CN108615672A (zh) * 2018-04-17 2018-10-02 中山大学 一种半导体结晶膜的制备方法及其半导体结晶膜
CN109950135A (zh) * 2019-03-25 2019-06-28 深圳第三代半导体研究院 一种氧化镓纳米材料转移方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Blueshifted Raman scattering and its correlation with the [110] growth direction in gallium oxide nanowires;R.Rao等;《Journal of Applied Physics》;20051114;第98卷;第094312-1页左栏第1段-第094312-5页左栏第1段及图1-3 *
In situ synthesis of monoclinic β-Ga203 nanowires on flexible substrate and solar-blind photodetector;Shunli Wang等;《Journal of Alloys and Compounds》;20190530;第787卷;第133页右栏第2段-第137页右栏第1段及图1-5 *
Shunli Wang等.In situ synthesis of monoclinic β-Ga203 nanowires on flexible substrate and solar-blind photodetector.《Journal of Alloys and Compounds》.2019,第787卷第133页右栏第2段-第137页右栏第1段及图1-5. *

Also Published As

Publication number Publication date
CN110828589A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN110459640B (zh) 一种基于Cs3Cu2I5钙钛矿的自供能光电探测器及其制备方法
CN108767050B (zh) 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN106340551B (zh) 一种基于Mg:β-Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN110828589B (zh) 一种柔性日盲紫外光电探测器及其制备方法
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN100428502C (zh) 一种a-b取向ZnO纳米线阵列的制备方法
CN109360862B (zh) 基于ZnO纳米棒/Si异质结的自驱动光电探测器及制备方法
CN109148635A (zh) CuAlO2/Ga2O3紫外光电二极管及制备方法
CN107658384B (zh) 基于有机-无机多异质结纳米阵列的广谱光电探测器及其制备方法
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN108735826B (zh) 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
Shet Zinc oxide (ZnO) nanostructures for photoelectrochemical water splitting application
CN111244194A (zh) 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器
CN111900229A (zh) 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用
CN111446324A (zh) 一种基于氮掺杂氧化锌纳米棒阵列/硅异质结的自驱动光电探测器及其制备方法
Soonmin et al. A short review of recent advances in copper oxide nanostructured thin films
CN112071652B (zh) 一种三维刺猬状ZnO/SnO2异质结构及其制备方法与其在紫外探测器中的应用
Xu et al. High-performance photoelectrochemical (PEC) type self-powered ultraviolet photodetectors (PDs) based on three-dimensional ZnO film/carbon fiber paper
CN111952376B (zh) 一种氧化锌微米线紫外探测器及其制备方法
CN111261735B (zh) 一种ZnMgO薄膜、紫外探测器及其制备方法
CN109943821B (zh) 立方尖晶石结构CuGa2O4薄膜的制备方法及相应的结构
CN114015990A (zh) 一种氧化镍-金-氧化锌同轴纳米阵列的制备方法及应用
CN112864260A (zh) SnSe2/H-TiO2异质结光电探测器件及其制备方法
CN113921286B (zh) 一种基于钙铟硫八面体纳米块或钙铟硫/ZnO异质结复合材料的光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant