CN112864260A - SnSe2/H-TiO2异质结光电探测器件及其制备方法 - Google Patents

SnSe2/H-TiO2异质结光电探测器件及其制备方法 Download PDF

Info

Publication number
CN112864260A
CN112864260A CN201911190847.XA CN201911190847A CN112864260A CN 112864260 A CN112864260 A CN 112864260A CN 201911190847 A CN201911190847 A CN 201911190847A CN 112864260 A CN112864260 A CN 112864260A
Authority
CN
China
Prior art keywords
tio
snse
preparation
heterojunction
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911190847.XA
Other languages
English (en)
Inventor
刘勇平
朱睿
吕慧丹
刘威
李时庆
刘文慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201911190847.XA priority Critical patent/CN112864260A/zh
Publication of CN112864260A publication Critical patent/CN112864260A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种SnSe2/H‑TiO2异质结光电探测器件,包括H‑TiO2纳米管阵列层和覆盖于H‑TiO2纳米管阵列层上的SnSe2纳米层。还提供了上述SnSe2/H‑TiO2异质结光电探测器件制备方法,包括以下步骤:(1)采用阳极氧化法制备不定型TiOx纳米管阵列;(2)将不定型TiOx纳米管阵列进行退火处理,得到TiO2纳米管阵列;(3)以硒粉与SnCl4·5H2O为原料,用化学气相沉积方法,在TiO2纳米管阵列表面沉积SnSe2纳米层,沉积SnSe2纳米层时同时通入氢气,将TiO2氢化为H‑TiO2,即得到SnSe2/H‑TiO2异质结。本发明方法制备的SnSe2/H‑TiO2异质结光电器件材料具有较高的光电响应性能并且扩大了器件的探测范围,且该制备方法简单、成本低、反应条件容易控制。

Description

SnSe2/H-TiO2异质结光电探测器件及其制备方法
技术领域
本发明涉及异质结光电探测器件的技术领域,具体涉及一种SnSe2/H-TiO2异质结光电探测器件,还涉及该SnSe2/H-TiO2异质结光电探测器件制备方法。
背景技术
一维纳米线(管)/二维异质结构阵列已被广泛研究,并在光电探测器,催化和气体传感器等各个领域取得了很大进展。由于一维结构的光捕获效应,一维纳米线(管)可以有效地将吸收的光子转换为电子-空穴对,而一维纳米线(管)/二维异质结构中的电子受体和转运体可以帮助电子-空穴对分离来提高光电器件的响应速率。
二氧化钛(TiO2)纳米管是一种宽禁带半导体,在紫外(UV)光下,其光子能量大于禁带宽度,有很高的光活性。而且,它还具有高度有序的一维结构、大的表面积和可调管径、易于制造、低成本、体积大等优点。然而,TiO2纳米管紫外探测器可探测的波长范围较窄,有必要对其做进一步改进。
发明内容
本发明第一目的在于提供一种SnSe2/H-TiO2异质结光电探测器件,解决现有TiO2纳米管紫外探测器可探测的波长范围较窄的不足。
本发明第二目的在于提供上述SnSe2/H-TiO2异质结光电探测器件制备方法。
本发明第一目的是通过以下技术方案来实现的:
一种SnSe2/H-TiO2异质结光电探测器件,包括H-TiO2纳米管阵列层和覆盖于H-TiO2纳米管阵列层上的SnSe2纳米层。
本发明第二目的是通过以下技术方案来实现的:
一种上述SnSe2/H-TiO2异质结光电探测器件制备方法,包括以下步骤:
(1)采用阳极氧化法制备不定型TiOx纳米管阵列;
(2)将不定型TiOx纳米管阵列进行退火处理,得到TiO2纳米管阵列;
(3)以硒粉与SnCl4·5H2O为原料,用化学气相沉积方法,在TiO2纳米管阵列表面沉积SnSe2纳米层,沉积SnSe2纳米层时同时通入氢气,将TiO2氢化为H-TiO2,即得到SnSe2/H-TiO2异质结。
本发明中,退火处理是以1-5℃/min的升温速率升温至400-600℃退火1-5h。
优选地,退火处理是以2℃/min的升温速率升温至500℃退火2h。
本发明中,硒粉与SnCl4·5H2O的摩尔比为1:1-3:1。
进一步地,所述硒粉为商业化硒粉体,纯度为99.99%。
本发明中,化学气相沉积过程,将硒粉放入位于上游中心加热区的一个石英舟中,将SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中,TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。
进一步地,下游中心加热区在大气压力下加热温度为450~650℃,同时上游中心加热区加热温度为350~450℃。
本发明中,在进行化学气相沉积开始加热前,CVD系统用高纯度氩气(99.99%)通入30min排除空气,氩气的流速为80s.c.c.m。
本发明中,在进行化学气相沉积过程中,在温度到达预设温度后通入氩气和氢气组成的混合气体,通气时间为15min,其中氩气的流速为60s.c.c.m,氢气的流速为20s.c.c.m;停止通入氢气后,将氩气的流速转换为80s.c.c.m,并将温度降至室温。
本发明中,采用阳极氧化法制备不定型TiOx纳米管阵列的过程如下:将钛片放入由乙二醇、氟化铵和蒸馏水配置的电解夜中进行阳极氧化。
优选地,电解液中氟化铵与蒸馏水的质量体积比为0.072:1(g/ml);乙二醇与蒸馏水的体积比为20:1。
进一步地,阳极氧化的电压为40-70V,阳极氧化时间为1-5小时。
优选地,阳极氧化的电压为60V,阳极氧化时间为90min。
本发明中,在钛片进行阳极氧化前依次用丙酮、乙醇和蒸馏水对钛片进行超声清洗。
与现有技术相比,本发明具有以下有益效果:
(1)本发明方法制备的SnSe2/H-TiO2异质结光电器件材料具有较高的光电响应性能并且扩大了器件的探测范围。
(2)本发明通过化学气相沉积法在阳极氧化后的TiO2纳米管上沉积垂直生长的SnSe2纳米片,得到SnSe2/H-TiO2异质结薄膜高效光电探测器件,该制备方法简单、成本低、反应条件容易控制。
附图说明
图1为本发明实施例4所得的SnSe2/H-TiO2异质结光电器件材料的XRD图谱;
图2为本发明实施例4所得的SnSe2/H-TiO2异质结光电器件材料的拉曼光谱图;
图3为本发明实施例4所得的SnSe2/H-TiO2异质结光电器件材料的TEM图;
图4为本发明实施例4所得以SnSe2生长参数氢化得到的H-TiO2纳米管材料的I-V曲线图;
图5为本发明实施例4所得的SnSe2/H-TiO2异质结光电器件材料的I-V曲线图。
具体实施方式
以下结合具体的实施例对本发明作进一步的说明,以便本领域技术人员更好理解和实施本发明的技术方案。
实施例1
一种SnSe2/H-TiO2异质结光电探测器件制备方法,包括以下步骤:
(1)首先将裁好的钛片(1cm×5cm),分别在丙酮,乙醇和去离子水中超声清洗30min;称量5ml蒸馏水置于反应容器中同时加入0.36g NH4F(氟化铵)将其溶解。再称量100ml(CH2OH)2(乙二醇)倒入混合溶液中搅拌均匀配置成电解液;将钛片置于配置好的电解液中用60V电压阳极氧化90min制备出不定型TiO2纳米管。将其冲洗干净之后置于60℃烘箱烘干。烘干后的TiO2纳米管在马弗炉中以2℃/min的升温速率升温至500℃退火2h得到TiO2纳米管阵列。
(2)使用真空气氛管式炉合成样品。在合成过程中,将0.4g硒粉放入位于上游中心加热区的一个石英舟中。将0.2g SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并使石英舟至于下游加热区域上端,距离下游加热中心5cm处。将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。在药品放置管式炉之后加热过程之前,CVD系统用高纯度氩气(99.99%)通气30min消除空气降低其他气体对实验的污染。然后,将下游中心加热区在大气压力下加热温度为450℃,同时上游中心加热区加热温度为350℃。此时的气路系统设置为氩气80s.c.c.m.。当温度达到设定值时,将气路系统切换为含有60s.c.c.m.氩气和20s.c.c.m.氢气的混合气体。整个氢气通入时间持续15min。因气流流速对CVD影响巨大,所以在结束氢气的通入后迅速将氩气气流转换为80s.c.c.m.以保证整个气流流速的稳定性,从而确保SnSe2纳米片的生长及沉积。待管式炉降至室温后得到SnSe2/H-TiO2异质结。
实施例2
一种SnSe2/H-TiO2异质结光电探测器件制备方法,包括以下步骤:
(1)首先将裁好的钛片(1cm×5cm),分别在丙酮,乙醇和去离子水中超声清洗30min;称量5ml蒸馏水置于反应容器中同时加入0.36g NH4F(氟化铵)将其溶解。再称量100ml(CH2OH)2(乙二醇)倒入混合溶液中搅拌均匀配置成电解液;将钛片置于配置好的电解液中用60V电压阳极氧化90min制备出不定型TiO2纳米管。将其冲洗干净之后置于60℃烘箱烘干。烘干后的TiO2纳米管在马弗炉中以2℃/min的升温速率升温至500℃退火2h得到TiO2纳米管阵列。
(2)使用真空气氛管式炉合成样品。在合成过程中,将0.4g硒粉放入位于上游中心加热区的一个石英舟中。将0.2g SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并使石英舟至于下游加热区域上端,距离下游加热中心5cm处。将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。在药品放置管式炉之后加热过程之前,CVD系统用高纯度氩气(99.99%)通气30min消除空气降低其他气体对实验的污染。然后,将下游中心加热区在大气压力下加热温度为550℃,同时上游中心加热区加热温度为350℃。此时的气路系统设置为氩气80s.c.c.m.。当温度达到设定值时,将气路系统切换为含有60s.c.c.m.氩气和20s.c.c.m.氢气的混合气体。整个氢气通入时间持续15min。因气流流速对CVD影响巨大,所以在结束氢气的通入后迅速将氩气气流转换为80s.c.c.m.以保证整个气流流速的稳定性,从而确保SnSe2纳米片的生长及沉积。待管式炉降至室温后得到SnSe2/H-TiO2异质结。
实施例3
一种SnSe2/H-TiO2异质结光电探测器件制备方法,包括以下步骤:
(1)首先将裁好的钛片(1cm×5cm),分别在丙酮,乙醇和去离子水中超声清洗30min;称量5ml蒸馏水置于反应容器中同时加入0.36g NH4F(氟化铵)将其溶解。再称量100ml(CH2OH)2(乙二醇)倒入混合溶液中搅拌均匀配置成电解液;将钛片置于配置好的电解液中用60V电压阳极氧化90min制备出不定型TiO2纳米管。将其冲洗干净之后置于60℃烘箱烘干。烘干后的TiO2纳米管在马弗炉中以2℃/min的升温速率升温至500℃退火2h得到TiO2纳米管阵列。
(2)使用真空气氛管式炉合成样品。在合成过程中,将0.4g硒粉放入位于上游中心加热区的一个石英舟中。将0.2g SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并使石英舟至于下游加热区域上端,距离下游加热中心5cm处。将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。在药品放置管式炉之后加热过程之前,CVD系统用高纯度氩气(99.99%)通气30min消除空气降低其他气体对实验的污染。然后,将下游中心加热区在大气压力下加热温度为650℃,同时上游中心加热区加热温度为350℃。此时的气路系统设置为氩气80s.c.c.m.。当温度达到设定值时,将气路系统切换为含有60s.c.c.m.氩气和20s.c.c.m.氢气的混合气体。整个氢气通入时间持续15min。因气流流速对CVD影响巨大,所以在结束氢气的通入后迅速将氩气气流转换为80s.c.c.m.以保证整个气流流速的稳定性,从而确保SnSe2纳米片的生长及沉积。待管式炉降至室温后得到SnSe2/H-TiO2异质结。
实施例4
一种SnSe2/H-TiO2异质结光电探测器件制备方法,包括以下步骤:
(1)首先将裁好的钛片(1cm×5cm),分别在丙酮,乙醇和去离子水中超声清洗30min;称量5ml蒸馏水置于反应容器中同时加入0.36g NH4F(氟化铵)将其溶解。再称量100ml(CH2OH)2(乙二醇)倒入混合溶液中搅拌均匀配置成电解液;将钛片置于配置好的电解液中用60V电压阳极氧化90min制备出不定型TiO2纳米管。将其冲洗干净之后置于60℃烘箱烘干。烘干后的TiO2纳米管在马弗炉中以2℃/min的升温速率升温至500℃退火2h得到TiO2纳米管阵列。
(2)使用真空气氛管式炉合成样品。在合成过程中,将0.4g硒粉放入位于上游中心加热区的一个石英舟中。将0.2g SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并使石英舟至于下游加热区域上端,距离下游加热中心5cm处。将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。在药品放置管式炉之后加热过程之前,CVD系统用高纯度氩气(99.99%)通气30min消除空气降低其他气体对实验的污染。然后,将下游中心加热区在大气压力下加热温度为550℃,同时上游中心加热区加热温度为450℃。此时的气路系统设置为氩气80s.c.c.m.。当温度达到设定值时,将气路系统切换为含有60s.c.c.m.氩气和20s.c.c.m.氢气的混合气体。整个氢气通入时间持续15min。因气流流速对CVD影响巨大,所以在结束氢气的通入后迅速将氩气气流转换为80s.c.c.m.以保证整个气流流速的稳定性,从而确保SnSe2纳米片的生长及沉积。待管式炉降至室温后得到SnSe2/H-TiO2异质结。本实施例中,制备得SnSe2/H-TiO2异质结材料的XRD图谱,见图1;SnSe2/H-TiO2异质结材料的拉曼光谱图,见图2;SnSe2/H-TiO2异质结材料的TEM图,见图3。
电化学性能测试
将实施例4中制备的SnSe2/H-TiO2异质结材料制作成器件:在生长了SnSe2/H-TiO2处点上银胶并粘附上铜箔作为一端电极,另一端在打磨好的钛片基底上,制备出垂直的光电探测器件,对照组H-TiO2异质结光电器件制备工艺除没有沉积SnSe2外,其他工艺与实施例4相同。将制作好的H-TiO2异质结光电器件和SnSe2/H-TiO2异质结光电器件在-1~1V偏压及370~520nm波长下进行I-V曲线测试,I-V曲线图分别见图4、图5。
由图1可见,对于H-TiO2纳米管阵列,具有2θ分别为25.18°,36.93°,37.92°,47.87°,53.93°和70.37°的衍射峰。对于SnSe2/H-TiO2异质结样品的XRD图谱,SnSe2的特征衍射峰出现在2θ=14.4°,26.99°,30.73°,40.07°,47.69°,50.08°和56.82°,分别对应于SnSe2的CdI 2型六方晶型结构的标准卡片(JCPDS PDF No.089-3197)中的(001)、(100)、(011)、(012)、(110)、(111)和(112)晶面的衍射峰。在SnSe2/H-TiO2异质结样品中没有检测到其他杂质的衍射峰,表明所制备的样品具有高纯度和高结晶性。
由图2可以看出SnSe2在118.3和185.2cm-1处的两个峰是SnSe2的指纹峰与SnSe2/H-TiO2异质结中的峰无较大差别。在异质结中,SnSe2在185.2cm-1的峰有所偏移是因为H-TiO2的引入导致的。通过氢处理的TiO2纳米管在143.37cm-1,396.46cm-1,516.77cm-1,633.16cm-1处都保留了TiO2的特征峰。通过拉曼光谱图可以看出,本发明合成的是二维SnSe2/H-TiO2异质结。二维SnSe2纳米材料具有大的表面积及对光较大的敏感性,在光照及偏压的共同作用下可产生较多自由电子并且利用TiO2纳米管快速的电子传输速度的优点得到较大光电响应。
由图3中可以看出SnSe2纳米片与H-TiO2纳米管紧密的生长在一起,并且在异质结中,SnSe2纳米片依旧保持着正六边形的形貌。
由图4、图5相比可以看出本发明制备的SnSe2/H-TiO2异质结具有更好的光电探测性能。
以上实施实例对本发明不同的实施过程进行了详细的阐述,但是本发明的实施方式并不仅限于此,所属技术领域的普通技术人员依据本发明中公开的内容,均可实现本发明的目的,任何基于本发明构思基础上做出的改进和变形均落入本发明的保护范围之内,具体保护范围以权利要求书记载的为准。

Claims (10)

1.一种SnSe2/H-TiO2异质结光电探测器件,包括H-TiO2纳米管阵列层和覆盖于H-TiO2纳米管阵列层上的SnSe2纳米层。
2.一种权利要求1所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,包括以下步骤:
(1)采用阳极氧化法制备不定型TiOx纳米管阵列;
(2)将不定型TiOx纳米管阵列进行退火处理,得到TiO2纳米管阵列;
(3)以硒粉与SnCl4·5H2O为原料,用化学气相沉积方法,在TiO2纳米管阵列表面沉积SnSe2纳米层,沉积SnSe2纳米层时同时通入氢气,将TiO2氢化为H-TiO2,即得到SnSe2/H-TiO2异质结。
3.根据权利要求2所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,退火处理是以1-5℃/min的升温速率升温至400-600℃退火1-5h。
4.根据权利要求2所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,硒粉与SnCl4·5H2O的摩尔比为1:1-3:1。
5.根据权利要求2-4任一项所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,化学气相沉积过程,将硒粉放入位于上游中心加热区的一个石英舟中,将SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中,TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。
6.根据权利要求5所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,下游中心加热区在大气压力下加热温度为450~650℃,同时上游中心加热区加热温度为350~450℃。
7.根据权利要求6所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,在进行化学气相沉积过程中,在温度到达预设温度后通入氩气和氢气组成的混合气体,通气时间为15min,其中氩气的流速为60s.c.c.m,氢气的流速为20s.c.c.m;停止通入氢气后,将氩气的流速转换为80s.c.c.m,并将温度降至室温。
8.根据权利要求7所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,在进行化学气相沉积开始加热前,CVD系统用高纯度氩气(99.99%)通入30min排除空气,氩气的流速为80s.c.c.m。
9.根据权利要求6-8任一项所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,采用阳极氧化法制备不定型TiOx纳米管阵列的过程如下:将钛片放入由乙二醇、氟化铵和蒸馏水配置的电解夜中进行阳极氧化。
10.根据权利要求9所述SnSe2/H-TiO2异质结光电探测器件制备方法,其特征在于,电解液中氟化铵与蒸馏水的质量体积比为0.072:1(g/ml);乙二醇与蒸馏水的体积比为20:1;阳极氧化的电压为40-70V,阳极氧化时间为1-5小时。
CN201911190847.XA 2019-11-28 2019-11-28 SnSe2/H-TiO2异质结光电探测器件及其制备方法 Pending CN112864260A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911190847.XA CN112864260A (zh) 2019-11-28 2019-11-28 SnSe2/H-TiO2异质结光电探测器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911190847.XA CN112864260A (zh) 2019-11-28 2019-11-28 SnSe2/H-TiO2异质结光电探测器件及其制备方法

Publications (1)

Publication Number Publication Date
CN112864260A true CN112864260A (zh) 2021-05-28

Family

ID=75995534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911190847.XA Pending CN112864260A (zh) 2019-11-28 2019-11-28 SnSe2/H-TiO2异质结光电探测器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112864260A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220883A (zh) * 2021-11-29 2022-03-22 江南大学 一种Se微米管/溴铅铯异质结及其制备方法与光电应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962990A (zh) * 2015-07-23 2015-10-07 华中科技大学 一种二维纳米SnSe2晶体材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962990A (zh) * 2015-07-23 2015-10-07 华中科技大学 一种二维纳米SnSe2晶体材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANFEI LIN等: "SnS2 Nanosheets/H-TiO2 Nanotube Arrays as a Type II Heterojunctioned Photoanode for Photoelectrochemical Water Splitting", 《CHEMSUSCHEM》 *
YUN HUANG等: "Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties", 《NANOSCALE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220883A (zh) * 2021-11-29 2022-03-22 江南大学 一种Se微米管/溴铅铯异质结及其制备方法与光电应用
CN114220883B (zh) * 2021-11-29 2023-11-10 江南大学 一种Se微米管/溴铅铯异质结及其制备方法与光电应用

Similar Documents

Publication Publication Date Title
Van Hieu Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures
Huang et al. Core–shell structure of zinc oxide/indium oxide nanorod based hydrogen sensors
Khayatian et al. Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance
Guo et al. ZnO@ TiO2 core–shell nanorod arrays with enhanced photoelectrochemical performance
KR101659320B1 (ko) 산화아연/산화중석 나노선을 포함한 가스센서의 제조방법 및 이를 이용한 가스 검출 방법
CN111081808B (zh) 基于MoS2/Ga2O3异质结的光电探测器、制备方法及应用
CN100428502C (zh) 一种a-b取向ZnO纳米线阵列的制备方法
CN106986555A (zh) 一种ZIF‑8/ZnO纳米棒阵列薄膜材料及其制备方法
CN109809372A (zh) 一种基于空间限域策略制备单层二硒化钨纳米带的方法
Selman et al. Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal–semiconductor–metal UV detector
Ganesh et al. Correlation between indium content in monolithic InGaN/GaN multi quantum well structures on photoelectrochemical activity for water splitting
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
Wu et al. Self-catalyst β-Ga 2 O 3 semiconductor lateral nanowire networks synthesis on the insulating substrate for deep ultraviolet photodetectors
Islavath et al. Spray coated seed layer for scalable synthesis of aligned ZnO nanowire arrays on FTO substrate and their photovoltaic properties
CN112864260A (zh) SnSe2/H-TiO2异质结光电探测器件及其制备方法
Liu et al. Preparation of CdS nanorods on silicon nanopillars surface by hydrothermal method
Abdulrahman et al. A high responsivity, fast response time of ZnO nanorods UV photodetector with annealing time process
KR20110040636A (ko) 실리콘 나노와이어/탄소나노튜브/징크옥사이드 코어/다중쉘 나노복합체의 제조방법 및 상기 나노복합체를 포함하는 태양전지
CN111477699B (zh) 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法
Yuvaraj et al. Deposition of ZnO nanostructured film at room temperature on glass substrates by activated reactive evaporation
CN110828589B (zh) 一种柔性日盲紫外光电探测器及其制备方法
Lu et al. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time
CN113097321B (zh) 一种MoS2/SnSe2/H-TiO2异质结光电探测器的制备方法
CN103058264B (zh) 化学气相沉积法制备双层氧化锌纳米线阵列的方法
KR102099644B1 (ko) 산화텅스텐 필름을 포함하는 광애노드 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528