CN111477699B - 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法 - Google Patents

基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN111477699B
CN111477699B CN202010296965.5A CN202010296965A CN111477699B CN 111477699 B CN111477699 B CN 111477699B CN 202010296965 A CN202010296965 A CN 202010296965A CN 111477699 B CN111477699 B CN 111477699B
Authority
CN
China
Prior art keywords
alpha
tio
layer
heterojunction
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010296965.5A
Other languages
English (en)
Other versions
CN111477699A (zh
Inventor
郭道友
王顺利
贺晨冉
陶江伟
张丽滢
常裕鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Zixin Photoelectric Co ltd
Original Assignee
Hangzhou Zixin Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Zixin Photoelectric Co ltd filed Critical Hangzhou Zixin Photoelectric Co ltd
Priority to CN202010296965.5A priority Critical patent/CN111477699B/zh
Publication of CN111477699A publication Critical patent/CN111477699A/zh
Application granted granted Critical
Publication of CN111477699B publication Critical patent/CN111477699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于光电转换技术领域,具体涉及一种基于α‑Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法,所述探测器从下至上包含透明导电衬底、α‑Ga2O3/TiO2异质结光敏层、石墨烯‑银纳米线透明电极层和第一金属电极层,还包括设置于透明导电衬底上的第二金属电极层;所述α‑Ga2O3/TiO2异质结光敏层包括若干阵列分布的α‑Ga2O3/TiO2异质结纳米柱,α‑Ga2O3/TiO2异质结纳米柱包括内核α‑Ga2O3纳米柱、包覆于所述内核α‑Ga2O3纳米柱侧壁和靠近所述石墨烯‑银纳米线透明电极层一端的TiO2层。本发明的探测器利用α‑Ga2O3/TiO2异质结促进了光生载流子的自动分离,以石墨烯‑银纳米线复合膜做透明上电极,大大提高了探测器的有效光照面积,从而获得高的光响应度。

Description

基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法
技术领域
本发明属于光电转换技术领域,具体涉及一种基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法。
背景技术
由于天然的宽带隙,优异的电荷迁移率和良好的稳定性等优点,近年来Ga2O3材料在光电探测、紫外通讯和空间预警等领域应用非常广泛。在用于构建紫外探测器的各种形貌的Ga2O3材料中,Ga2O3纳米柱阵列由于其大比表面积,垂直的快速载流子传输通道和相对较低的制备成本成为制备新型自供电光电探测器有力的候选者。与Ga2O3晶体和薄膜材料相比,α-Ga2O3纳米柱阵列的优势在于它们可以提供直接的电子传输通道,很大程度上减小了晶界处载流子的损失,有效提高了电荷转移效率。大比表面积的纳米柱阵列具有陷光效应,能显著提高探测器的光吸收率。但是,α-Ga2O3纳米柱阵列的缺点是其表面存在许多缺陷,这些作为光生电子-空穴对复合中心的缺陷将降低探测器实际应用中的量子效率。
发明内容
本发明所解决的技术问题在于α-Ga2O3纳米柱阵列表面存在许多缺陷,降低探测器实际应用中的量子效率,本发明提供一种基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法。
为了实现本发明目的,本发明提供一种技术方案为:一种基于α-Ga2O3/TiO2异质结的日盲紫外探测器,从下至上包含透明导电衬底、α-Ga2O3/TiO2异质结光敏层、石墨烯-银纳米线透明电极层和第一金属电极层,还包括设置于透明导电衬底上的第二金属电极层;所述α-Ga2O3/TiO2异质结光敏层包括若干阵列分布的α-Ga2O3/TiO2异质结纳米柱,α-Ga2O3/TiO2异质结纳米柱包括内核α-Ga2O3纳米柱、包覆于所述内核α-Ga2O3纳米柱侧壁和靠近所述石墨烯-银纳米线透明电极层一端的TiO2层。
其中,第一金属电极层部分覆盖石墨烯-银纳米线透明电极层,第二金属电极层部分覆盖透明导电衬底。
作为一优选方案,第二电极层和α-Ga2O3/TiO2异质结光敏层位于透明导电衬底的同一侧。
其中,所述的α-Ga2O3/TiO2异质纳米柱的横截面为四边形,纳米柱高为1~2μm,横截面对角线长度为80~500nm。
其中,TiO2层的厚度为100nm~1μm。
其中,所述石墨烯-银纳米线透明电极层包括石墨烯层和银纳米线层,所述石墨烯层为单层或多层石墨烯薄膜。石墨烯薄膜的透光率在86~98%。
其中,所述银纳米线长度为50μm,直径为150nm;所述石墨烯 -银纳米线透明电极层覆盖在α-Ga2O3/TiO2异质结光敏层上,并与TiO2层紧密接触。
其中,所述石墨烯层位于所述α-Ga2O3/TiO2异质结与银纳米线层之间。
其中,所述透明导电衬底为掺氟的SnO2透明导电FTO衬底、掺铟的SnO2透明导电ITO电极或掺铝的ZnO透明导电AZO电极中的一种。
作为优选,所述透明导电衬底的透明导电薄膜层的厚度为 300~400nm。
作为优选,透明导电衬底透光率85~95%。
其中,所述第一金属电极或第二金属电极为金、银、钛中的一种或几种。
作为优选方案,第一金属电极Au/Ti点电极。
本发明还包括第二种技术方案,一种制备上述基于α-Ga2O3/TiO2异质结的日盲紫外探测器的方法,包括:在透明导电衬底通过水热法生长GaOOH纳米柱阵列,退火处理形成α-Ga2O3纳米柱阵列,利用磁控溅射法经在α-Ga2O3纳米柱阵列表面制备一层TiO2钝化层,形成α-Ga2O3/TiO2异质结纳米柱阵列;将石墨烯-银纳米线透明电极层转移至α-Ga2O3/TiO2异质结纳米柱阵列远离所述透明导电衬底一端;利用磁控溅射技术,在石墨烯-银纳米线透明电极层上形成第一金属电极层,在透明导电衬底上形成第二金属电极层。
具体地,制备方法包括:
将透明导电衬底置于含有可溶镓盐的生长溶液中,100~200℃下水热反应6~12个小时,得到GaOOH纳米柱阵列;
在400~500℃温度下退火3~6个小时形成α-Ga2O3纳米柱阵列;
利用磁控溅射法经在α-Ga2O3纳米柱阵列表面制备一层TiO2钝化层,形成α-Ga2O3/TiO2异质结纳米柱阵列;
将透明石墨烯转移至α-Ga2O3/TiO2异质结表面,形成透明石墨烯层,通过滴涂法在石墨烯层上滴涂银纳米线,形成石墨烯-银纳米线透明电极层;
利用磁控溅射技术,在石墨烯-银纳米线透明电极层上形成第一金属电极层,在透明导电衬底上形成第二金属电极层。其中形成第一金属电极层和形成第二金属电极层并没有先后顺序。
其中,利用磁控溅射法经在α-Ga2O3纳米柱阵列表面制备一层 TiO2钝化层,将制备好的α-Ga2O3纳米柱阵列放入沉积室,抽真空至真空度10-4,以100W的功率溅射金属Ti,时间为5~60分钟;之后进行退火处理,退火温度为400~500℃,退火时间为2~4个小时,以形成TiO2层。
其中,利用磁控溅射技术,在石墨烯-银纳米线透明电极层上形成第一金属电极层,和/或,在透明导电衬底上形成第二金属电极层包括:
采用磁控溅射的方法先后溅射金属Ti层和Au层获得Au/Ti点电极,溅射条件如下:背底真空为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8Pa,溅射功率为40W,Ti层的溅射时间为 30s,Au层的溅射时间为70s。
其中,将透明石墨烯转移至α-Ga2O3/TiO2异质结表面,具体包括以下步骤:
(1)在铜箔表面通过化学气相沉积法生长得到连续石墨烯,用匀胶机在石墨烯表面旋涂浓度为100mg/ml PMMA,旋涂完之后,恒温烤干;
(2)将未旋涂PMMA那面铜箔放入等离子体清洗机中处理1-2 min,去除背面铜箔上的石墨烯,然后将PMMA/石墨烯/铜箔放入浓度为5mol/L的FeCl3溶液中刻蚀铜箔,刻蚀25-35min后,再转移至去离子水中浸泡8-12min,接着再转移至新的5mol/L的FeCl3溶液中刻蚀残余的铜箔,刻蚀2-2.5h,去除铜箔上的絮状物,铜箔完全刻蚀之后转移至去离子水中清洗残留的FeCl3刻蚀液,之后再转移至稀盐酸中进一步清洗其表面残留的FeCl3刻蚀液及其他杂质;
(3)清洗完毕后,对α-Ga2O3/TiO2异质结/透明导电衬底进行亲水性处理,随后用其捞石墨烯,得到PMMA/石墨烯覆盖的α-Ga2O3/TiO2异质结/透明导电衬底样品;
(4)将PMMA/石墨烯覆盖的α-Ga2O3/TiO2异质结/透明导电衬底样品风干8h后,放恒温台上将样品完全烤干,之后放进40℃的二氯甲烷溶液中去除PMMA胶,即获得石墨烯覆盖的α-Ga2O3/TiO2异质结/透明导电衬底样品。
其中,银纳米线长度为50μm,直径为150nm,将银纳米线分散在乙醇溶液中,溶液浓度为3mg/ml。银纳米线溶液通过滴涂法滴在石墨烯表面,滴涂30-100μL,100-140℃下恒温烘烤10-15min,形成石墨烯-银纳米线透明电极层。
本发明的有益效果在于:
(1)本发明的基于α-Ga2O3/TiO2异质结的日盲紫外探测器利用 TiO2层钝化了α-Ga2O3纳米柱阵列表面作为载流子复合中心的缺陷,大大促进了光生载流子的有效分离,提高了异质结的量子效率和响应度。此外将银纳米线与石墨烯结合作为透明上电极,提高了探测器的有效光照面积,促进了探测器对弱光信号的检测,实现更高的响应度和探测度。
(2)本发明提出的基于α-Ga2O3/TiO2异质结的日盲紫外探测器,具有自供电、光谱选择性好的特点,对日盲紫外光具有响应度大、灵敏度高等优势。
(3)本发明制备方法制备α-Ga2O3相结纳米柱阵列形貌可控、尺寸均匀;复合的TiO2层的制备工艺简单、成本低廉、适合大规模生产。
附图说明
图1为本发明的基于α-Ga2O3/TiO2异质结的日盲紫外探测器一实施例的结构示意图。
图2是本发明的α-Ga2O3/TiO2异质结的紫外可见吸收光谱,插图为的TiO2层带隙。
图3是本发明的基于α-Ga2O3/TiO2异质结的日盲紫外探测器在不同强度的254nm紫外光照射下,测得的I-t曲线图。
图4是本发明的的基于α-Ga2O3/TiO2异质结的日盲紫外探测器在不同强度的254nm紫外光照射下,测得的响应度和光电流图。
具体实施方式
现以以下实施例来说明本发明,但不用来限制本发明的范围。实施例中使用的手段,如无特别说明,均使用本领域常规的手段。
实施例中,所用的FTO衬底是掺杂氟的SnO2透明导电玻璃 (SnO2:F),厚度约为350nm,电阻为14欧姆,透光率90%。
实施例1:
一种基于α-Ga2O3/TiO2异质结的日盲紫外探测器的制备方法包括:在透明导电衬底通过水热法生长GaOOH纳米柱阵列,退火处理形成α-Ga2O3纳米柱阵列,利用磁控溅射法经在α-Ga2O3纳米柱阵列表面制备一层TiO2钝化层,形成α-Ga2O3/TiO2异质结纳米柱阵列;将石墨烯-银纳米线透明电极层转移至α-Ga2O3/TiO2异质结纳米柱阵列远离所述透明导电衬底一端;利用磁控溅射技术,在石墨烯-银纳米线透明电极层上形成第一金属电极层,在透明导电衬底上形成第二金属电极层。
其中,本发明实施例透明导电衬底采用FTO导电玻璃,在其他实施例中,所述透明导电衬底也可以为掺铟的SnO2透明导电ITO电极或掺铝的ZnO透明导电AZO电极。本发明实施例采用的FTO到点玻璃的厚度为350nm,在其他实施例中,FTO导电玻璃的厚度也可以为300nm、400nm等,在300~400nm即可。
为了便于理解本发明实施例,本发明实施例的基于α-Ga2O3/TiO2异质结的日盲紫外探测器的制备方法具体包括以下步骤:
(1)FTO导电玻璃衬底预处理:分别用丙酮、无水乙醇、去离子水超声清洗10min,然后在烘箱中干燥。
(2)水热法和退火法制备α-Ga2O3纳米柱阵列:将FTO导电玻璃衬底倚靠在不锈钢高压反应釜内壁,加入5~10mL的0.5g/30mL的 Ga(NO3)3生长溶液(没过衬底80%),拧紧反应釜,置于烘箱中150℃加热6~12个小时,可得到沿着(110)晶面生长的GaOOH纳米柱阵列。反应完成后,取出FTO导电玻璃衬底,用去离子水冲洗干净,并在50℃下烘干。然后将GaOOH纳米柱阵列在500℃退火4个小时制备成α-Ga2O3纳米柱阵列。
(3)磁控溅射法和退火法制备TiO2层钝化:将生长有α-Ga2O3纳米柱阵列的样品放入磁控溅射沉积室内,装入金属Ti靶后开始抽真空。依次用机械泵和分子泵,将沉积室内的真空度抽至10-4。通入高纯氩气并打开射频功率源开始预热。调节闸板阀使腔内氩气的压强为0.8Pa左右,设置溅射功率100W,开始进行沉积,沉积时间为5 分钟。沉积完成后将样品放入箱式炉,在500℃退火2个小时制备成α-Ga2O3/TiO2异质结。
(4)在25um厚的铜箔表面通过化学气相沉积法生长得到连续石墨烯,用匀胶机在石墨烯表面旋涂浓度为100mg/ml PMMA,旋涂完之后,放在恒温台上于170℃下烘烤5min;烤干后,将未旋涂PMMA 那面放入等离子体清洗机中处理1min,去除背面铜箔上的石墨烯,然后将PMMA/石墨烯/铜箔放入浓度为5mol/L的FeCl3溶液中刻蚀铜箔,刻蚀30min后,再转移至去离子水中浸泡10min,接着再转移至新的5mol/L的FeCl3溶液中刻蚀残余的铜箔,刻蚀2h,去除铜箔上的絮状物,铜箔完全刻蚀之后转移至去离子水中清洗残留的FeCl3刻蚀液,之后再转移至稀盐酸中进一步清洗其表面残留的FeCl3刻蚀液及其他杂质,最后将石墨烯薄膜转移至去离子水中清洗其表面的残留盐酸,清洗完毕后,用α-Ga2O3/TiO2异质结捞PMMA/石墨烯,得到样品PMMA/石墨烯/α-Ga2O3/TiO2异质结。
(5)将PMMA/石墨烯/α-Ga2O3/TiO2异质结样品风干8h后,放恒温台上将样品完全烤干,之后放进40℃的二氯甲烷溶液中去除 PMMA胶。
(6)银纳米线分散在乙醇溶液中,溶液浓度为3mg/ml。银纳米线溶液通过滴涂法滴在石墨烯表面,滴涂30μL。
(7)利用掩膜版并通过射频磁控溅射技术在石墨烯薄膜面和 FTO面分别沉积Ti/Au点电极作为测量电极。即获得基于α-Ga2O3/TiO2异质结的日盲紫外探测器。
本实施例基于α-Ga2O3/TiO2异质结的日盲紫外探测器的性能特征:图2是α-Ga2O3/TiO2异质结的紫外可见吸收光谱。图3是本发明方法制得的基于α-Ga2O3/TiO2异质结石墨烯-银纳米线复合膜的自供电日盲紫外探测器在不同强度的254nm紫外光照射下,测得的I-t 曲线。可以看出:在不同功率254nm波长光照下,α-Ga2O3/TiO2异质结的光电流表现出明显的光强依赖性。图4是是本发明方法制得的基于α-Ga2O3/TiO2异质结的日盲紫外探测器在不同强度的254nm紫外光照射下,测得的响应度和光电流。为了验证复合TiO2壳体后α-Ga2O3纳米柱阵列光电性能的变化,在相同的条件下测试了纯α-Ga2O3的纳米柱阵列和α-Ga2O3/TiO2异质结的光电性能,两者的暗电流相近,10-9A量级,在光强为3000μW/cm2的254nm光照下,0V偏压下,纯α-Ga2O3光电流为3.8×10-8A,而α-Ga2O3/TiO2异质结的光电明显增大,达到了1.1×10-8A。显然,复合TiO2壳体后成功钝化了α-Ga2O3纳米柱阵列表面的缺陷,并且两者形成的异质结促进了光生载流子的分离,大大提高了探测器的光电性能。同时,可以看出随着光照强度的增加,本发明方法制得的探测器的响应度逐渐变小,光电流逐渐增大。
实施例2
改变实施例1中步骤(3)磁控溅射法和退火法制备TiO2层钝化:沉积时间为10分钟,其他与实施例1相同,在此不再赘述。获得基于α-Ga2O3/TiO2异质结日盲紫外探测器。I-t曲线是在0伏特的电压下测量的,发现控制紫外灯开关,电流瞬时发生变化,表明探测器在日盲区254nm紫外光照射下具有较高的灵敏度。
实施例3
改变实施例1中步骤(3)磁控溅射法和退火法制备TiO2层钝化:沉积时间为30分钟,其他与实施例1相同,在此不再赘述。获得基于α-Ga2O3/TiO2异质结日盲紫外探测器。I-t曲线是在0伏特的电压下测量的,发现控制紫外灯开关,电流瞬时发生变化,表明探测器在日盲区254nm紫外光照射下具有较高的灵敏度。
实施例4
本申请实施例与实施例1的不同之处在于,在步骤(5)和步骤 (6)之间还包括步骤(5.1),其他与实施例1相同。具体地,步骤 (5.1)为:
将步骤(5)去除PMMA胶样品,即石墨烯/α-Ga2O3/TiO2异质结样品再捞一片刻蚀完全并清洗干净的石墨烯,获得PMMA/双层石墨烯/α-Ga2O3/TiO2异质结/FTO样品;将PMMA/双层石墨烯 /α-Ga2O3/TiO2异质结/FTO样品风干8h后,放恒温台上将样品完全烤干,之后放进40℃的二氯甲烷溶液中去除PMMA胶;得到样品双层石墨烯/α-Ga2O3/TiO2异质结/FTO。
所得双层石墨烯/α-Ga2O3/TiO2异质结/FTO结构与实例1类似。在基于双层石墨烯/α-Ga2O3/TiO2异质结/FTO的日盲型紫外探测器的电极两端施加电压进行光电性能测量,I-t曲线是在0伏特的电压下测量的,发现控制紫外灯开关,电流瞬时发生变化,表明探测器在日盲区254nm紫外光照射下具有高灵敏度。测试结果均与实施例1类似。
实施例5
基于α-Ga2O3/TiO2异质结的日盲紫外探测器的制备方法具体包括以下步骤:
(1)FTO导电玻璃衬底预处理:分别用丙酮、无水乙醇、去离子水超声清洗10min,然后在烘箱中干燥。
(2)水热法和退火法制备α-Ga2O3纳米柱阵列:将FTO导电玻璃衬底倚靠在不锈钢高压反应釜内壁,加入5~10mL的0.5g/30mL的 Ga(NO3)3生长溶液(没过衬底80%),拧紧反应釜,置于烘箱中100℃加热6个小时,可得到沿着(110)晶面生长的GaOOH纳米柱阵列。反应完成后,取出FTO导电玻璃衬底,用去离子水冲洗干净,并在 50℃下烘干。然后将GaOOH纳米柱阵列在400℃退火3个小时制备成α-Ga2O3纳米柱阵列。
(3)磁控溅射法和退火法制备TiO2层钝化:将生长有α-Ga2O3纳米柱阵列的样品放入磁控溅射沉积室内,装入金属Ti靶后开始抽真空。依次用机械泵和分子泵,将沉积室内的真空度抽至10-4。通入高纯氩气并打开射频功率源开始预热。调节闸板阀使腔内氩气的压强为0.8Pa左右,设置溅射功率100W,开始进行沉积,沉积时间为60 分钟。沉积完成后将样品放入箱式炉,在400℃退火4个小时制备成α-Ga2O3/TiO2异质结。
(4)在25um厚的铜箔表面通过化学气相沉积法生长得到连续石墨烯,用匀胶机在石墨烯表面旋涂浓度为100mg/ml PMMA,旋涂完之后,放在恒温台上于170℃下烘烤5min;烤干后,将未旋涂PMMA 那面放入等离子体清洗机中处理2min,去除背面铜箔上的石墨烯,然后将PMMA/石墨烯/铜箔放入浓度为5mol/L的FeCl3溶液中刻蚀铜箔,刻蚀0.5h后,再转移至去离子水中浸泡10min,接着再转移至新的5mol/L的FeCl3溶液中刻蚀残余的铜箔,刻蚀2h,去除铜箔上的絮状物,铜箔完全刻蚀之后转移至去离子水中清洗残留的FeCl3刻蚀液,之后再转移至稀盐酸中进一步清洗其表面残留的FeCl3刻蚀液及其他杂质,最后将石墨烯薄膜转移至去离子水中清洗其表面的残留盐酸,清洗完毕后,用α-Ga2O3/TiO2异质结捞PMMA/石墨烯,得到样品PMMA/石墨烯/α-Ga2O3/TiO2异质结。
(5)将PMMA/石墨烯/α-Ga2O3/TiO2异质结样品风干8h后,放恒温台上将样品完全烤干,之后放进40℃的二氯甲烷溶液中去除 PMMA胶。
(6)银纳米线分散在乙醇溶液中,溶液浓度为3mg/ml。银纳米线溶液通过滴涂法滴在石墨烯表面,滴涂100μL。
(7)利用掩膜版并通过射频磁控溅射技术在石墨烯薄膜面和 FTO面先后溅射金属Ti层和Au层获得Au/Ti点电极,Ti/Au点电极作为测量电极。即获得基于α-Ga2O3/TiO2异质结的日盲紫外探测器。
实施例6
基于α-Ga2O3/TiO2异质结的日盲紫外探测器的制备方法具体包括以下步骤:
(1)FTO导电玻璃衬底预处理:分别用丙酮、无水乙醇、去离子水超声清洗10min,然后在烘箱中干燥。
(2)水热法和退火法制备α-Ga2O3纳米柱阵列:将FTO导电玻璃衬底倚靠在不锈钢高压反应釜内壁,加入5~10mL的0.5g/30mL的 Ga(NO3)3生长溶液(没过衬底80%),拧紧反应釜,置于烘箱中200℃加热12个小时,可得到沿着(110)晶面生长的GaOOH纳米柱阵列。反应完成后,取出FTO导电玻璃衬底,用去离子水冲洗干净,并在 50℃下烘干。然后将GaOOH纳米柱阵列在450℃退火6个小时制备成α-Ga2O3纳米柱阵列。
(3)磁控溅射法和退火法制备TiO2层钝化:将生长有α-Ga2O3纳米柱阵列的样品放入磁控溅射沉积室内,装入金属Ti靶后开始抽真空。依次用机械泵和分子泵,将沉积室内的真空度抽至10-4。通入高纯氩气并打开射频功率源开始预热。调节闸板阀使腔内氩气的压强为0.8Pa左右,设置溅射功率100W,开始进行沉积,沉积时间为40 分钟。沉积完成后将样品放入箱式炉,在450℃退火3个小时制备成α-Ga2O3/TiO2异质结。
(4)在25um厚的铜箔表面通过化学气相沉积法生长得到连续石墨烯,用匀胶机在石墨烯表面旋涂浓度为100mg/ml PMMA,旋涂完之后,放在恒温台上于170℃下烘烤5min;烤干后,将未旋涂PMMA 那面放入等离子体清洗机中处理1min,去除背面铜箔上的石墨烯,然后将PMMA/石墨烯/铜箔放入浓度为5mol/L的FeCl3溶液中刻蚀铜箔,刻蚀30min后,再转移至去离子水中浸泡10min,接着再转移至新的5mol/L的FeCl3溶液中刻蚀残余的铜箔,刻蚀1.5h,去除铜箔上的絮状物,铜箔完全刻蚀之后转移至去离子水中清洗残留的FeCl3刻蚀液,之后再转移至稀盐酸中进一步清洗其表面残留的FeCl3刻蚀液及其他杂质,最后将石墨烯薄膜转移至去离子水中清洗其表面的残留盐酸,清洗完毕后,用α-Ga2O3/TiO2异质结捞PMMA/石墨烯,得到样品PMMA/石墨烯/α-Ga2O3/TiO2异质结。
(5)将PMMA/石墨烯/α-Ga2O3/TiO2异质结样品风干8h后,放恒温台上将样品完全烤干,之后放进40℃的二氯甲烷溶液中去除 PMMA胶。
(6)银纳米线分散在乙醇溶液中,溶液浓度为3mg/ml,银纳米线长度为50μm,直径为150nm。银纳米线溶液通过滴涂法滴在石墨烯表面,滴涂50μL。
(7)利用掩膜版并通过射频磁控溅射技术在石墨烯薄膜面和 FTO面分别沉积Ti/Au点电极作为测量电极。即获得基于α-Ga2O3/TiO2异质结的日盲紫外探测器。
实施例7
本发明实施例包括基于α-Ga2O3TiO2异质结的日盲紫外探测器,由实施例1-6的制备方法制备而得,如图1所示,探测器从下至上包含透明导电衬底1、α-Ga2O3TiO2异质结光敏层2、石墨烯-银纳米线透明电极层3和第一金属电极层5,还包括设置于透明导电衬底1上的第二金属电极层4;所述α-Ga2O3TiO2异质结光敏层2包括若干阵列分布的α-Ga2O3TiO2异质结纳米柱,α-Ga2O3TiO2异质结纳米柱包括内核α-Ga2O3纳米柱21、包覆于所述内核α-Ga2O3纳米柱21侧壁和靠近所述石墨烯-银纳米线透明电极层3一端的TiO2层22。
本发明实施例的探测器,通过在α-Ga2O3纳米柱阵列表面包覆其他材料以形成核壳异质结结构,能钝化纳米柱表面缺陷,促进电子-空穴对分离,有效延长载流子的寿命。经钝化处理后的纳米柱阵列的光电性能可以得到明显的改善。其中,钝化材料为TiO2,TiO2具有宽带隙(3.2eV)、稳定的化学性质和在光催化能、同时TiO2也是一种良好的湿度传感材料,可以扩展探测器的应用范围。
具体地,所述的α-Ga2O3TiO2异质纳米柱的横截面为四边形,纳米柱高为1~2μm,横截面对角线长度为80~500nm;TiO2层22的厚度为100nm~1μm。在上述条件下的探测器,其灵敏性能更佳好,具有高灵敏性能。
其中,所述石墨烯-银纳米线透明电极层3包括石墨烯层和银纳米线层,所述石墨烯层为单层或多层石墨烯薄膜,实施例1制备出的探测器的石墨烯层为单层,实施例4制备出的探测器为双层石墨烯薄膜,在其他实施例中,也可以为三层以上石墨烯。所述银纳米线长度为50μm,直径为150nm;所述石墨烯-银纳米线透明电极层3覆盖在α-Ga2O3TiO2异质结光敏层2上,并与TiO2层22紧密接触。
将银纳米线与石墨烯结合形成石墨烯-银纳米线透明电极层,作为透明上电极,提高了探测器的有效光照面积,促进了探测器对弱光信号的检测,实现更高的响应度和探测度。
其中,所述石墨烯层位于所述α-Ga2O3TiO2异质结光敏层2与银纳米线层之间。
本申请实施例的透明导电衬底1为掺氟的SnO2透明导电FTO衬底,所述透明导电衬底1的透明导电薄膜层的厚度为350nm。
在其他实施例中,透明导电衬底1也可以为掺铟的SnO2透明导电ITO电极或掺铝的ZnO透明导电AZO电极。透明导电薄膜层的厚度为300nm-400nm之间的任意值。
本申请实施例第一金属电极5为Ti/Au点电极,其中,Ti/Au点电极包括Ti层和Au层,Ti层位于石墨烯-银纳米线透明电极层3和 Au层之间,Ti/Au点电极部分覆盖石墨烯-银纳米线透明电极层3;第二金属电极4为Ti/Au点电极,银电极部分覆盖透明导电衬底1。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (7)

1.一种制备基于α-Ga2O3/TiO2异质结的日盲紫外探测器的方法,其特征在于,包括:在透明导电衬底通过水热法生长GaOOH纳米柱阵列,退火处理形成α-Ga2O3纳米柱阵列,利用磁控溅射法经在α-Ga2O3纳米柱阵列表面制备一层TiO2钝化层,形成α-Ga2O3/TiO2异质结纳米柱阵列;将石墨烯-银纳米线透明电极层转移至α-Ga2O3/TiO2异质结纳米柱阵列远离所述透明导电衬底一端;利用磁控溅射技术,在石墨烯-银纳米线透明电极层上形成第一金属电极层,在透明导电衬底上形成第二金属电极层;
包括:
将透明导电衬底置于含有可溶镓盐的生长溶液中,100~200℃下水热反应6~12个小时,得到GaOOH纳米柱阵列;
在400~450℃温度下退火3~6个小时形成α-Ga2O3纳米柱阵列;
利用磁控溅射法经在α-Ga2O3纳米柱阵列表面制备一层TiO2钝化层,形成α-Ga2O3/TiO2异质结纳米柱阵列;
将透明石墨烯转移至α-Ga2O3/TiO2异质结纳米柱阵列表面,形成透明石墨烯层,通过滴涂法在石墨烯层上滴涂银纳米线,形成石墨烯-银纳米线透明电极层;利用磁控溅射法经在α-Ga2O3纳米柱阵列表面制备一层TiO2钝化层,将制备好的α-Ga2O3纳米柱阵列放入沉积室,抽真空至真空度10-4,以100W的功率溅射金属Ti,时间为5~60分钟;之后进行退火处理,退火温度为400~500℃,退火时间为2~4个小时,以形成TiO2层;
α-Ga2O3/TiO2异质结纳米柱的横截面为四边形,纳米柱高为1~2μm,横截面对角线长度为80~500nm;TiO2层的厚度为100nm~1μm。
2.根据权利要求1所述的制备基于α-Ga2O3/TiO2异质结的日盲紫外探测器的方法,其特征在于,利用磁控溅射技术,在石墨烯-银纳米线透明电极层上形成第一金属电极层,和/或,在透明导电衬底上形成第二金属电极层包括:
采用磁控溅射的方法先后溅射金属Ti层和Au层获得Au/Ti点电极,溅射条件如下:背底真空为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为0.8Pa,溅射功率为40W,Ti层的溅射时间为30s,Au层的溅射时间为70s。
3.一种如上述权利要求1或2任一项所述的方法制备的基于α-Ga2O3/TiO2异质结的日盲紫外探测器,其特征在于,从下至上包含透明导电衬底、α-Ga2O3/TiO2异质结光敏层、石墨烯-银纳米线透明电极层和第一金属电极层,还包括设置于透明导电衬底上的第二金属电极层;所述α-Ga2O3/TiO2异质结光敏层包括若干阵列分布的α-Ga2O3/TiO2异质结纳米柱,α-Ga2O3/TiO2异质结纳米柱包括内核α-Ga2O3纳米柱、包覆于所述内核α-Ga2O3纳米柱侧壁和靠近所述石墨烯-银纳米线透明电极层一端的TiO2层。
4.根据权利要求3所述的基于α-Ga2O3/TiO2异质结的日盲紫外探测器,其特征在于,所述石墨烯-银纳米线透明电极层包括石墨烯层和银纳米线层,所述石墨烯层为单层或多层石墨烯薄膜,所述银纳米线长度为50μm,直径为150nm;所述石墨烯-银纳米线透明电极层覆盖在α-Ga2O3/TiO2异质结光敏层上,并与TiO2层紧密接触。
5.根据权利要求3所述的基于α-Ga2O3/TiO2异质结的日盲紫外探测器,其特征在于,所述石墨烯层位于所述α-Ga2O3/TiO2异质结光敏层与银纳米线层之间。
6.根据权利要求3所述的基于α-Ga2O3/TiO2异质结的日盲紫外探测器,其特征在于,所述透明导电衬底为掺氟的SnO2透明导电FTO衬底、掺铟的SnO2透明导电ITO电极或掺铝的ZnO透明导电AZO电极;所述透明导电衬底的透明导电薄膜层的厚度为300~400nm。
7.根据权利要求3所述的基于α-Ga2O3/TiO2异质结的日盲紫外探测器,其特征在于,所述第一金属电极或第二金属电极为金、银、钛中的一种或几种。
CN202010296965.5A 2020-04-16 2020-04-16 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法 Active CN111477699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010296965.5A CN111477699B (zh) 2020-04-16 2020-04-16 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010296965.5A CN111477699B (zh) 2020-04-16 2020-04-16 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111477699A CN111477699A (zh) 2020-07-31
CN111477699B true CN111477699B (zh) 2022-03-29

Family

ID=71754345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010296965.5A Active CN111477699B (zh) 2020-04-16 2020-04-16 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111477699B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066901B (zh) * 2021-03-24 2022-10-11 北京邮电大学 增强VOx-Ga2O3异质结自供电光响应性能的方法
CN114744060B (zh) * 2022-04-14 2023-08-29 浙江理工大学 一种电网电晕监测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157512A1 (ja) * 2008-06-26 2009-12-30 東海東洋アルミ販売株式会社 紫外線センサ
CN103219418A (zh) * 2013-03-26 2013-07-24 华中科技大学 一种具有纳米异质复合结构的紫外光探测器及其制备方法
CN109000790A (zh) * 2018-05-30 2018-12-14 张紫菡 一种氧化镓基柔性日盲紫外火焰探测器及其制备方法
CN110112233A (zh) * 2019-05-13 2019-08-09 北京镓族科技有限公司 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157512A1 (ja) * 2008-06-26 2009-12-30 東海東洋アルミ販売株式会社 紫外線センサ
CN103219418A (zh) * 2013-03-26 2013-07-24 华中科技大学 一种具有纳米异质复合结构的紫外光探测器及其制备方法
CN109000790A (zh) * 2018-05-30 2018-12-14 张紫菡 一种氧化镓基柔性日盲紫外火焰探测器及其制备方法
CN110112233A (zh) * 2019-05-13 2019-08-09 北京镓族科技有限公司 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法

Also Published As

Publication number Publication date
CN111477699A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
Fang et al. Sensitization of nanocrystalline TiO2 electrode with quantum sized CdSe and ZnTCPc molecules
CN111477699B (zh) 基于α-Ga2O3/TiO2异质结的日盲紫外探测器及其制备方法
CN103441154B (zh) 一种ZnO纳米阵列紫外探测器及其制作方法
CN109473489B (zh) 一种可区分紫外波段的自供电光电探测器
CN107819076B (zh) 一种Cu2O/GaOOH纳米核壳pn结光电探测器及其制备方法
CN109103282B (zh) 一种基于氧化镓纳米柱阵列的光电化学型日盲紫外探测器
Yan et al. Self-driven hematite-based photoelectrochemical water splitting cells with three-dimensional nanobowl heterojunction and high-photovoltage perovskite solar cells
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN112490363B (zh) 一种基于磁控溅射氧化锌/二氧化锡双电子传输层的钙钛矿太阳能电池制备方法
CN112701173B (zh) 一种石墨烯高灵敏度光电探测器及其制备方法
CN110718634A (zh) 具有光栅阵列结构电子传输层的太阳能电池及其制备方法
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN110611030A (zh) 具有阵列结构电子传输层的钙钛矿太阳能电池及其制备方法
Young et al. ZnO nanorod humidity sensor and dye-sensitized solar cells as a self-powered device
CN108231942B (zh) 一种还原氧化石墨烯薄膜光电探测器及其制备方法和应用
CN111244194A (zh) 一种基于铝纳米颗粒局部表面等离子体效应的ZnO/Cu2O异质结紫外光探测器
Cai et al. Plasmonic Au-decorated hierarchical p-NiO/n-ZnO heterostructure arrays for enhanced photoelectrochemical water splitting
CN109755341B (zh) 基于β-Ga2O3/FTO异质结的日盲紫外光电探测器及其制备
CN106711288A (zh) 一种纳米晶硅薄膜太阳能电池的制备方法
Eskandari et al. Enhanced photovoltaic performance of a cadmium sulfide/cadmium selenide-sensitized solar cell using an aluminum-doped zinc oxide electrode
CN112071652B (zh) 一种三维刺猬状ZnO/SnO2异质结构及其制备方法与其在紫外探测器中的应用
CN113804292B (zh) 光电化学型自供电日盲深紫外光电探测器及其制备方法
CN210668422U (zh) 具有光栅阵列结构电子传输层的太阳能电池
CN113066888A (zh) 一种基于In2S3纳米片阵列/Si金字塔阵列异质结的自驱动光电探测器
CN112864260A (zh) SnSe2/H-TiO2异质结光电探测器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant