CN113745360A - 一种窄带响应紫外光电二极管及其制备方法 - Google Patents

一种窄带响应紫外光电二极管及其制备方法 Download PDF

Info

Publication number
CN113745360A
CN113745360A CN202110819753.5A CN202110819753A CN113745360A CN 113745360 A CN113745360 A CN 113745360A CN 202110819753 A CN202110819753 A CN 202110819753A CN 113745360 A CN113745360 A CN 113745360A
Authority
CN
China
Prior art keywords
layer
gan
narrow
band response
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110819753.5A
Other languages
English (en)
Inventor
宋伟东
郭越
梁众
林显凯
陈钊
何鑫
张业龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
Wuyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuyi University filed Critical Wuyi University
Priority to CN202110819753.5A priority Critical patent/CN113745360A/zh
Publication of CN113745360A publication Critical patent/CN113745360A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)

Abstract

本发明提供一种窄带响应紫外光电二极管及其制备方法,包括衬底层,设置于衬底层上的半导体层,设置于GaN层上的多孔GaN层;设置于多孔GaN层上的MoO3层,GaN层和MoO3层上还设置有金属触点层。本发明通过在衬底层上沉积GaN薄膜;对制备的GaN薄膜进行清洗,并用离子液刻蚀,形成多孔GaN层;并在多孔GaN层表面热蒸发MoO3层。本发明利用多孔GaN材料作为紫外光吸收层,降低材料缺陷,同时增强紫外光吸收;窄带响应紫外光电二极管响应带宽仅10nm,且只在355~380nm紫外波段产生响应,外量子效率和响应度在紫外区370nm处取得峰值,并具有高紫外/可见抑制比,非常适用于要求窄带响应的应用场合。

Description

一种窄带响应紫外光电二极管及其制备方法
技术领域
本发明涉及光电二极管技术领域,尤其是一种窄带响应紫外光电二极管及其制备方法。
背景技术
紫外光电探测器(PDs)是一种基本的光电子器件,能够将入射的短波(<400nm)辐射转换为电信号进行光电转换处理。基于探测器对光学信息的捕获、识别和可视化,紫外探测技术在军事、安全通信、成像、生物检测、化学分析和日常生活监测等领域有着广泛的应用。目前商用紫外光电二极管主要基于真空光电倍增管和紫外增强硅光电二极管。
具有高光谱选择性、窄带响应的紫外光电探测器在荧光检测、成像、紫外线光疗和生物医学传感等方面有着重要的应用,这些应用的共同点是需要在特定入射光窗口产生大的响应,而在所需窗口以外的波段响应较低或者没有响应。传统实现窄带响应的光电探测器需要结合外置滤光片实现,但是这种设备复杂、体积笨重。
目前文献报道了多种窄带响应光电探测器,以铅卤化钙钛矿、有机材料等作为吸收层,但这些报道的窄带响应探测器大多工作在可见光或近红外波段,并且这些材料无论是稳定性、毒性等都不尽如人意,而窄带响应紫外光探测器研究甚少。
因此,亟需要一种窄带响应紫外光电二极管。
发明内容
针对现有技术的不足,本发明提供一种窄带响应紫外光电二极管及其制备方法,该紫外光电二极管具有窄带响应特点。
本发明的技术方案为:一种窄带响应紫外光电二极管,包括衬底层,
设置于衬底层上的半导体层,所述的半导体层为GaN层;
设置于GaN层的上表面的多孔GaN层;
以及设置于多孔GaN层上表面的MoO3层,
所述GaN层和MoO3层的上表面还设置有金属触点层。
作为优选的,所述的衬底层为蓝宝石衬底。
作为优选的,所述半导体层的GaN薄膜在室温下的载流子浓度范围为1×1015至1×1018cm-3,厚度为4~6μm。
作为优选的,所述MoO3层的厚度为2~50nm。
作为优选的,所述金属触点层为欧姆接触层,其厚度为50~200nm。
本发明还提供一种窄带响应紫外光电二极管的制备方法,包括
S1)、在衬底层上沉积GaN薄膜;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀,形成多孔GaN层;
S3)、将步骤S2)中制得的多孔GaN层表面热蒸发MoO3层。
作为优选的,步骤S2)中所制备的多孔GaN层厚度为100~1000nm。
作为优选的,步骤S2)中在刻蚀多孔GaN层之前,先对所述GaN层进行洗涤;所述洗涤过程为将GaN层依次用王水、丙酮、乙醇、去离子水洗涤,并用臭氧机进行亲水处理。
作为优选的,步骤S2)中所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐;1-乙基-3-甲基咪唑三氟乙酸盐或者1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐。
作为优选的,步骤S2)中,所述的多孔GaN层的具体制备方法为:
S201)、直流电源的正极和负极分别连接GaN片和铂片,将GaN片垂直放置于氙灯前,GaN面朝向氙灯,两个电极利用铁架台固定;
S202)、将铂片平行放置于GaN片后,调节电极的高度使铂片的中心、GaN片中心、氙灯的中心三点在一条水平线上;将直流电源电压设置为5~30V,将GaN片与铂片浸泡在盛有刻蚀离子液体的烧杯中,离子液体的用量以不浸没电极为准;
S203)、打开氙灯,当打开直流电源开关后开始计时,刻蚀时间5~30min。
本发明的有益效果为:
1、本发明利用多孔GaN材料作为紫外光吸收层,降低材料缺陷,同时增强紫外光吸收;
2、本发明提出的窄带响应紫外光电二极管半峰宽仅10nm,并具有高紫外/可见抑制比,非常适用于要求窄带响应的应用场合;
3、本发明制备的窄带响应紫外光电二极管在370nm紫外光照射下器件光暗电流比达到103,且只在355~380nm紫外波段产生响应,外量子效率和响应度在紫外区370nm处取得峰值,具有窄带响应性能。
附图说明
图1为本发明实施例1的窄带响应紫外光电二极管的结构示意图;
图2为本发明实施例1的窄带响应紫外光电二极管的多孔GaN层的扫描电镜图;
图3为本发明实施例2制备的窄带响应紫外光电二极管在暗态和紫外光(370nm)照射下的电流-电压曲线图;
图4为本发明实施例3制备的窄带响应紫外光电二极管在-3V电压下的光谱外量子效率和响应度图;
图中,100-衬底层,200-GaN层,300-多孔GaN层,400-MoO3层,500-金属触点层。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例1
如图1和2所示,本实施例提供一种窄带响应紫外光电二极管,包括衬底层100、半导体层、多孔GaN层300、MoO3层400、金属触点层500,所述的半导体层设置于衬底层100上,所述的半导体层为GaN层200;所述的多孔GaN层300设置在GaN层200的上表面;所述的MoO3层400设置于多孔GaN层300的上表面,所述GaN层200和MoO3层400的上表面还设置有金属触点层500。
作为本实施例优选的,所述的衬底层100为蓝宝石衬底。
作为本实施例优选的,所述半导体层的GaN薄膜在室温下的载流子浓度范围为1×1015至1×1018cm-3,厚度为4~6μm。
作为本实施例优选的,所述MoO3层400的厚度为2~50nm。
作为本实施例优选的,所述金属触点层500为欧姆接触层,其厚度为50~200nm。
实施例2
本实施例提供一种窄带响应紫外光电二极管的制备方法,包括
S1)、在衬底层100上沉积GaN薄膜;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀,形成多孔GaN层300;
S3)、将步骤S2)中制得的多孔GaN层300表面热蒸发形成MoO3层400,厚度为10nm。
作为本实施例优选的,步骤S1)中沉积的GaN薄膜厚度为5000nm。
作为本实施例优选的,步骤S2)中在刻蚀多孔GaN层300之前,先对所述GaN层200进行洗涤;所述洗涤过程为将GaN层200依次用王水、丙酮、乙醇、去离子水洗涤,并用臭氧机进行亲水处理。
作为本实施例优选的,步骤S2)中所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐。
作为本实施例优选的,步骤S2)中多孔GaN层300的具体制备方法为:
直流电源的正极和负极分别连接GaN片和铂片,将GaN片垂直放置于氙灯前,GaN面朝向氙灯,两个电极利用铁架台固定。将铂片平行放置于GaN片后。
调节电极的高度使铂片的中心、GaN片中心、氙灯的中心三点在一条水平线上;将直流电源电压设置为15V,将GaN片与铂片浸泡在盛有刻蚀离子液体的烧杯中,离子液体的用量以不浸没电极为准。
打开氙灯,当打开直流电源开关后开始计时,刻蚀时间10min。
实施例3
本实施例提供一种窄带响应紫外光电二极管的制备方法,包括
S1)、在衬底层100上沉积GaN薄膜;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀,形成多孔GaN层300;
S3)、将步骤S2)中制得的多孔GaN层300表面热蒸发形成MoO3层400,厚度为10nm。
作为本实施例优选的,步骤S1)中沉积的GaN薄膜厚度为5000nm。
作为本实施例优选的,步骤S2)中在刻蚀多孔GaN层300之前,先对所述GaN层200进行洗涤;所述洗涤过程为将GaN层200依次用王水、丙酮、乙醇、去离子水洗涤,并用臭氧机进行亲水处理。
作为本实施例优选的,步骤S2)中所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐。
作为本实施例优选的,步骤S2)中多孔GaN层的具体制备方法为:
直流电源的正极和负极分别连接GaN片和铂片,将GaN片垂直放置于氙灯前,GaN面朝向氙灯,两个电极利用铁架台固定。
将铂片平行放置于GaN片后。调节电极的高度使铂片的中心、GaN片中心、氙灯的中心三点在一条水平线上;将直流电源电压设置为10V,将GaN片与铂片浸泡在盛有刻蚀离子液体的烧杯中,离子液体的用量以不浸没电极为准。
打开氙灯,当打开直流电源开关后开始计时,刻蚀时间5min。
实施例4
本实施例提供一种窄带响应紫外光电二极管的制备方法,包括
S1)、在衬底层100上沉积GaN薄膜;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀,形成多孔GaN层300;
S3)、将步骤S2)中制得的多孔GaN层300表面热蒸发形成MoO3层400,厚度为20nm。
作为本实施例优选的,步骤S1)中沉积的GaN薄膜厚度为5000nm。
作为本实施例优选的,步骤S2)中在刻蚀多孔GaN层300之前,先对所述GaN层200进行洗涤;所述洗涤过程为将GaN层200依次用王水、丙酮、乙醇、去离子水洗涤,并用臭氧机进行亲水处理。
作为本实施例优选的,步骤S2)中所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐。
作为本实施例优选的,步骤S2)中多孔GaN层300的具体制备方法为:
直流电源的正极和负极分别连接GaN片和铂片,将GaN片垂直放置于氙灯前,GaN面朝向氙灯,两个电极利用铁架台固定。
将铂片平行放置于GaN片后。调节电极的高度使铂片的中心、GaN片中心、氙灯的中心三点在一条水平线上;将直流电源电压设置为15V,将GaN片与铂片浸泡在盛有刻蚀离子液体的烧杯中,离子液体的用量以不浸没电极为准。
打开氙灯,当打开直流电源开关后开始计时,刻蚀时间10min。
实施例5
对实施例2制得的窄带响应紫外光电二极管进行性能测试,测试在暗处以及370nm紫外光照射下紫外光电二极管的光暗电流比,结果见图3,图3中横坐标为电压,纵坐标为电流,由图3可知,制备的窄带响应紫外光电二极管在370nm紫外光照射下器件光暗电流比达到103
测试制得的窄带响应紫外光电二极管的紫外光响应特性,在4V偏压下,测试结果见图4,图中横坐标为波长,纵坐标为强度,由图可知,制备的光电二极管只在350~400nm紫外波段产生响应,外量子效率和响应度在紫外区370nm处取得峰值,表明制得的器件具有窄带响应性能。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (10)

1.一种窄带响应紫外光电二极管,其特征在于,包括衬底层(100)、半导体层、多孔GaN层(300)、MoO3层(400)、金属触点层(500),所述的半导体层设置于衬底层(100)上,所述的半导体层为GaN层(200);所述的多孔GaN层(300)设置在GaN层(200)的上表面;所述的MoO3层(400)设置于多孔GaN层(300)的上表面,所述GaN层(200)和MoO3层(400)的上表面还设置有金属触点层(500)。
2.根据权利要求1所述的一种窄带响应紫外光电二极管,其特征在于:所述的衬底层(100)为蓝宝石衬底。
3.根据权利要求1所述的一种窄带响应紫外光电二极管,其特征在于:所述半导体层的GaN薄膜在室温下的载流子浓度范围为1×1015至1×1018cm-3,厚度为4~6μm。
4.根据权利要求1所述的一种窄带响应紫外光电二极管,其特征在于:所述MoO3层(400)的厚度为2~50nm。
5.根据权利要求1所述的一种窄带响应紫外光电二极管,其特征在于:所述金属触点层(500)为欧姆接触层,其厚度为50~200nm。
6.一种用于制备权利要求1-5任一项所述的窄带响应紫外光电二极管的方法,其特征在于,包括以下步骤:
S1)、在衬底层(100)上沉积GaN薄膜;
S2)、对步骤S1)制备的GaN薄膜进行清洗,并用离子液刻蚀,形成多孔GaN层(300);
S3)、将步骤S2)中制得的多孔GaN层(300)表面热蒸发形成MoO3层(400)。
7.根据权利要求6所述的一种窄带响应紫外光电二极管的制备方法,其特征在于,步骤S2)中所制备的多孔GaN层(300)厚度为100~1000nm。
8.根据权利要求6所述的一种窄带响应紫外光电二极管的制备方法,其特征在于,步骤S2)中在刻蚀多孔GaN层(300)之前,先对所述GaN层(200)进行洗涤;所述洗涤过程为将GaN层依次用王水、丙酮、乙醇、去离子水洗涤,并用臭氧机进行亲水处理。
9.根据权利要求6所述的一种窄带响应紫外光电二极管的制备方法,其特征在于,步骤S2)中所用的离子液体为:1-乙基-3-甲基咪唑三氟甲磺酸盐;1-乙基-3-甲基咪唑三氟乙酸盐或者1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐。
10.根据权利要求6所述的一种窄带响应紫外光电二极管的制备方法,其特征在于,步骤S2)中,所述的多孔GaN层(300)的具体制备方法为:
S201)、直流电源的正极和负极分别连接GaN片和铂片,将GaN片垂直放置于氙灯前,GaN面朝向氙灯,两个电极利用铁架台固定;
S202)、将铂片平行放置于GaN片后,调节电极的高度使铂片的中心、GaN片中心、氙灯的中心三点在一条水平线上;将直流电源电压设置为5~30V,将GaN片与铂片浸泡在盛有刻蚀离子液体的烧杯中,离子液体的用量以不浸没电极为准;
S203)、打开氙灯,当打开直流电源开关后开始计时,刻蚀时间5~30min。
CN202110819753.5A 2021-07-20 2021-07-20 一种窄带响应紫外光电二极管及其制备方法 Pending CN113745360A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110819753.5A CN113745360A (zh) 2021-07-20 2021-07-20 一种窄带响应紫外光电二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110819753.5A CN113745360A (zh) 2021-07-20 2021-07-20 一种窄带响应紫外光电二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN113745360A true CN113745360A (zh) 2021-12-03

Family

ID=78728796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110819753.5A Pending CN113745360A (zh) 2021-07-20 2021-07-20 一种窄带响应紫外光电二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN113745360A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411131A (zh) * 2022-09-21 2022-11-29 五邑大学 一种紫外光电探测器及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576928A (zh) * 2013-10-18 2015-04-29 中国科学院苏州纳米技术与纳米仿生研究所 一种有机/GaN异质p-n结紫外光探测器及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576928A (zh) * 2013-10-18 2015-04-29 中国科学院苏州纳米技术与纳米仿生研究所 一种有机/GaN异质p-n结紫外光探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭越等: "多孔GaN/MoO3异质结窄带响应紫外光电探测器", 材料科学, vol. 11, no. 6, pages 795 - 799 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115411131A (zh) * 2022-09-21 2022-11-29 五邑大学 一种紫外光电探测器及其制备方法与应用

Similar Documents

Publication Publication Date Title
Nasiri et al. Three-dimensional nano-heterojunction networks: A highly performing structure for fast visible-blind UV photodetectors
Zheng et al. Novel UV–visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction
CN107316943B (zh) 基于碘铅铯甲脒薄膜的宽波带光电探测器及其制备方法
Yıldırım et al. Self-powered ZrO2 nanofibers/n-Si photodetector with high on/off ratio for detecting very low optical signal
An et al. Dual-band photodetector with a hybrid Au-nanoparticles/β-Ga 2 O 3 structure
CN113745360A (zh) 一种窄带响应紫外光电二极管及其制备方法
RU56069U1 (ru) Кремниевый pin-фотодиод большой площади
CN112968073B (zh) 超灵敏柔性氧化镓光电探测器及阵列、制备方法和应用
Jeong et al. A crossbar-type high sensitivity ultraviolet photodetector array based on a one hole–one nanorod configuration via nanoimprint lithography
CN111987185A (zh) 一种具有光电二极管效应的双钙钛矿薄膜器件及其制备方法和应用
CN109755341B (zh) 基于β-Ga2O3/FTO异质结的日盲紫外光电探测器及其制备
CN112490317B (zh) 一种基于硒化镉薄膜的近红外窄带探测器及其制备方法
CN113054050B (zh) 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法
CN113804292B (zh) 光电化学型自供电日盲深紫外光电探测器及其制备方法
CN114093975A (zh) 一种钙钛矿红外探测器的制备方法
JPH03248578A (ja) 半導体放射線検出素子の製造方法
KR20230015709A (ko) 넓은 밴드갭과 높은 안정성을 가진 금속유기골격체를 이용한 자외선 센서의 제조방법 및 이에 따라 제조한 자외선 센서
Suhail et al. Improvement of the photoresponse of the solar blind ZnO photoconductive UV detector
KR20220108563A (ko) 투명 자가동력 광검출장치 및 이의 제조방법
Shu et al. Surface plasmon decorated InGaO deep-UV photodetector array for image sensing and water quality monitoring via highly effective hot electron excitation and interfacial injection
CN111048620A (zh) 基于二氧化钛纳米管和石墨烯异质结紫外光电探测器及其制备方法
Dobrovolsky et al. Photodiode based on the epitaxial phosphide gallium with increased sensitivity at a wavelength of 254 nm
CN217444411U (zh) 电调控同光轴日盲紫外-可见光双波段探测器
Al-Mumen Characterization of UV Detectors Based on Dye Sensitized Cell
CN113178523B (zh) 一种无铅准二维锡基钙钛矿薄膜及其制备的光电探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination