CN110047953A - n型的二维纳米片阵列及其制备方法及红外光电探测器 - Google Patents

n型的二维纳米片阵列及其制备方法及红外光电探测器 Download PDF

Info

Publication number
CN110047953A
CN110047953A CN201910211700.8A CN201910211700A CN110047953A CN 110047953 A CN110047953 A CN 110047953A CN 201910211700 A CN201910211700 A CN 201910211700A CN 110047953 A CN110047953 A CN 110047953A
Authority
CN
China
Prior art keywords
chip arrays
shaped
substrate
nano chip
near infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910211700.8A
Other languages
English (en)
Other versions
CN110047953B (zh
Inventor
戴叶婧
李丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910211700.8A priority Critical patent/CN110047953B/zh
Publication of CN110047953A publication Critical patent/CN110047953A/zh
Application granted granted Critical
Publication of CN110047953B publication Critical patent/CN110047953B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种n型的二维纳米片阵列及其制备方法及红外光电探测器。其中该p‑n结近红外光电探测器包括:p型的衬底;下电极,形成在所述p型的衬底上;n型的纳米片阵列,形成在所述p型的衬底上;上电极,形成在所述的n型的纳米片阵列上。根据本发明公开的p‑n结近红外光电探测器,能够实现对近红外光的探测,其光响应和灵敏度有了很大的提升,开关比大大提高。

Description

n型的二维纳米片阵列及其制备方法及红外光电探测器
技术领域:本发明涉及近红外光电探测技术领域,具体地,涉及一种n型的二维纳米片阵列及其制备方法以及p-n结近红外光电探测器。
背景技术:光电探测器是一种将光信号转变为电信号的器件,已经成为影响人类日常生活、科技和国防等领域的核心技术之一。ZnO是一种具有压电和光电特性的半导体材料,在过去的几年里,n型的ZnO纳米棒和p型的硅片组成的异质结的压电光电子学效应已被广泛的研究。但是对于二维纳米材料的近红外光电探测器还鲜有报道。首先是与一维纳米材料比,二维纳米材料的压电光电子学效应差;其次,在近红外光波段的光子激发能较低,光吸收很弱。
发明内容
本发明的目的是提供一种n型的二维纳米片阵列及其制备方法以及p-n结近红外光电探测器,以解决现有技术中对近红外光的探测光响应和灵敏度低的问题。
本发明的技术方案为:
一种n型的二维纳米片阵列,该n型二维纳米片阵列为V-doped ZnO纳米片阵列,由以下方法制得:
(1)运用匀胶法或磁控溅射法在基底上制备ZnO种子层;
(2)水热溶液法合成V-doped ZnO纳米片阵列。
所述步骤(2)中水热溶剂为:Zn(NO3)2·6H2O、HMTA和V2O5,水热温度为90~100℃,水热时间为3~5小时。
一种n型的二维纳米片阵列的制备方法,该n型二维纳米片阵列为V-doped ZnO纳米片阵列,由以下方法制得:
(1)运用匀胶法或磁控溅射法在基底上制备ZnO种子层;
(2)水热溶液法合成V-doped ZnO纳米片阵列。
所述步骤(2)中水热溶剂为:Zn(NO3)2·6H2O、HMTA和V2O5,水热温度为90~100℃,水热时间为3~5小时。
一种p-n结近红外光电探测器,包括:
p型衬底;
在所述衬底上形成下部电极;
在所述衬底的另一侧形成n型的纳米片阵列;
在所述n型的纳米片阵列上形成上部电极。
所述的p型衬底为p型Si衬底。
所述的下部电极为Al电极,需运用磁控溅射法在Si衬底上形成。
所述的n型的纳米片阵列为V-doped ZnO纳米片阵列。
所述的上部电极为磁控溅射制得的透明的ITO电极。
本发明的有益效果:
1.运用了V-doped ZnO纳米片阵列的光电探测器与不具有铁电性的ZnO纳米片阵列的光电探测器相比,其光电流在数值上提升了一个数量级。
2.本发明提供的光电探测器能够实现对近红外光的探测。
3.本发明提供的制备工艺简单,成本低,无污染。
附图说明:
图1是根据本发明一种实施方式的光电探测器的剖视图;
图2是根据本发明一种实施方式的V-doped ZnO纳米片阵列的扫描电子显微镜(SEM)照片的示意图;
图3是根据本发明一种实施方式的V-doped ZnO纳米片阵列的电滞回线;
图4是根据本发明一种实施方式的光电探测器的光电流性能。
具体实施方式:
为了使本发明的技术方案更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整的描述。显然,本具体实施方式仅用来解释和说明本发明,但不限于本发明。
图1是根据本发明一种实施方式的p-n结近红外光电探测器的结构图。
如图1所示,本发明一种实施方式提供的光电探测器包括:p型衬底2;下部电极1,形成在所述衬底2下;n型的V-doped ZnO纳米片阵列3,形成在所述衬底2上;以及上部电极4,形成在所述纳米片阵列3上。
其中,所述p-n结近红外光电探测器的上部电极4为透明的ITO电极,下部电极可以为Al电极。所述衬底2采用p型Si衬底,需用丙酮、酒精和去离子水分别冲洗两分钟。所述纳米片阵列3采用水热法合成。
图2是根据本发明一种实施方式的n型的V-doped ZnO纳米片阵列。具体的,需要先在清洗好的p型的Si片上制备一层ZnO种子层,可以采用磁控溅射法或匀胶法,优选制备工艺简单的磁控溅射法。
在本实例中,采用磁控溅射法镀镀ZnO,所得ZnO种子层厚度为50nm,磁控溅射的参数是:压强4mTorr、气流量28sccm、功率60W、溅射时间30min。
图中所示的V-doped ZnO纳米片阵列的厚度为1微米,片与片之间是垂直分立的。具体的水热参数为:Zn(NO3)2·6H2O和HMTA均为25mM,V2O5为1mM;水热温度95摄氏度,水热时间3小时。当然,在其他实施例中可以增大V2O5的摩尔质量,延长水热时间。
图3是根据本发明一种实施方式的n型的V-doped ZnO纳米片阵列的电滞回线。测试时,需要将衬底变成导电性较好的铜片衬底。从图中可以看出,该纳米片阵列具有铁电性。
图4是根据本发明一种实施方式的p-n结近红外光电探测器的光电响应。可以看出,开关比较大(与纯的ZnO纳米片阵列相比)。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (9)

1.一种n型的二维纳米片阵列,其特征在于,该n型二维纳米片阵列为V-doped ZnO纳米片阵列,由以下方法制得:
(1)运用匀胶法或磁控溅射法在基底上制备ZnO种子层;
(2)水热溶液法合成V-doped ZnO纳米片阵列。
2.根据权利要求1所述的n型的二维纳米片阵列,其特征在于,所述步骤(2)中水热溶剂为:Zn(NO3)2·6H2O、HMTA和V2O5,水热温度为90~100℃,水热时间为3~5小时。
3.一种n型的二维纳米片阵列的制备方法,其特征在于,该n型二维纳米片阵列为V-doped ZnO纳米片阵列,由以下方法制得:
(1)运用匀胶法或磁控溅射法在基底上制备ZnO种子层;
(2)水热溶液法合成V-doped ZnO纳米片阵列。
4.根据权利要求3所述的n型的二维纳米片阵列的制备方法,其特征在于,所述步骤(2)中水热溶剂为:Zn(NO3)2·6H2O、HMTA和V2O5,水热温度为90~100℃,水热时间为3~5小时。
5.一种p-n结近红外光电探测器,其特征在于,包括:
p型衬底;
在所述衬底上形成下部电极;
在所述衬底的另一侧形成n型的纳米片阵列;
在所述n型的纳米片阵列上形成上部电极。
6.根据权利要求5所述的p-n结近红外光电探测器,其特征在于,所述的p型衬底为p型Si衬底。
7.根据权利要求6所述的p-n结近红外光电探测器,其特征在于,所述的下部电极为Al电极,需运用磁控溅射法在Si衬底上形成。
8.根据权利要求7所述的p-n结近红外光电探测器,其特征在于,所述的n型的纳米片阵列为V-doped ZnO纳米片阵列。
9.根据权利要求9所述的p-n结近红外光电探测器,其特征在于,所述的上部电极为磁控溅射制得的透明的ITO电极。
CN201910211700.8A 2019-03-20 2019-03-20 一种p-n结近红外光电探测器 Expired - Fee Related CN110047953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910211700.8A CN110047953B (zh) 2019-03-20 2019-03-20 一种p-n结近红外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910211700.8A CN110047953B (zh) 2019-03-20 2019-03-20 一种p-n结近红外光电探测器

Publications (2)

Publication Number Publication Date
CN110047953A true CN110047953A (zh) 2019-07-23
CN110047953B CN110047953B (zh) 2021-05-28

Family

ID=67273864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910211700.8A Expired - Fee Related CN110047953B (zh) 2019-03-20 2019-03-20 一种p-n结近红外光电探测器

Country Status (1)

Country Link
CN (1) CN110047953B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512569A (zh) * 2021-11-25 2022-05-17 北京师范大学 一种梯度掺杂的宽光谱自供能光电探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129168A (zh) * 2016-08-26 2016-11-16 电子科技大学 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法
CN107287615A (zh) * 2017-06-01 2017-10-24 北京科技大学 一种钒掺杂ZnO纳米棒阵列光阳极及其制备方法和应用
WO2018098155A1 (en) * 2016-11-23 2018-05-31 Georgetown University Zno photodetector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129168A (zh) * 2016-08-26 2016-11-16 电子科技大学 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法
WO2018098155A1 (en) * 2016-11-23 2018-05-31 Georgetown University Zno photodetector
CN107287615A (zh) * 2017-06-01 2017-10-24 北京科技大学 一种钒掺杂ZnO纳米棒阵列光阳极及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MANOJ KUMAR GUPTA 等: "《Two-Dimensional Vanadium-Doped ZnO Nanosheet-Based Flexible Direct Current Nanogenerator》", 《ACSNANO》 *
SONG MI LEE 等: "《Induced Dipole in Vanadium-doped Zinc Oxide Nanosheets and its Effects on Photoelectrochemical Water Splitting》", 《IOPSCIENCE》 *
YEJING DAI 等: "《Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect》", 《ACSNANO》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512569A (zh) * 2021-11-25 2022-05-17 北京师范大学 一种梯度掺杂的宽光谱自供能光电探测器
CN114512569B (zh) * 2021-11-25 2023-06-02 北京师范大学 一种梯度掺杂的宽光谱自供能光电探测器

Also Published As

Publication number Publication date
CN110047953B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Singh et al. Performance analysis of RF-sputtered ZnO/Si heterojunction UV photodetectors with high photo-responsivity
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
US20110024793A1 (en) Bulk heterojunction solar cell and method of manufacturing the same
CN109461789B (zh) 基于二维二硒化钯纳米薄膜与锗的自驱动异质结型红外光电探测器及其制备方法
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN104617177A (zh) 一种基于ecr电子照射硅基纳米结构碳膜的光电探测器及其制备方法
Li et al. Broadband InSb/Si heterojunction photodetector with graphene transparent electrode
CN104638036B (zh) 高光响应近红外光电探测器
CN110047953A (zh) n型的二维纳米片阵列及其制备方法及红外光电探测器
Sun et al. Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors
Huang et al. Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes
Lee et al. Highly transparent nanostructured zinc oxide photodetector prepared by successive ionic layer adsorption and reaction
CN109449243A (zh) 基于二维二硫化钼纳米薄膜与碲化镉晶体的ii型异质结近红外光电探测器及其制备方法
CN209626234U (zh) 一种高性能真空紫外光电探测器
CN112164732A (zh) 一种紫外光电二极管及其制备方法
CN116705876A (zh) 一种混维异质结型光电探测器及其制备方法
CN109768111A (zh) 一种GaAs纳米柱-石墨烯肖特基结太阳能电池及其制备方法
Chou et al. Advanced supercritical fluid technique to reduce amorphous silicon defects in heterojunction solar cells
CN111641275B (zh) 石墨烯/单原子层GaS/GaAs无线电发电机及其制作方法
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
Zheng et al. Thin film silicon solar cells on glass by substrate thinning
CN113113499A (zh) 一种pn结型氧化镓基自供电紫外探测器及其制备方法
Hatt et al. Stable copper plated metallization on SHJ solar cells & investigation of selective Al/AlOx laser patterning
CN101719505A (zh) 碲镉汞红外焦平面列阵器件钝化界面的植氢优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210528