CN106129168A - 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法 - Google Patents

基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法 Download PDF

Info

Publication number
CN106129168A
CN106129168A CN201610729858.0A CN201610729858A CN106129168A CN 106129168 A CN106129168 A CN 106129168A CN 201610729858 A CN201610729858 A CN 201610729858A CN 106129168 A CN106129168 A CN 106129168A
Authority
CN
China
Prior art keywords
etching
metal inducement
silicon
thin film
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610729858.0A
Other languages
English (en)
Inventor
李伟
宋钦剑
郭国辉
钟豪
苟*豪
苟䶮豪
蒋亚东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610729858.0A priority Critical patent/CN106129168A/zh
Publication of CN106129168A publication Critical patent/CN106129168A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供一种基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法,探测器包括硅本征衬底、金属诱导刻蚀纳米结构层、红外增强非晶硅钌合金薄膜、下电极、P型区、环形P+型区、上电极,金属诱导刻蚀纳米结构层为纳米尖锥阵列,本发明将透射过空间电荷区的未吸收光进行多次反射,增加光的传播路程和光子捕获比,增加光的吸收和利用,更多的激发光生载流子,提高探测器的响应度,通过控制钌含量获得较窄的光学带隙,使硅材料的禁带宽度变窄,从而捕获能量更低、波长更长的近红外光,因此可以额外增加对近红外的吸收,扩展光电探测器的探测光谱范围。

Description

基于金属诱导刻蚀红外增强Si-PIN探测器及其制备方法
技术领域
本发明属于光电探测器技术领域,涉及到光电探测器结构,具体涉及一种基于金属诱导刻蚀红外增强Si-PIN探测器及其制备方法。
背景技术
光电探测器作为光纤通讯系统、红外成像系统、激光警告系统和激光测距系统等的重要组成部分,在民用和军用方面都得到了广泛的应用。目前广泛使用的光电探测器主要有探测400nm~1100nm波长的硅光电探测器和探测大于1100nm波长的InGaAs近红外光电探测器。其中Si-PIN光电探测器具有响应速度快、灵敏度高的特点,而且其原材料Si资源丰富、成本低、易于大规模集成、相关技术成熟,因此硅基探测器被广泛使用。但是由于Si的折射率比较大,入射光在其表面反射损失大,达到30%以上,并且其禁带宽度较大(1.12eV),对大于1100nm的光无法吸收,也就是探测不到大于1100nm波长的光信号,此时一般用InGaAs光电探测器替代。但是InGaAs材料非常昂贵、热机械性能较差、晶体质量较差并且不易与现有的硅微电子工艺兼容,存在诸多缺点。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于解决问题,提供一种基于金属诱导刻蚀红外增强Si-PIN探测器及其制备方法。
为实现上述发明目的,本发明技术方案如下:
一种基于金属诱导刻蚀红外增强Si-PIN探测器,包括硅本征衬底、位于硅本征衬底下方的金属诱导刻蚀纳米结构层、位于金属诱导刻蚀纳米结构层下方的红外增强非晶硅钌合金薄膜、位于红外增强非晶硅钌合金薄膜下方的下电极、位于硅本征衬底上方中间区域的P型区、位于硅本征衬底上方P型区四周的环形P+型区、位于P型区上表面的上电极,所述金属诱导刻蚀纳米结构层为纳米尖锥阵列,探测器光敏面为P型区的上表面。
作为优选方式,每个尖锥底面为直径10nm~200nm的圆,尖锥高度为1μm~2μm。
作为优选方式,金属诱导刻蚀纳米结构层是先对减薄后的单晶硅表面通过金属诱导刻蚀方法得到纳米尖锥结构;再进行磷重扩散或离子注入掺杂形成N+区,掺杂浓度范围为3×1015ion/cm3~1×1017ion/cm3,结深为1μm~3μm。超过此范围则会大大降低器件的响应度,影响器件性能。
作为优选方式,所述的红外增强非晶硅钌合金薄膜采用射频磁控共溅射方法制备。
作为优选方式,红外增强非晶硅钌合金薄膜的光学带隙范围为0.5eV~1.5eV。
作为优选方式,所述的红外增强非晶硅钌合金薄膜的厚度为50nm~150nm。
作为优选方式,所述的上电极和下电极为铝薄膜、金薄膜或者铬金合金薄膜,上电极和下电极的厚度为50nm~150nm。超过此范围则会大大降低器件的响应度,影响器件性能。
本发明还提供一种上述基于金属诱导刻蚀红外增强Si-PIN探测器的制备方法,包括以下步骤:
步骤1:在硅本征衬底表面氧化生长SiO2膜层,所用的硅本征衬底为<111>晶向的N型高阻单晶硅片,电阻率为2500Ω·cm~3500Ω·cm;SiO2膜层厚度为200nm~300nm,生长温度为1000℃;
步骤2:在SiO2膜层表面四周光刻出P+型区的图形,然后进行硼重扩散掺杂形成P+型区;掺杂浓度范围为4×1018ion/cm3~2×1019ion/cm3,P+型区的结深为1μm~3.5μm;
步骤3:在SiO2膜层表面光刻出P型区图形,然后进行硼扩散掺杂形成P型区;掺杂浓度范围为1×1014ion/cm3~2×1016ion/cm3,P型区的结深为0.2μm~2μm;
步骤4:对硅本征衬底背面进行减薄、研磨、抛光,使硅本征衬底的厚度减薄为250μm~350μm,对衬底背面进行金属诱导刻蚀工艺形成金属诱导刻蚀纳米结构层,其尖锥底面直径在10nm~200nm范围,尖锥高度为1μm~2μm;
步骤5:对具有金属诱导刻蚀纳米结构层的衬底背面进行磷重扩散掺杂形成N+型区,掺杂浓度范围为3×1015ion/cm3~1×1017ion/cm3,结深约为1μm~3μm;超过此范围则会大大降低器件的响应度,影响器件性能。
步骤6:采用射频磁控共溅射方法在金属诱导刻蚀纳米结构层沉积一层红外增强非晶硅钌合金薄膜;
步骤7:上电极和下电极的制备。
本发明在传统Si-PIN探测器的基础上在背面N+型区增加了一层金属诱导刻蚀纳米结构层和一层红外增强非晶硅钌合金薄膜。
纳米结构硅是采用银作催化剂,利用氢氟酸和双氧水混合液对硅片表面进行腐蚀,得到大面积均匀分布的尖锥状的纳米结构,其结构尺寸在纳米量级,如此微小的结构能够使入射光在纳米结构层多次反射,对未被耗尽层吸收的透射光进行反射和重吸收,可以提高光的吸收率,增加光电探测器的响应度。
红外增强非晶硅钌合金薄膜具有光吸收率高、禁带宽度可调、电子温度系数大、可大面积低温(<400℃)成膜、制备工艺简单与硅半导体工艺兼容等特点,通过调控非晶硅钌合金薄膜中钌的含量和薄膜的厚度,来调控薄膜的光学带隙,使其光学带隙范围控制在0.5eV~1.5eV,使硅材料的禁带宽度变窄,这样长波长的光也能被吸收,将其应用在硅光电探测器领域,可以提高探测器的响应度,扩展探测器近红外光谱响应范围。
所述的光电探测器不仅能够增强对可见光和近红外光的吸收,还可以扩展光谱响应范围,具有近红外吸收增强、响应光谱范围宽、响应度高等优点。
本发明的基本工作原理是:当入射光进入这种Si-PIN光电探测器的空间电荷区时,会激发空间电荷区的电子-空穴对,电子和空穴在偏置电压下分别向两极移动,形成光生电流或电压。
本发明的有益效果为:相对于传统Si-PIN光电探测器,本发明在N+型区增加了一层金属诱导刻蚀纳米结构层,此结构可以将透射过空间电荷区的未吸收光进行多次反射,增加光的传播路程和光子捕获比,增加光的吸收和利用,更多的激发光生载流子,提高探测器的响应度。相对于传统Si-PIN光电探测器,本发明在金属诱导刻蚀纳米结构层下方增加红外增强非晶硅钌合金薄膜,通过控制钌含量获得较窄的光学带隙,使硅材料的禁带宽度变窄,从而捕获能量更低、波长更长的近红外光,因此可以额外增加对近红外的吸收,扩展光电探测器的探测范围。
附图说明
图1是本发明的基于金属诱导刻蚀红外增强Si-PIN探测器的剖面结构示意图;
图2是本发明的基于金属诱导刻蚀红外增强Si-PIN探测器的俯视图;
图3是本发明的基于金属诱导刻蚀红外增强Si-PIN探测器及其制备方法流程示意图;
其中图1标记:1为硅本征衬底,2为P型区,3为金属诱导刻蚀纳米结构层,4为P+型区,5为红外增强非晶硅钌合金薄膜,6为下电极6,7为上电极。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
一种基于金属诱导刻蚀红外增强Si-PIN探测器,包括硅本征衬底1、位于硅本征衬底1下方的金属诱导刻蚀纳米结构层3、位于金属诱导刻蚀纳米结构层3下方的红外增强非晶硅钌合金薄膜5、位于红外增强非晶硅钌合金薄膜5下方的下电极6、位于硅本征衬底1上方中间区域的P型区2、位于硅本征衬底1上方P型区2四周的环形P+型区4、位于P型区2上表面的上电极7,所述金属诱导刻蚀纳米结构层3为纳米尖锥阵列,探测器光敏面为P型区2的上表面。
每个尖锥底面为直径10nm~200nm的圆,尖锥高度为1μm~2μm。
金属诱导刻蚀纳米结构层3是先对减薄后的单晶硅表面通过金属诱导刻蚀方法得到纳米尖锥结构;再进行磷重扩散或离子注入掺杂形成N+区,掺杂浓度范围为3×1015ion/cm3~1×1017ion/cm3,结深为1μm~3μm。
所述的红外增强非晶硅钌合金薄膜5采用射频磁控共溅射方法制备。
红外增强非晶硅钌合金薄膜5的光学带隙范围为0.5eV~1.5eV。
所述的红外增强非晶硅钌合金薄膜5的厚度为50nm~150nm。
所述的上电极7和下电极6为铝薄膜、金薄膜或者铬金合金薄膜,上电极7和下电极6的厚度为50nm~150nm。
上述基于金属诱导刻蚀红外增强Si-PIN探测器的制备方法,包括以下步骤:
步骤1:在硅本征衬底1表面氧化生长SiO2膜层,所用的硅本征衬底为<111>晶向的N型高阻单晶硅片,电阻率为2500Ω·cm~3500Ω·cm;SiO2膜层厚度为200nm~300nm,生长温度为1000℃;
步骤2:在SiO2膜层表面四周光刻出P+型区4的图形,然后进行硼重扩散掺杂形成P+型区4;掺杂浓度范围为4×1018ion/cm3~2×1019ion/cm3,P+型区4的结深为1μm~3.5μm;
步骤3:在SiO2膜层表面光刻出P型区2图形,然后进行硼扩散掺杂形成P型区2;掺杂浓度范围为1×1014ion/cm3~2×1016ion/cm3,P型区2的结深为0.2μm~2μm;
步骤4:对硅本征衬底1背面进行减薄、研磨、抛光,使硅本征衬底1的厚度减薄为250μm~350μm,对衬底背面进行金属诱导刻蚀工艺形成金属诱导刻蚀纳米结构层3,其尖锥底面直径在10nm~200nm范围,尖锥高度为1μm~2μm;
步骤5:对具有金属诱导刻蚀纳米结构层3的衬底背面进行磷重扩散掺杂形成N+型区,掺杂浓度范围为3×1015ion/cm3~1×1017ion/cm3,结深约为1μm~3μm;
步骤6:采用射频磁控共溅射方法在金属诱导刻蚀纳米结构层3沉积一层红外增强非晶硅钌合金薄膜5;
步骤7:上电极7和下电极6的制备。
本实施例在传统Si-PIN探测器的基础上在背面N+型区增加了一层金属诱导刻蚀纳米结构层和一层红外增强非晶硅钌合金薄膜。
纳米结构硅是采用银作催化剂,利用氢氟酸和双氧水混合液对硅片表面进行腐蚀,得到大面积均匀分布的尖锥状的纳米结构,其结构尺寸在纳米量级,如此微小的结构能够使入射光在纳米结构层多次反射,对未被耗尽层吸收的透射光进行反射和重吸收,可以提高光的吸收率,增加光电探测器的响应度。
红外增强非晶硅钌合金薄膜具有光吸收率高、禁带宽度可调、电子温度系数大、可大面积低温(<400℃)成膜、制备工艺简单与硅半导体工艺兼容等特点,通过调控非晶硅钌合金薄膜中钌的含量和薄膜的厚度,来调控薄膜的光学带隙,使其光学带隙范围控制在0.5eV~1.5eV,使硅材料的禁带宽度变窄,这样长波长的光也能被吸收,将其应用在硅光电探测器领域,可以提高探测器的响应度,扩展探测器近红外光谱响应范围。
所述的光电探测器不仅能够增强对可见光和近红外光的吸收,还可以扩展光谱响应范围,具有近红外吸收增强、响应光谱范围宽、响应度高等优点。
本实施例的基本工作原理是:当入射光进入这种Si-PIN光电探测器的空间电荷区时,会激发空间电荷区的电子-空穴对,电子和空穴在偏置电压下分别向两极移动,形成光生电流或电压。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

1.一种基于金属诱导刻蚀红外增强Si-PIN探测器,其特征在于:包括硅本征衬底、位于硅本征衬底下方的金属诱导刻蚀纳米结构层、位于金属诱导刻蚀纳米结构层下方的红外增强非晶硅钌合金薄膜、位于红外增强非晶硅钌合金薄膜下方的下电极、位于硅本征衬底上方中间区域的P型区、位于硅本征衬底上方P型区四周的环形P+型区、位于P型区上表面的上电极,所述金属诱导刻蚀纳米结构层为纳米尖锥阵列,探测器光敏面为P型区的上表面。
2.根据权利要求1所述的基于金属诱导刻蚀红外增强Si-PIN探测器,其特征在于:每个尖锥底面为直径10nm~200nm的圆,尖锥高度为1μm~2μm。
3.根据权利要求1所述的基于金属诱导刻蚀红外增强Si-PIN探测器,其特征在于:金属诱导刻蚀纳米结构层是先对减薄后的单晶硅表面通过金属诱导刻蚀方法得到纳米尖锥结构;再进行磷重扩散或离子注入掺杂形成N+区,掺杂浓度范围为3×1015ion/cm3~1×1017ion/cm3,结深为1μm~3μm。
4.根据权利要求1所述的基于金属诱导刻蚀红外增强Si-PIN探测器,其特征在于:所述的红外增强非晶硅钌合金薄膜采用射频磁控共溅射方法制备。
5.根据权利要求1所述的基于金属诱导刻蚀红外增强Si-PIN探测器,其特征在于:红外增强非晶硅钌合金薄膜的光学带隙范围为0.5eV~1.5eV。
6.根据权利要求1所述的基于金属诱导刻蚀红外增强Si-PIN探测器,其特征在于:所述的红外增强非晶硅钌合金薄膜的厚度为50nm~150nm。
7.根据权利要求1所述的基于金属诱导刻蚀红外增强Si-PIN探测器,其特征在于:所述的上电极和下电极为铝薄膜、金薄膜或者铬金合金薄膜,上电极和下电极的厚度为50nm~150nm。
8.根据权利要求1至7任意一项所述的基于金属诱导刻蚀红外增强Si-PIN探测器的制备方法,其特征在于包括以下步骤:
步骤1:在硅本征衬底表面氧化生长SiO2膜层,所用的硅本征衬底为<111>晶向的N型高阻单晶硅片,电阻率为2500Ω·cm~3500Ω·cm;SiO2膜层厚度为200nm~300nm,生长温度为1000℃;
步骤2:在SiO2膜层表面四周光刻出P+型区的图形,然后进行硼重扩散掺杂形成P+型区;掺杂浓度范围为4×1018ion/cm3~2×1019ion/cm3,P+型区的结深为1μm~3.5μm;
步骤3:在SiO2膜层表面光刻出P型区图形,然后进行硼扩散掺杂形成P型区;掺杂浓度范围为1×1014ion/cm3~2×1016ion/cm3,P型区的结深为0.2μm~2μm;
步骤4:对硅本征衬底背面进行减薄、研磨、抛光,使硅本征衬底的厚度减薄为250μm~350μm,对衬底背面进行金属诱导刻蚀工艺形成金属诱导刻蚀纳米结构层,其尖锥底面直径在10nm~200nm范围,尖锥高度为1μm~2μm;
步骤5:对具有金属诱导刻蚀纳米结构层的衬底背面进行磷重扩散掺杂形成N+型区,掺杂浓度范围为3×1015ion/cm3~1×1017ion/cm3,结深约为1μm~3μm;
步骤6:采用射频磁控共溅射方法在金属诱导刻蚀纳米结构层沉积一层红外增强非晶硅钌合金薄膜;
步骤7:上电极和下电极的制备。
CN201610729858.0A 2016-08-26 2016-08-26 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法 Pending CN106129168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610729858.0A CN106129168A (zh) 2016-08-26 2016-08-26 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610729858.0A CN106129168A (zh) 2016-08-26 2016-08-26 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN106129168A true CN106129168A (zh) 2016-11-16

Family

ID=57275471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610729858.0A Pending CN106129168A (zh) 2016-08-26 2016-08-26 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106129168A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731953A (zh) * 2017-10-24 2018-02-23 江门市奥伦德光电有限公司 一种光电探测器及其制备方法
CN110047953A (zh) * 2019-03-20 2019-07-23 天津大学 n型的二维纳米片阵列及其制备方法及红外光电探测器
WO2023087376A1 (zh) * 2021-11-18 2023-05-25 中国科学院长春光学精密机械与物理研究所 具有分光结构的光电探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576813A (zh) * 2013-10-14 2015-04-29 中国科学院宁波材料技术与工程研究所 一种光电材料表面的纳米结构绒面及其制备方法
CN105115599A (zh) * 2015-08-17 2015-12-02 电子科技大学 一种基于MEMS微结构硅的Si-PIN四象限光电探测器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576813A (zh) * 2013-10-14 2015-04-29 中国科学院宁波材料技术与工程研究所 一种光电材料表面的纳米结构绒面及其制备方法
CN105115599A (zh) * 2015-08-17 2015-12-02 电子科技大学 一种基于MEMS微结构硅的Si-PIN四象限光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANRAN GUO等: "《Band engineering of amorphous silicon ruthenium thin film and itsnear-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate》", 《APPLIED SURFACE SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731953A (zh) * 2017-10-24 2018-02-23 江门市奥伦德光电有限公司 一种光电探测器及其制备方法
CN107731953B (zh) * 2017-10-24 2023-10-31 江门市奥伦德光电有限公司 一种光电探测器及其制备方法
CN110047953A (zh) * 2019-03-20 2019-07-23 天津大学 n型的二维纳米片阵列及其制备方法及红外光电探测器
WO2023087376A1 (zh) * 2021-11-18 2023-05-25 中国科学院长春光学精密机械与物理研究所 具有分光结构的光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN106206831A (zh) 基于飞秒激光烧蚀红外增强Si‑PIN探测器及其制备方法
CN106098836B (zh) 通讯用雪崩光电二极管及其制备方法
CN105789366B (zh) 一种硅基混合集成雪崩光电探测器
CN103137773B (zh) 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN106169516A (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
Gao et al. High speed surface illuminated Si photodiode using microstructured holes for absorption enhancements at 900–1000 nm wavelength
CN103400887B (zh) 一种背照式Si-PIN光电探测器的制备方法
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN106057957B (zh) 具有周期性纳米结构的雪崩光电二极管
CN106129168A (zh) 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法
CN104617166B (zh) 基于Si衬底的InGaAs红外探测器及其制备方法
CN106784118A (zh) 背照式高速光电二极管接收芯片及其制作方法
CN110047967A (zh) 一种宽谱InGaAs雪崩焦平面探测器及其制造方法
CN106356419A (zh) 一种含埋氧层结构的光电探测器
CN105115599A (zh) 一种基于MEMS微结构硅的Si-PIN四象限光电探测器及其制备方法
CN105185845A (zh) 一种在P层和N层引入微结构硅的Si-PIN光电探测器及其制备方法
CN108352422A (zh) 倾斜光电探测器单元
CN113921646A (zh) 单光子探测器及其制作方法、单光子探测器阵列
CN106024922B (zh) 基于GeSn材料的光电晶体管及其制作方法
CN104538481A (zh) InGaAs/QWIP双色红外探测器及其制备方法
CN102916071B (zh) 一种光电二极管及其制作方法
CN110416332A (zh) 基于黑硅和量子点的Si-APD光电探测器及其制备方法
CN210224047U (zh) PbS量子点Si-APD红外探测器
CN209675303U (zh) 一种具有反射镜结构的正面入射式雪崩二极管
CN110429156A (zh) 一种基于分形纳米线表面结构的Si-APD光电探测器及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161116