WO2023087376A1 - 具有分光结构的光电探测器及其制备方法 - Google Patents

具有分光结构的光电探测器及其制备方法 Download PDF

Info

Publication number
WO2023087376A1
WO2023087376A1 PCT/CN2021/133893 CN2021133893W WO2023087376A1 WO 2023087376 A1 WO2023087376 A1 WO 2023087376A1 CN 2021133893 W CN2021133893 W CN 2021133893W WO 2023087376 A1 WO2023087376 A1 WO 2023087376A1
Authority
WO
WIPO (PCT)
Prior art keywords
type layer
light
splitting
photodetector
chip
Prior art date
Application number
PCT/CN2021/133893
Other languages
English (en)
French (fr)
Inventor
王惟彪
郭广通
梁静秋
陶金
吕金光
陈伟帅
李香兰
秦余欣
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111371164.1A external-priority patent/CN114068752B/zh
Priority claimed from CN202111371196.1A external-priority patent/CN114068762B/zh
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2023087376A1 publication Critical patent/WO2023087376A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the invention relates to the field of optoelectronic technology, in particular to a photodetector with a light splitting structure and a preparation method thereof.
  • PIN photodetector is a kind of photosensitive element. It is to improve the performance of PN junction photodetector.
  • An intrinsic (or lightly doped) I region is inserted between the P region and the N region to form a PIN photodetector.
  • the I layer in the middle of the PIN photodetector is lightly doped, and the layer is in a completely depleted state when the reverse bias voltage is applied.
  • PN junction photodetector by increasing the width of the depletion region, it enhances most The drift movement of the carriers reduces the diffusion movement of the carriers at the same time, thereby improving the response speed.
  • the widening of the depletion layer also significantly reduces the junction capacitance C, thereby reducing the time constant of the circuit; since the absorption coefficient of the silicon material in the long-wave region of the spectral response is significantly reduced, the widening of the depletion layer is also conducive to The absorption of light radiation in the long-wave region is conducive to the improvement of quantum efficiency.
  • the above-mentioned advantages of the PIN photoelectric detector make it widely used in optical communication, light radar and other fast photoelectric automatic control fields.
  • Silicon-based PIN photodetectors have the characteristics of high response speed and high sensitivity, and its raw material Si is rich in resources, has the advantages of low material cost, easy large-scale collection, and mature related technologies. Therefore, silicon-based PIN photodetectors are widely used.
  • the silicon material due to the characteristics of the silicon material itself, its forbidden band width is large (1.12eV), the silicon material cannot absorb light larger than 1.1 ⁇ m, and the absorption coefficient of the silicon material in the long-wave region of the spectral response is significantly reduced, so the silicon-based PIN photoelectric
  • the light absorption rate of the detector for the near-infrared spectrum (750-1100nm) is reduced, which makes the light in the infrared spectrum pass through the absorption region of the device when it irradiates the device but cannot cause obvious photoresponse.
  • the widening of the depletion layer is beneficial to the absorption of long-wavelength spectral radiation and the improvement of quantum efficiency, but for the device structure of vertical incidence, in order to improve the response speed of the device, the depletion region must be made very thin to shorten the transit time;
  • the thin depletion region greatly reduces the absorption rate of photons in the long-wavelength spectrum and reduces the quantum efficiency of light in the long-wavelength spectrum. Therefore, the conflicting requirements of visible light and near-infrared light response speed and quantum efficiency on the thickness of the absorbing layer limit the wide-spectrum light high-efficiency response of the device.
  • the purpose of the present invention is to propose a photodetector with a light-splitting structure, by using the light-splitting structure to separate visible light and near-infrared light, so that the near-infrared light can be horizontally incident on the detector absorption area from the side of the chip, Visible light is incident vertically downwards from the top layer of the chip to the absorption area of the detector, so that the light of each spectral band enters the depth of complete absorption, balancing the response speed of visible light and near-infrared light and the mutual requirements of quantum efficiency for the thickness of the absorption layer Contradictory question.
  • the effect of high light efficiency and fast response in a wide spectrum is realized.
  • the invention provides a photodetector with a light-splitting structure, comprising: a chip, a first ring electrode, a second ring electrode, electrode leads, a light-splitting prism and a reflection structure; the chip is a convex structure; the light-splitting prism and the first ring electrode are arranged Above the protruding part of the chip, the dichroic prism is located in the center of the first ring electrode; the second ring electrode is arranged on the outer concave part of the chip, and the top of the second ring electrode is a reflective structure; the first ring electrode and the second ring electrode are respectively Electrode leads are provided;
  • the visible light and near-infrared light in the light to be measured are separated by a beam-splitting prism.
  • the visible light enters the chip vertically after passing through the beam-splitting prism, and the near-infrared light is totally reflected to the reflective structure after passing through the beam-splitting prism. After two reflections by the reflective structure, it enters the chip horizontally from the side of the raised portion of the chip.
  • a dichroic light-splitting film is coated on the side of the light-splitting prism, and a visible light anti-reflection film is coated on the bottom surface of the light-splitting prism.
  • the dichroic light-splitting film and the visible light anti-reflection film are composed of alternately stacked films with different refractive indices, and the dichroic light-splitting and visible light anti-reflection film are realized by adjusting the thickness of the film.
  • the reflective structure is cut and processed from a metal block, and the inner surface of the reflective structure is polished to form a right-angle reflective mirror surface.
  • the reflection structure includes: a mirror surface and a mirror body, the mirror surface and the mirror body are closed ring structures connected end to end, and the mirror surface is located on the inner surface of the mirror body; the assembly method of the reflection structure is assembled up and down, left and right Or assembled front and back.
  • the material of the reflector body is metal, semiconductor material, glass or plastic; the reflector surface is a metal reflector, a metal film reflector, a dielectric film reflector or an annular catadioptric prism.
  • the angle between the side and the bottom of the dichroic prism ranges from 45° ⁇ 3°
  • the angle between the mirror surface of the reflective structure and the horizontal plane ranges from 45° ⁇ 3°
  • the chip includes from bottom to top: N-type layer, I-type layer, P-type layer; the N-type layer is a convex structure; the second ring electrode is located in the outer concave part of the N-type layer; The upper part is the I-type layer and the P-type layer in turn.
  • the dichroic prism and the first ring electrode are located on the P-type layer. With near-infrared light anti-reflection coating.
  • the visible light anti-reflection film and the near-infrared light anti-reflection film are composed of alternately stacked thin films with different refractive indices, and the visible light anti-reflection film and the near-infrared light anti-reflection film are realized by adjusting the thickness of the film.
  • the chip includes: an N-type layer, an I-type layer, and a P-type layer stacked sequentially from bottom to top; or a P-type layer, I-type layer, and N-type layer stacked sequentially from bottom to top.
  • the cross-section of the chip is circular, square or rectangular.
  • the dichroic prism is a cone
  • the reflective structure is circular
  • the cross section of the reflective mirror is circular
  • the dichroic prism is a quadrangular pyramid
  • the reflective structure is a square ring
  • the cross-section of the reflecting mirror is trapezoidal
  • the dichroic prism is a triangular prism
  • the reflection structure is a rectangular ring
  • the cross-section of the reflection mirror is trapezoidal.
  • the material of the P-type layer and the I-type layer is silicon; the material of the N-type layer is silicon, germanium or SOI;
  • the material of the N-type layer is any one of highly doped P, As, and Sb;
  • the material of the I-type layer is the material of the lightly doped N-type layer or the material of the lightly doped P-type layer;
  • the material of the P-type layer is any one of highly doped B, Al and Ga.
  • the shapes of the first ring electrode and the second ring electrode match the shape of the cross-section of the chip, and the materials of the first ring electrode and the second ring electrode are Au, Ag, Cu, Al, Cr, Ni, Ti, Pt Any one or several alloys of them.
  • the present invention also provides a method for preparing a photodetector with a light-splitting structure, comprising the following steps:
  • the preparation process of the beam splitting prism specifically includes the following steps:
  • the dichroic light-splitting film and the visible light anti-reflection film are composed of alternately stacked films with different refractive indices, and the dichroic light-splitting and visible light anti-reflection film are realized by adjusting the thickness of the film.
  • the preparation process of the reflective structure is as follows: the reflective structure is formed by cutting the metal block, and then the inner surface of the metal block is polished to form a right-angle reflective mirror surface.
  • the preparation process of the reflection structure is as follows: the reflection mirror surface is installed on the inner surface of the reflection mirror body to form a right-angle reflection mirror surface.
  • the two reflective mirror surfaces are spliced up and down, left and right, or front and back, and the reflective structures are spliced to form a closed ring structure connected end to end.
  • the material of the reflector body is metal, semiconductor material, glass or plastic; the reflector surface is a metal reflector, a metal film reflector, a dielectric film reflector or an annular catadioptric prism.
  • the angle between the side and the bottom of the dichroic prism ranges from 45° ⁇ 3°
  • the angle between the mirror surface of the reflective structure and the horizontal plane ranges from 45° ⁇ 3°
  • step S0 is specifically: S0, selecting an N-type layer or a P-type layer as the substrate material, and cleaning the substrate material;
  • the preparation process of the chip specifically includes the following steps:
  • the thickness of the etching is from the P-type layer to the N-type layer;
  • the diameter of the layer and the P-type layer are the same;
  • the visible light anti-reflection film and the near-infrared light anti-reflection film are composed of alternately stacked thin films with different refractive indices, and the visible light anti-reflection film and the near-infrared light anti-reflection film are realized by adjusting the thickness of the film.
  • the chip includes: an N-type layer, an I-type layer, and a P-type layer stacked sequentially from bottom to top; or a P-type layer, I-type layer, and N-type layer stacked sequentially from bottom to top.
  • the cross-section of the chip is circular, square or rectangular.
  • the dichroic prism is a cone
  • the reflective structure is circular
  • the cross section of the reflective mirror is circular
  • the dichroic prism is a quadrangular pyramid
  • the reflective structure is a square ring
  • the cross-section of the reflecting mirror is trapezoidal
  • the dichroic prism is a triangular prism
  • the reflection structure is a rectangular ring
  • the cross-section of the reflection mirror is trapezoidal.
  • the material of the P-type layer and the I-type layer is silicon; the material of the N-type layer is silicon, germanium or SOI;
  • the material of the N-type layer is any one of highly doped P, As, and Sb;
  • the material of the I-type layer is the material of the lightly doped N-type layer or the material of the lightly doped P-type layer;
  • the material of the P-type layer is any one of highly doped B, Al and Ga.
  • the preparation process of the outer concave part specifically includes the following steps:
  • the preparation process of the first ring electrode specifically includes the following steps:
  • the preparation process of the second ring electrode specifically includes the following steps:
  • the shapes of the first ring electrode and the second ring electrode match the shape of the cross-section of the chip, and the materials of the first ring electrode and the second ring electrode are Au, Ag, Cu, Al, Cr, Ni, Ti, Pt Any one or several alloys of them.
  • step S3 specifically includes the following steps:
  • Fig. 1 is a schematic structural diagram of a photodetector with a light splitting structure provided according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the optical path of the photodetector provided according to the embodiment of the present invention when it is working.
  • Fig. 3 is a structural schematic diagram of detector chips provided according to an embodiment of the present invention when the cross-sections are respectively circular, square and rectangular;
  • Fig. 3 (a) is a structural schematic diagram when the cross section of the detector chip is circular;
  • Fig. 3 (b) is a structural schematic diagram when the cross section of the detector chip is a square
  • Fig. 3(c) is a schematic diagram of the structure of the detector chip when the cross section is rectangular.
  • Fig. 4 is a structural schematic view of dichroic prisms provided according to an embodiment of the present invention when they are respectively conical cones, quadrangular pyramids and triangular prisms;
  • Fig. 4 (a) is the structural representation when dichroic prism is cone
  • Fig. 4 (b) is the structural representation when dichroic prism is quadrangular pyramid
  • Fig. 4 (c) is the structural representation when dichroic prism is triangular prism
  • Fig. 5 is a schematic structural view of reflective mirrors with circular and trapezoidal cross-sections according to an embodiment of the present invention
  • Fig. 5 (a) is the structural schematic diagram of splicing up and down when the mirror surface cross section is circular;
  • Fig. 5 (b) is the structural representation of splicing left and right or splicing front and back when the cross section of the mirror surface is circular;
  • Fig. 5 (c) is the structure schematic diagram of splicing up and down when the mirror surface cross section is trapezoidal;
  • Fig. 5 (d) is the structural schematic diagram of left and right splicing or front and rear splicing when the mirror surface cross section is trapezoidal;
  • Fig. 6 is a preparation flow diagram provided by the method of the present invention.
  • Fig. 7 is a schematic diagram of an N-type layer provided according to the method of the present invention.
  • Fig. 8 is a schematic diagram of an epitaxial wafer in which an I-type layer is epitaxially grown on an N-type layer according to the method of the present invention.
  • FIG. 9 is a schematic diagram of an epitaxial wafer in which a P-type layer is epitaxially grown on an I-type layer according to the method of the present invention.
  • Fig. 10 is a schematic diagram of an epitaxial wafer after the surface of the P-type layer is coated with a visible light anti-reflection film according to the method of the present invention.
  • Fig. 11 is a schematic diagram of an epitaxial wafer after evaporating electrodes on the surface of the P-type layer provided by the method of the present invention.
  • Fig. 12 is a schematic diagram of an epitaxial wafer after etching provided by the method of the present invention.
  • Fig. 13 is a schematic diagram of the epitaxial wafer after the anti-reflection coating is coated on the side of the I-type layer according to the method of the present invention.
  • Fig. 14 is a schematic diagram of an epitaxial wafer after electrodes are evaporated on the outer recess of the N-type layer provided by the method of the present invention.
  • Dichroic prism 1 first visible light anti-reflection film 1-1, dichroic light-splitting film 1-2; conical apex 1a-1, conical side 1a-2, conical bottom 1a-3; quadrangular pyramid apex 1b-1, quadrangular pyramid Side 1b-2, quadrangular pyramid bottom 1b-3; triangular prism ridge line 1c-1, triangular prism side 1c-2, triangular prism bottom 1c-3; mirror surface 2-1, mirror body 2-2; P-type layer 3. Second visible light anti-reflection film 3-1; I-type layer 4, near-infrared anti-reflection film 4-1; N-type layer 5, first ring electrode 6, first electrode lead 6-1, second ring electrode 7 and the second ring electrode lead 7-1.
  • Fig. 1 shows a photodetector with a light splitting structure provided according to an embodiment of the present invention
  • the photodetector with a light-splitting structure includes: a light-splitting prism 1, a first visible light anti-reflection film 1-1, a dichroic light-splitting film 1-2; a reflective mirror surface 2-1, Mirror body 2-2; P-type layer 3, second visible light anti-reflection film 3-1; I-type layer 4, near-infrared anti-reflection film 4-1; N-type layer 5, first ring electrode 6, first electrode Lead 6-1, second ring electrode 7, and second ring electrode lead 7-1.
  • N-type layer 5 is a convex structure
  • the upper surface of the P-type layer 3 is coated with a second visible light anti-reflection film 3-1, the P-type layer 3 and the I-type layer 4
  • the side is coated with a near-infrared light anti-reflection film 4-1; the materials of the N-type layer 5 and the P-type layer 3 can be exchanged without changing the structure of the photodetector provided by the present invention.
  • the dichroic prism 1 Place the dichroic prism 1 and the first ring electrode 6 above the P-type layer 3, the dichroic prism 1 is located at the center of the first ring electrode 6, the bottom surface of the dichroic prism 1 is coated with the first visible light anti-reflection film 1-1, the dichroic prism 1 The side is coated with a dichroic light-splitting film 1-2.
  • the outer recess of the N-type layer 5 places the second ring electrode 7; the first ring electrode 6 and the second ring electrode 7 are respectively provided with a first electrode lead 6-1 and a second ring electrode lead 7-1.
  • the reflective structure is located above the second annular electrode 7, and the reflective structure includes: a reflective mirror surface 2-1 and a reflective mirror body 2-2, and the reflective mirror surface 2-1 and the reflective mirror body 2-2 are closed ring structures connected end to end, reflecting The mirror surfaces 2-1 are perpendicular to each other in any vertical plane, and the reflecting mirror surface 2-1 is located on the inner surface of the reflecting mirror body 2-2;
  • Fig. 2 shows the working principle of the photodetector provided according to the embodiment of the present invention.
  • the light in the visible spectrum (400-750nm) and the light in the near-infrared spectrum (750-1100nm) can be detected by the spectroscopic prism 1 Separated, the visible light is transmitted vertically downward, and enters the I-type layer 4 after passing through the dichroic prism 1, the first visible light anti-reflection film 1-1, the second visible light anti-reflection film 3-1 and the P-type layer 3, and the visible light is respectively P Type layer 3 and type I layer 4 absorb; near-infrared light is totally reflected on the reflective mirror surface 2-1 on the surface of dichroic prism 1, and passes through near-infrared anti-reflection coating 4-1 after two reflections of reflective mirror surface 2-1, Horizontally transmitted from the side of the I-type layer 4 into the I-type layer 4 and absorbed by the I-type layer 4, the light in the P-type layer 3 and
  • the electrons and holes are finally collected by the first ring electrode 6 and the second ring electrode 7 to realize a wide-spectrum and high-efficiency photoresponse process.
  • the method of separating visible light and near-infrared light by using a light-splitting structure improves the response speed of near-infrared light without affecting the response speed of visible light, and also improves the quantum efficiency of light in the long-wavelength spectrum.
  • Fig. 3 shows the structure when the cross section of the detector chip provided by the embodiment of the present invention is respectively circular, square and rectangular;
  • Figure 3(a) shows the structure when the cross section of the detector chip is circular
  • Fig. 3 (b) shows the structure when the cross section of the detector chip is a square
  • Fig. 3(c) shows the structure when the cross section of the detector chip is rectangular.
  • Fig. 4 shows the structures when the dichroic prisms provided according to the embodiment of the present invention are respectively conical cones, quadrangular pyramids and triangular prisms;
  • Fig. 4 (a) has shown the structure when dichroic prism is cone
  • the dichroic prism comprises: a conical apex 1a-1, a conical side 1a-2, a conical bottom 1a-3;
  • Figure 4 (b) shows the structure when the dichroic prism is a quadrangular pyramid
  • the dichroic prism comprises: quadrangular pyramid apex 1b-1, quadrangular pyramid side 1b-2, quadrangular pyramid bottom surface 1a-3;
  • Fig. 4 (c) shows the structure when the dichroic prism is a triangular prism
  • the dichroic prism includes: a triangular prism ridge 1c-1, a triangular prism side 1c-2, and a triangular prism bottom 1c-3.
  • Fig. 5 shows the structures when the cross-sections of the reflective mirrors provided according to an embodiment of the present invention are respectively circular and trapezoidal;
  • Fig. 5 (a) shows the structural schematic diagram of splicing up and down when the mirror surface cross section is circular
  • Fig. 5 (b) shows the structure of left and right splicing or front and rear splicing when the mirror surface cross section is circular;
  • Fig. 5 (c) shows the structure that splicing up and down when mirror surface cross section is trapezoidal
  • Fig. 5 (d) shows the structure of left and right splicing or front and back splicing when reflector surface cross section is trapezoid
  • the reflective structure includes: a reflective mirror surface 2-1 and a reflective mirror body 2-2.
  • Chips can have circular, square and rectangular cross-sections.
  • the dichroic prism is a cone
  • the reflective structure is circular
  • the cross section of the reflecting mirror is circular
  • the dichroic prism is a quadrangular pyramid
  • the reflective structure is a square ring
  • the cross-section of the reflecting mirror is trapezoidal
  • the dichroic prism is a triangular prism
  • the reflective structure is a rectangular ring
  • the cross-section of the reflecting mirror is trapezoidal
  • the present invention also provides a method for preparing a photodetector with a light splitting structure.
  • Fig. 6 shows a flow chart of a method for preparing a photodetector provided by the present invention.
  • FIG. 7-14 show part of the process of a method for fabricating a photodetector with a light-splitting structure according to an embodiment of the present invention.
  • the method for preparing a photodetector with a light-splitting structure includes the following steps:
  • the substrate is chemically cleaned to ensure that the cleanliness of the substrate does not affect subsequent processes.
  • the substrate material is one of N-type layer or P-type layer.
  • the chip preparation process specifically includes the following steps:
  • chemical vapor deposition such as MOCVD or PECVD
  • physical vapor deposition such as magnetron sputtering
  • liquid phase deposition atomic layer deposition (ALD), vacuum evaporation or molecular beam epitaxy (MBE)
  • MBE molecular beam epitaxy
  • the material of the P-type layer and the I-type layer is silicon; the material of the N-type layer is silicon, germanium or SOI;
  • the N-type layer is one of highly doped P, As, and Sb, the doping concentration range: 10 15 -10 19 ion/cm 3 , the thickness range: 1-30 ⁇ m, and the bottom surface diameter range: 1-10 mm.
  • a parameter value in the corresponding range is selected according to the needs during preparation.
  • the I-type layer is a lightly doped layer.
  • the I-type layer can be lightly doped N-type layer material or lightly doped P-type layer material, doping concentration range: 10 11 -10 15 ion/cm 3 , thickness range: 2-100 ⁇ m, the diameter of the bottom surface is in the range: 1-10mm.
  • a parameter value in the corresponding range is selected according to the needs during preparation.
  • the P-type layer is one of highly doped B, Al, Ga, doping concentration range: 10 15 -10 19 ion/cm 3 , thickness range: 0.01-30 ⁇ m, bottom surface diameter range: 1-10 mm. Select a parameter value in the corresponding range as required during preparation.
  • the preparation process of the outer concave part specifically includes the following steps:
  • the bottom surface of the outer concave part is a square, and the side length of the square is larger than the diameter of the photosensitive surface of the P-type layer.
  • Visible light anti-reflection coating realizes the anti-reflection effect of visible light (400-750nm);
  • the visible light anti-reflection coating is formed by alternately stacking thin films with different refractive indices.
  • the high refractive index film material is one or a combination of CeO 2 , ZrO 2 , TiO 2 , Ta 2 O 5 , ZnS, ThO 2
  • the medium refractive index film material is MgO, ThO 2 H 2 , InO 2.
  • low refractive index film materials are MgF 2 , SiO 2 , ThF 4 , LaF 2 , NdF 3 , BeO, Na 3 (AlF 4 ), Al 2
  • the near-infrared light anti-reflection coating realizes the effect of near-infrared light (750-1100nm) anti-reflection.
  • the near-infrared anti-reflection coating is formed by alternately stacking thin films with different refractive indices.
  • the high refractive index film material is one or a combination of CeO 2 , ZrO 2 , TiO 2 , Ta 2 O 5 , ZnS, ThO 2
  • the medium refractive index film material is MgO, ThO 2 H 2 , InO 2.
  • low refractive index film materials are MgF 2 , SiO 2 , ThF 4 , LaF 2 , NdF 3 , BeO, Na 3 (AlF 4 ), Al 2
  • the preparation process of the beam splitting prism specifically includes the following steps:
  • the dichroic light-splitting film on the side of the beam-splitting prism can separate the incident light, so that the visible light in the wavelength range of 400-750nm enters the beam-splitting prism with high transmittance, and the near-infrared light in the wavelength range of 750-1100nm is reflected to the reflective structure on the side with high reflectivity superior.
  • the bottom surface of the cone should coincide with the visible light anti-reflection coating on the P-type layer, and the angle between the side and the bottom of the beam splitting prism is 45° ⁇ 3°.
  • the material of the dichroic prism can be glass, such as K9 glass; it can also be a material with low visible light absorption rate such as plastic, such as polymethyl methacrylate (PMMA), polycarbonate, silicone, polysilicone or polysilicic acid salts, epoxides, silicates or silicates.
  • plastic such as polymethyl methacrylate (PMMA), polycarbonate, silicone, polysilicone or polysilicic acid salts, epoxides, silicates or silicates.
  • the spectroscopic coating on the surface and the visible light anti-reflection coating on the bottom are formed by alternately stacking thin films with different refractive indices.
  • the high refractive index film material is one or a combination of CeO 2 , ZrO 2 , TiO 2 , Ta 2 O 5 , ZnS, ThO 2 ;
  • the medium refractive index film material is MgO, ThO 2 H 2 , InO 2.
  • MgO-Al 2 O 3 low refractive index film materials are MgF 2 , SiO 2 , ThF 4 , LaF 2 , NdF 3 , BeO, Na 3 (AlF 4 ), Al 2 One or a combination of O 3 , CeF 3 , LaF 3 , LiF.
  • the preparation process of the reflective structure is as follows: two reflective mirrors are spliced up and down, left and right or front and back.
  • the angle between the mirror surface and the horizontal direction is 45° ⁇ 3°;
  • the reflection structure includes a mirror surface and a mirror body, the mirror surface is located on the inner surface of the mirror body; the mirror body is an insulating substrate, and the material of the mirror body can be metal, semiconductor material, glass, plastic, etc.;
  • the mirror surface can also be replaced by a metal thin film reflector or a dielectric film reflector. Firstly, the surface of the reflector body is smoothed by polishing, and then a metal thin film reflector or a dielectric film reflector is plated inside the reflector body.
  • the material of the metal thin film can be one of Au, Ag, Al, and Cu, and the dielectric film reflector is formed by alternately stacking thin films with different refractive indices.
  • the reflective mirror surface can also be replaced by a ring-shaped catadioptric prism, which is fixed inside the reflector body.
  • the slope of the catadioptric prism is coated with a near-infrared light anti-reflection film, and the two right-angle surfaces are coated with a near-infrared light reflective film to form a reflection mirror surface.
  • the reflective structure can also cut and polish the metal block in sequence to form a right-angle reflective mirror surface for near-infrared light, so as to ensure that the near-infrared light can enter the I-type layer horizontally from the side after being reflected.
  • the reflector body is made of metal or other conductive materials, an electrically insulating layer needs to be plated on the bottom surface of the reflector body to avoid direct contact between the metal mirror body and the second ring electrode.
  • the preparation process of the first ring electrode specifically includes the following steps:
  • a metal thin film is grown on the surface of the mask pattern to form a first ring-shaped electrode, so that the electrodes can respectively form ohmic contacts with the P-type layer and the N-type layer.
  • the first ring electrode has a ring structure, and the material of the first ring electrode is one or more alloys of Au, Ag, Cu, Al, Cr, Ni, Ti, Pt.
  • the preparation process of the second ring electrode specifically includes the following steps:
  • a metal thin film is grown on the surface of the mask pattern to form a second annular electrode, so that the electrodes can form ohmic contacts with the P-type layer and the N-type layer respectively.
  • the second ring electrode has a ring structure, and the material of the second ring electrode is one or an alloy of Au, Ag, Cu, Al, Cr, Ni, Ti, Pt.
  • Step S3 specifically includes the following steps:
  • the angle between the side surface and the bottom surface of the light-splitting prism, and the angle between the mirror surface of the reflection structure and the horizontal plane are not limited to 45°, and an error within 3° is allowed. ; However, it must be ensured that the near-infrared light can enter the type I layer of the detector horizontally after being reflected by the reflective structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种具有分光结构的光电探测器,包括:芯片、第一环形电极(6)、第二环形电极(7)、电极引线(6-1、7-1)、分光棱镜(1)和反射结构(2-1、2-2);芯片为凸形结构;芯片的凸起部上方为分光棱镜(1)和第一环形电极(6),分光棱镜(1)位于第一环形电极(6)的中央;芯片的外凹部放置第二环形电极(7)和反射结构(2-1、2-2);可见光经过分光棱镜(1)后从芯片的上面竖直进入,近红外光经过分光棱镜(1)被全反射到反射结构(2-1、2-2)上,再经过反射结构(2-1、2-2)的两次反射后,从芯片凸起部的侧面水平进入。通过利用分光结构将可见光和近红外光分开的方式,让各谱段的光都进入各自完全吸收的深度,均衡了可见光与近红外光的响应速度和量子效率对于吸收层厚度的需求相互矛盾的问题。实现了宽谱段的光高效率快速响应的效果。

Description

具有分光结构的光电探测器及其制备方法
本申请要求于2021年11月18日提交至中国专利局、申请号为202111371164.1、发明名称为“具有分光结构的光电探测器”,申请号为202111371196.1、发明名称为“具有分光结构的光电探测器的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光电技术领域,特别涉及一种具有分光结构的光电探测器及其制备方法。
背景技术
PIN光电探测器是一种光敏元件,它是为了提高PN结光电探测器的性能,在P区和N区之间插入一个本征(或轻掺杂)I区,构成PIN光电探测器。PIN光电探测器中间的I层为轻掺杂,在加上反偏电压的情况下该层处于完全耗尽的状态,相比于传统PN结通过增大了耗尽区宽度,增强了大多数载流子的漂移运动同时减少载流子的扩散运动,进而提高响应速度。耗尽层的加宽也明显地减小了结电容C,从而使电路的时间常数减小;由于在光谱响应的长波区硅材料的吸收系数明显减小,因此耗尽层的加宽也有利于对长波区光辐射的吸收,有利于量子效率的改善。PIN光电探测器的上述优点使它在光通信、光雷达及其他快速光电自动控制领域得到了非常广泛的应用。
硅基PIN光电探测器具有响应速度、灵敏度高的特点,而且其原材料Si资源丰富,有着材料成本低、易于大规模集、相关技术成熟等优点,因此硅基PIN光电探测器被广泛应用。但是由于硅材料自身的特性,其禁带宽度较大(1.12eV),硅材料对大于1.1μm的光无法吸收,并且硅材料在光谱响应的长波区吸收系数明显减小,所以硅基PIN光电探测器对于近红外谱段(750-1100nm)的光吸收率降低,这使得红外谱段的光照射器件时会穿过器件的吸收区却不能引起明显的光响应。耗尽层的加宽有利于对长波谱段光辐 射的吸收和量子效率的提高,但是对于垂直入射的器件结构,为了提高器件的响应速度必须使耗尽区很薄以缩短渡越时间;较薄的耗尽区大大减少了长波谱段光子的吸收率,降低了长波谱段光的量子效率。因此,可见光和近红外光响应速度和量子效率对于吸收层厚度的需求相互矛盾的问题,限制了器件的宽谱段光高效率响应。
发明内容
鉴于上述问题,本发明的目的是提出一种具有分光结构的光电探测器,通过利用分光结构将可见光和近红外光分开的方式,使得近红外光能够从芯片侧面水平入射到探测器吸收区,可见光从芯片顶层竖直向下入射到探测器吸收区,从而让各谱段的光都进入各自完全吸收的深度,均衡了可见光与近红外光的响应速度和量子效率对于吸收层厚度的需求相互矛盾的问题。实现了宽谱段的光高效率快速响应的效果。
为实现上述目的,本发明采用以下具体技术方案:
本发明提供一种具有分光结构的光电探测器,包括:芯片、第一环形电极、第二环形电极、电极引线、分光棱镜和反射结构;芯片为凸形结构;分光棱镜和第一环形电极设置在芯片凸起部的上方,分光棱镜位于第一环形电极的中央;第二环形电极设置在芯片的外凹部,第二环形电极的上方为反射结构;第一环形电极和第二环形电极上分别设置有电极引线;
待测光进入光电探测器后,通过分光棱镜将待测光中的可见光和近红外光分开,可见光透过分光棱镜后垂直进入芯片,近红外光经过分光棱镜后被全反射到反射结构上,再经过反射结构的两次反射后,从芯片凸起部的侧面水平进入芯片。
优选地,在分光棱镜的侧面镀有二向色分光膜,在分光棱镜的底面镀有可见光增透膜。
优选地,二向色分光膜和可见光增透膜由折射率不同的薄膜交替叠加组成,通过调整薄膜的厚度实现二向色分光和可见光增透。
优选地,反射结构由金属块切割加工而成,反射结构的内表面通过抛光形成直角反射镜面。
优选地,反射结构包括:反射镜面和反射镜体,反射镜面和反射镜体均为 首尾相连的闭合环形结构,反射镜面位于反射镜体的内表面;反射结构的拼装方式为上下拼装、左右拼装或前后拼装。
优选地,反射镜体的材料为金属、半导体材料、玻璃或塑料;反射镜面为金属反射镜、金属薄膜反射镜、介质膜反射镜或环状折反射棱镜。
优选地,分光棱镜的侧面与底面夹角的范围为45°±3°,反射结构的反射镜面与水平面夹角的范围为45°±3°。
优选地,芯片从下往上依次包括:N型层、I型层、P型层;N型层为凸形结构;第二环形电极位于N型层的外凹部;N型层的凸起部上方依次为I型层和P型层,分光棱镜和第一环形电极均位于P型层上,在P型层的上表面镀有可见光增透膜,在P型层和I型层的侧面镀有近红外光增透膜。
优选地,可见光增透膜和近红外光增透膜由折射率不同的薄膜交替叠加组成,通过调整薄膜的厚度实现可见光增透和近红外光增透。
优选地,芯片包括:从下往上依次层叠的N型层、I型层、P型层;或从下往上依次层叠的P型层、I型层、N型层。
优选地,芯片的横截面为圆形、正方形或长方形。
优选地,当芯片的横截面为圆形时:分光棱镜为圆锥,反射结构为圆环形,反射镜面的横截面为圆环形;
当芯片的横截面为正方形时:分光棱镜为四棱锥,反射结构为正方环形,反射镜面的横截面为梯形;
当芯片的横截面为长方形时:分光棱镜为三棱柱,反射结构为长方环形,反射镜面的横截面为梯形。
优选地,P型层和I型层的材料为硅;N型层的材料为硅、锗或SOI;
N型层的材料为高掺杂P、As、Sb中的任意一种;
I型层的材料为轻掺杂N型层的材料或轻掺杂P型层的材料;
P型层的材料为高掺杂B、Al、Ga中的任意一种。
优选地,第一环形电极和第二环形电极的形状与芯片横截面的形状相匹配,第一环形电极和第二环形电极的材料为Au、Ag、Cu、Al、Cr、Ni、Ti、Pt中的任意一种或几种的合金。
本发明还提供一种具有分光结构的光电探测器的制备方法,包括如下步骤:
S1、同时制备芯片、分光棱镜和反射结构;
S2、在芯片的凸起部的上表面生长第一环形电极;在芯片的外凹部的上表面生长第二环形电极;
S3、将分光棱镜安装在芯片的凸起部的上方,将反射结构安装在芯片的外凹部的上方,在第一环形电极与第二环形电极上分别焊接电极引线后,对制备完成的光电探测器进行封装。
优选地,分光棱镜的制备过程具体包括如下步骤:
S110、在分光棱镜的侧面镀二向色分光膜;
S120、在分光棱镜的底面镀近可见光增透膜。
优选地,二向色分光膜和可见光增透膜由折射率不同的薄膜交替叠加组成,通过调整薄膜的厚度实现二向色分光和可见光增透。
优选地,反射结构的制备过程为:通过对金属块进行切割形成反射结构,再对金属块的内表面进行抛光来形成直角反射镜面。
优选地,反射结构的制备过程为:将反射镜面安装在反射镜体的内表面形成直角反射镜面。
优选地,将两个反射镜面通过上下、左右或前后的方式进行拼接,反射结构拼接后形成首尾相连的闭合环形结构。
优选地,反射镜体的材料为金属、半导体材料、玻璃或塑料;反射镜面为金属反射镜、金属薄膜反射镜、介质膜反射镜或环状折反射棱镜。
优选地,分光棱镜的侧面与底面夹角的范围为45°±3°,反射结构的反射镜面与水平面夹角的范围为45°±3°。
优选地,在步骤S1前还有预处理步骤S0,步骤S0具体为:S0、选取N型层或P型层作为衬底材料,对衬底材料进行清洁处理;
优选地,芯片的制备过程具体包括如下步骤:
S101、在N型层的上表面外延生长I型层;
S102、在I型层的上表面外延生长P型层;
S103、对芯片的边缘进行刻蚀形成外凹部,刻蚀的厚度为从P型层到N型层;芯片进行刻蚀后N型层为凸形结构,N型层的凸起部与I型层和P型层直径相同;
S104、在P型层的上表面镀可见光增透膜;
S105、在P型层和I型层的侧面镀近红外光增透膜。
优选地,可见光增透膜和近红外光增透膜由折射率不同的薄膜交替叠加组成,通过调整薄膜的厚度实现可见光增透和近红外光增透。
优选地,芯片包括:从下往上依次层叠的N型层、I型层、P型层;或从下往上依次层叠的P型层、I型层、N型层。
优选地,芯片的横截面为圆形、正方形或长方形。
优选地,当芯片的横截面为圆形时:分光棱镜为圆锥,反射结构为圆环形,反射镜面的横截面为圆环形;
当芯片的横截面为正方形时:分光棱镜为四棱锥,反射结构为正方环形,反射镜面的横截面为梯形;
当芯片的横截面为长方形时:分光棱镜为三棱柱,反射结构为长方环形,反射镜面的横截面为梯形。
优选地,P型层和I型层的材料为硅;N型层的材料为硅、锗或SOI;
N型层的材料为高掺杂P、As、Sb中的任意一种;
I型层的材料为轻掺杂N型层的材料或轻掺杂P型层的材料;
P型层的材料为高掺杂B、Al、Ga中的任意一种。
优选地,外凹部的制备过程具体包括如下步骤:
S1031、在P型层表面制备环形掩模图型;
S1032、将芯片边缘进行刻蚀形成沟槽;
S1033、去除掩膜图型,形成外凹部。
优选地,第一环形电极的制备过程具体包括如下步骤:
S201、在P型层的上表面制备电极的第一掩模图型;
S202、在第一掩模图型表面生长电极;
S203、去除第一掩膜图型,形成第一环形电极。
优选地,第二环形电极的制备过程具体包括如下步骤:
S210、在N型层的外凹部制备电极的第二掩模图型;
S211、在第二掩模图型表面生长电极;
S212、去除第二掩膜图型,形成第二环形电极;
优选地,第一环形电极和第二环形电极的形状与芯片横截面的形状相匹配,第一环形电极和第二环形电极的材料为Au、Ag、Cu、Al、Cr、Ni、Ti、Pt中的任意一种或几种的合金。
优选地,步骤S3具体包括如下步骤:
S301、对芯片进行划片;
S302、将分光棱镜的底面和芯片顶部的可见光增透膜贴合;
S303、将反射结构装配在外凹部的上方;
S304、焊接电极引线,将制备完成的光电探测器进行封装。
附图说明
图1是根据本发明实施例提供的具有分光结构的光电探测器结构示意图;
图2是根据本发明实施例提供的光电探测器工作时的光路示意图。
图3是根据本发明实施例提供的探测器芯片横截面分别为圆形、正方形和长方形时的结构示意图;
图3(a)是探测器芯片横截面为圆形时的结构示意图;
图3(b)是探测器芯片横截面为正方形时的结构示意图;
图3(c)是探测器芯片横截面为长方形时的结构示意图。
图4是根据本发明实施例提供的分光棱镜分别为圆锥、四棱锥和三棱柱时的结构示意图;
图4(a)是分光棱镜为圆锥时的结构示意图;
图4(b)是分光棱镜为四棱锥时的结构示意图;
图4(c)是分光棱镜为三棱柱时的结构示意图;
图5是根据本发明实施例提供的反射镜面横截面分别为圆环形和梯形时的结构示意图;
图5(a)是反射镜面横截面为圆环形时上下拼接的结构示意图;
图5(b)是反射镜面横截面为圆环形时左右拼接或前后拼接的结构示意图;
图5(c)是反射镜面横截面为梯形时上下拼接的结构示意图;
图5(d)是反射镜面横截面为梯形时左右拼接或前后拼接的结构示意图;
图6是根据本发明方法提供的制备流程图。
图7是根据本发明方法提供的N型层示意图。
图8是根据本发明方法提供的在N型层上外延生长I型层的外延片示意图。
图9是根据本发明方法提供的在I型层上外延生长P型层的外延片示意图。
图10是根据本发明方法提供的P型层表面镀可见光增透膜后的外延片示意 图。
图11是根据本发明方法提供的P型层表面蒸镀电极后的外延片示意图。
图12是根据本发明方法提供的刻蚀完成后的外延片示意图。
图13是根据本发明方法提供的I型层侧面镀增透膜后的外延片示意图。
图14是根据本发明方法提供的N型层的外凹部蒸镀电极后的外延片示意图。
其中的附图标记包括:
分光棱镜1、第一可见光增透膜1-1、二向色分光膜1-2;圆锥顶点1a-1、圆锥侧面1a-2、圆锥底面1a-3;四棱锥顶点1b-1、四棱锥侧面1b-2、四棱锥底面1b-3;三棱柱棱线1c-1、三棱柱侧面1c-2、三棱柱底面1c-3;反射镜面2-1、反射镜体2-2;P型层3、第二可见光增透膜3-1;I型层4、近红外增透膜4-1;N型层5、第一环形电极6、第一电极引线6-1、第二环形电极7和第二环形电极引线7-1。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。
图1示出了根据本发明实施例提供的具有分光结构的光电探测器;
如图1所示,本发明实施例提供的具有分光结构的光电探测器包括:分光棱镜1、第一可见光增透膜1-1、二向色分光膜1-2;反射镜面2-1、反射镜体2-2;P型层3、第二可见光增透膜3-1;I型层4、近红外增透膜4-1;N型层5、第一环形电极6、第一电极引线6-1、第二环形电极7和第二环形电极引线7-1。
N型层5为凸形结构;
N型层5的凸起部上方依次为I型层4和P型层3,P型层3的上表面镀有第二可见光增透膜3-1,P型层3和I型层4的侧面镀有近红外光增透膜4-1;在本发明提供的具有分光结构的光电探测器结构不改变的情况下,N型层5和P型层3的材料可以进行调换。P型层3的上方放置分光棱镜1和第一环形电极6,分光棱镜1位于第一环形电极6的中央,分光棱镜1的底面镀有第一可见光增透膜1-1,分光棱镜1的侧面镀有二向色分光膜1-2。
N型层5的外凹部放置第二环形电极7;第一环形电极6和第二环形电极7上分别设置有第一电极引线6-1和第二环形电极引线7-1。
反射结构位于第二环形电极7的上方,反射结构包括:反射镜面2-1和反射镜体2-2,反射镜面2-1和反射镜体2-2均为首尾相连的闭合环形结构,反射镜面2-1在任一竖直面内都互相垂直,反射镜面2-1位于反射镜体2-2的内表面;反射结构的拼装方式有上下拼装、左右拼装和前后拼装等。
图2示出了根据本发明实施例提供的光电探测器工作时的工作原理。
如图2所示,待测光进入本发明提供的具有分光结构的光电探测器后,可见光谱段(400-750nm)的光和近红外谱段(750-1100nm)的光能够被分光棱镜1分开,可见光竖直向下透射,透过分光棱镜1、第一可见光增透膜1-1、第二可见光增透膜3-1和P型层3后进入I型层4,可见光分别被P型层3和I型层4吸收;近红外光在分光棱镜1的表面全反射到反射镜面2-1上,经过反射镜面2-1的两次反射后经过近红外增透膜4-1,从I型层4的侧面水平透射进入I型层4后被I型层4吸收,P型层3和I型层4中的光线以光注入的方式,激发产生电子-空穴对,电子和空穴在电场的作用下迅速向P型层3和N型层5定向移动,形成光电流。电子和空穴最后被第一环形电极6和第二环形电极7收集,实现宽谱段高效率的光响应过程。利用分光结构将可见光和近红外光分开的方式,在不影响可见光的响应速度的前提下,提升了近红外光的响应速度,同时也提高了长波谱段光的量子效率。
图3示出了本发明实施例提供的探测器芯片横截面分别为圆形、正方形和长方形时的结构;
图3(a)示出了探测器芯片横截面为圆形时的结构;
图3(b)示出了探测器芯片横截面为正方形时的结构;
图3(c)示出了探测器芯片横截面为长方形时的结构。
图4示出了根据本发明实施例提供的分光棱镜分别为圆锥、四棱锥和三棱柱时的结构;
图4(a)示出了分光棱镜为圆锥时的结构;
如图4(a)所示,分光棱镜包括:圆锥顶点1a-1、圆锥侧面1a-2、圆锥底面1a-3;
图4(b)示出了分光棱镜为四棱锥时的结构;
如图4(b)所示,分光棱镜包括:四棱锥顶点1b-1、四棱锥侧面1b-2、四棱锥底面1a-3;
图4(c)示出了分光棱镜为三棱柱时的结构;
如图4(c)所示,分光棱镜包括:三棱柱棱线1c-1、三棱柱侧面1c-2、三棱柱底面1c-3。
图5示出了根据本发明实施例提供的反射镜面横截面分别为圆环形和梯形时的结构;
图5(a)示出了反射镜面横截面为圆环形时上下拼接的结构示意图;
图5(b)示出了反射镜面横截面为圆环形时左右拼接或前后拼接的结构;
图5(c)示出了反射镜面横截面为梯形时上下拼接的结构;
图5(d)示出了反射镜面横截面为梯形时左右拼接或前后拼接的结构;
如图5(a)-5(d)所示,反射结构包括:反射镜面2-1、反射镜体2-2。
芯片的横截面可以为圆形、正方形和长方形。
当芯片的横截面为圆形时:分光棱镜为圆锥,反射结构为圆环形,反射镜面的横截面为圆环形;
当芯片的横截面为正方形时:分光棱镜为四棱锥,反射结构为正方环形,反射镜面的横截面为梯形;
当芯片的横截面为长方形时:分光棱镜为三棱柱,反射结构为长方环形,反射镜面的横截面为梯形;
上述内容详细说明了本发明提供的具有分光结构的光电探测器的结构及其工作原理。与上述光电探测器相对应,本发明还提供一种制备具有分光结构的光电探测器的方法。
图6示出了根据本发明提供的光电探测器的制备方法的流程图。
图7-图14示出了根据本发明一个实施例的具有分光结构的光电探测器制备方法的部分过程。
如图7-图14所示,本发明实施例提供的具有分光结构的光电探测器制备方法,包括如下步骤:
S0、选取衬底材料,对衬底材料进行清洁处理。
对衬底进行化学清洗,以保证衬底的洁净度不影响后续工艺。
衬底材料为N型层或P型层中的一种。
S1、制备芯片、分光棱镜和反射结构。
芯片的制备过程具体包括如下步骤:
S101、把N型层作为衬底材料,在N型层的上表面外延生长I型层。
S102、在I型层的上表面外延生长P型层。
在S101、S102中,可以通过化学气相沉积(如MOCVD或PECVD)、物理气相沉积(如磁控溅射)、液相沉积、原子层沉积(ALD)、真空蒸镀或者分子束外延(MBE)技术依次生长外延结构;也可以通过重扩散或离子注入的掺杂方式生长表面P型层。
P型层和I型层的材料为硅;N型层的材料为硅、锗或SOI;
N型层为高掺杂P、As、Sb中的一种,掺杂浓度范围:10 15-10 19ion/cm 3,厚度范围:1-30μm,底面直径范围:1-10mm。制备时根据其中的需要选择相应范围中的一个参数值。
I型层为轻掺杂层,I型层可以选择轻掺杂N型层的材料或轻掺杂P型层的材料,掺杂浓度范围:10 11-10 15ion/cm 3,厚度范围:2-100μm,底面直径为范围:1-10mm。制备时根据其中的需要选择相应范围中的一个参数值。
P型层为高掺杂B、Al、Ga中的一种,掺杂浓度范围:10 15-10 19ion/cm 3,厚度范围:0.01-30μm,底面直径范围:1-10mm。制备时根据需要选择相应范围中的一个参数值。
S103、对芯片进行刻蚀形成外凹部;芯片刻蚀后N型层为凸形结构,N型层的凸起部与I型层和P型层直径相同。
外凹部的制备过程具体包括如下步骤:
S1031、在P型层表面制备环形掩模图型。
S1032、进行刻蚀形成沟槽。
S1033、去除掩膜图型,形成外凹部。
外凹部底面为正方形,正方形边长比P型层光敏面的直径大。
S104、在P型层的上表面镀可见光增透膜。
可见光增透膜实现可见光(400-750nm)增透的效果;
可见光增透膜是通过交替叠加折射率高低不同的薄膜形成。其中,高折射率薄膜材料为CeO 2、ZrO 2、TiO 2、Ta 2O 5、ZnS、ThO 2中的一种或几种的组合;中折射率薄膜材料为MgO、ThO 2H 2、InO 2、MgO-Al 2O 3中的一种或几种的组合; 低折射率薄膜材料为MgF 2、SiO 2、ThF 4、LaF 2、NdF 3、BeO、Na 3(AlF 4)、Al 2O 3、CeF 3、LaF 3、LiF中的一种或几种的结合。
S105、在P型层和I型层的侧面镀近红外光增透膜。
近红外光增透膜实现近红外光(750-1100nm)增透的效果。
近红外光增透膜是通过交替叠加折射率高低不同的薄膜形成。其中,高折射率薄膜材料为CeO 2、ZrO 2、TiO 2、Ta 2O 5、ZnS、ThO 2中的一种或几种的组合;中折射率薄膜材料为MgO、ThO 2H 2、InO 2、MgO-Al 2O 3中的一种或几种的组合;低折射率薄膜材料为MgF 2、SiO 2、ThF 4、LaF 2、NdF 3、BeO、Na 3(AlF 4)、Al 2O 3、CeF 3、LaF 3、LiF中的一种或几种的结合。
分光棱镜的制备过程具体包括如下步骤:
S110、在分光棱镜的侧面镀二向色分光膜。
S120、在分光棱镜的底面镀近可见光增透膜。
分光棱镜侧面的二向色分光膜可以把入射光分开,使波长范围400-750nm的可见光以高透射率进入分光棱镜,波长范围750-1100nm的近红外光以高反射率反射到侧面的反射结构上。
分光棱镜的形状为圆锥时,圆锥的底面要和P型层上的可见光增透膜重合,且分光棱镜侧面和底面的夹角为45°±3°。
分光棱镜的材料可以为玻璃,例如K9玻璃;也可以为塑料等对可见光吸收率低的材料,如聚甲基丙烯酸甲酯(PMMA),聚碳酸酯、硅酮,聚硅酮或者聚硅酸盐,环氧化物,硅酸盐或硅酸酯。
表面分光膜和底面可见光增透膜是通过交替叠加折射率高低不同的薄膜形成。其中,高折射率薄膜材料为CeO 2、ZrO 2、TiO 2、Ta 2O 5、ZnS、ThO 2中的一种或几种的组合;中折射率薄膜材料为MgO、ThO 2H 2、InO 2、MgO-Al 2O 3中的一种或几种的组合;低折射率薄膜材料为MgF 2、SiO 2、ThF 4、LaF 2、NdF 3、BeO、Na 3(AlF 4)、Al 2O 3、CeF 3、LaF 3、LiF中的一种或几种的结合。
反射结构的制备过程为:将两块反射镜面通过上下、左右或前后的方式进行拼接。
反射镜面与水平方向的夹角为45°±3°;
反射结构包括反射镜面和反射镜体,反射镜面位于反射镜体的内表面;反射镜体为绝缘衬底,反射镜体的材料可以为金属、半导体材料、玻璃、塑料等;
反射镜面也可以替换为金属薄膜反射镜或者介质膜反射镜。首先通过抛光使反射镜体的表面变得光滑,然后将金属薄膜反射镜或者介质膜反射镜镀在反射镜体内部。金属薄膜的材料可以为Au、Ag、Al、Cu中的一种,介质膜反射镜是通过交替叠加折射率高低不同的薄膜形成。
反射镜面也可以替换为环状折反射棱镜,折反射棱镜固定在反射镜体的内部,折反射棱镜的斜面镀有近红外光增透膜,两个直角面镀有近红外光反射膜形成反射镜面。
反射结构也可以通过对金属块依次进行切割、抛光来形成近红外光的直角反射镜面,确保让近红外光经反射后都能从侧面水平进入I型层内。
当反射镜体为金属或其他具有导电性的材料时,需要在反射镜体的底面镀电绝缘层,以避免金属镜体与第二环形电极直接接触。
S2、在芯片的凸起部上表面生长第一环形电极;在芯片的外凹部上表面生长第二环形电极。
第一环形电极的制备过程具体包括如下步骤:
S201、在P型层的上表面制备电极的第一掩模图型。
S202、在第一掩模图型表面生长电极。
S203、去除第一掩膜图型,形成第一环形电极。
通过电子束蒸发或者热蒸发的方式,在掩模图型表面生长金属薄膜,形成第一环形电极,使电极能够分别与P型层和N型层形成欧姆接触。
第一环形电极为环形结构,第一环形电极的材料为Au、Ag、Cu、Al、Cr、Ni、Ti、Pt中的一种或几种的合金。
第二环形电极的制备过程具体包括如下步骤:
S210、在N型层的外凹部制备电极的第二掩模图型。
S211、在第二掩模图型表面生长电极。
S212、去除第二掩膜图型,形成第二环形电极。
通过电子束蒸发或者热蒸发的方式,在掩模图型表面生长金属薄膜,形成第二环形电极,使电极能够分别与P型层和N型层形成欧姆接触。
第二环形电极为环形结构,第二环形电极的材料为Au、Ag、Cu、Al、Cr、Ni、Ti、Pt中的一种或几种的合金。
S3、将分光棱镜安装在芯片凸起部的上方,将反射结构安装在芯片外凹部 的上方,将第一环形电极与第二环形电极之间的电极引线进行焊接后,对制备完成的光电探测器进行封装。
步骤S3具体包括如下步骤:
S301、将芯片进行划片。
S302、将分光棱镜的底面和芯片顶部的可见光增透膜贴合。
S303、将反射结构装配在外凹部的上方。
S304、焊接电极引线,将制备完成的光电探测器进行封装。
在本发明实施例提供的具有分光结构的光电探测器中,分光棱镜的侧面与底面的夹角、反射结构的反射镜面与水平面的夹角都不局限于45°,允许有3°以内的误差;但须保证近红外光经过反射结构反射后,能够水平入射进入探测器I型层。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所作出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (34)

  1. 一种具有分光结构的光电探测器,其特征在于,包括:芯片、第一环形电极、第二环形电极、电极引线、分光棱镜和反射结构;所述芯片为凸形结构;所述分光棱镜和所述第一环形电极设置在所述芯片凸起部的上方,所述分光棱镜位于所述第一环形电极的中央;所述第二环形电极设置在所述芯片的外凹部,所述第二环形电极的上方为所述反射结构;所述第一环形电极和所述第二环形电极上分别设置有电极引线;
    待测光进入所述光电探测器后,通过所述分光棱镜将待测光中的可见光和近红外光分开,所述可见光透过所述分光棱镜后垂直进入所述芯片,所述近红外光经过所述分光棱镜后被全反射到所述反射结构上,再经过所述反射结构的两次反射后,从所述芯片凸起部的侧面水平进入所述芯片。
  2. 根据权利要求1所述的具有分光结构的光电探测器,其特征在于,在所述分光棱镜的侧面镀有二向色分光膜,在所述分光棱镜的底面镀有可见光增透膜。
  3. 根据权利要求2所述的具有分光结构的光电探测器,其特征在于,所述二向色分光膜和所述可见光增透膜由折射率不同的薄膜交替叠加组成,通过调整所述薄膜的厚度实现二向色分光和可见光增透。
  4. 根据权利要求3所述的具有分光结构的光电探测器,其特征在于,所述反射结构由金属块切割加工而成,所述反射结构的内表面通过抛光形成直角反射镜面。
  5. 根据权利要求3所述的具有分光结构的光电探测器,其特征在于,所述反射结构包括:反射镜面和反射镜体,所述反射镜面和所述反射镜体均为首尾相连的闭合环形结构,所述反射镜面位于所述反射镜体的内表面;所述反射结构的拼装方式为上下拼装、左右拼装或前后拼装。
  6. 根据权利要求5所述的具有分光结构的光电探测器,其特征在于,所述反射镜体的材料为金属、半导体材料、玻璃或塑料;所述反射镜面为金属反射镜、金属薄膜反射镜、介质膜反射镜或环状折反射棱镜。
  7. 根据权利要求6所述的具有分光结构的光电探测器,其特征在于,所述分光棱镜的侧面与底面夹角的范围为45°±3°,所述反射结构的反 射镜面与水平面夹角的范围为45°±3°。
  8. 根据权利要求4或7所述的具有分光结构的光电探测器,其特征在于,所述芯片从下往上依次包括:N型层、I型层、P型层;所述N型层为凸形结构;所述第二环形电极位于所述N型层的外凹部;所述N型层的凸起部上方依次为所述I型层和所述P型层,所述分光棱镜和所述第一环形电极均位于所述P型层上,在所述P型层的上表面镀有可见光增透膜,在所述P型层和I型层的侧面镀有近红外光增透膜。
  9. 根据权利要求8所述的具有分光结构的光电探测器,其特征在于,所述可见光增透膜和近红外光增透膜由折射率不同的薄膜交替叠加组成,通过调整所述薄膜的厚度实现可见光增透和近红外光增透。
  10. 根据权利要求9所述的具有分光结构的光电探测器,其特征在于,所述芯片包括:从下往上依次层叠的N型层、I型层、P型层;或从下往上依次层叠的P型层、I型层、N型层。
  11. 根据权利要求10所述的具有分光结构的光电探测器,其特征在于,所述芯片的横截面为圆形、正方形或长方形。
  12. 根据权利要求11所述的具有分光结构的光电探测器,其特征在于,
    当所述芯片的横截面为圆形时:所述分光棱镜为圆锥,所述反射结构为圆环形,所述反射镜面的横截面为圆环形;
    当所述芯片的横截面为正方形时:所述分光棱镜为四棱锥,所述反射结构为正方环形,所述反射镜面的横截面为梯形;
    当所述芯片的横截面为长方形时:所述分光棱镜为三棱柱,所述反射结构为长方环形,所述反射镜面的横截面为梯形。
  13. 根据权利要求12所述的具有分光结构的光电探测器,其特征在于,
    所述P型层和所述I型层的材料为硅;所述N型层的材料为硅、锗或SOI;
    所述N型层的材料为高掺杂P、As、Sb中的任意一种;
    所述I型层的材料为轻掺杂所述N型层的材料或轻掺杂所述P型层的材料;
    所述P型层的材料为高掺杂B、Al、Ga中的任意一种。
  14. 根据权利要求13所述的具有分光结构的光电探测器,其特征在于, 所述第一环形电极和所述第二环形电极的形状与所述芯片横截面的形状相匹配,所述第一环形电极和所述第二环形电极的材料为Au、Ag、Cu、Al、Cr、Ni、Ti、Pt中的任意一种或几种的合金。
  15. 一种具有分光结构的光电探测器的制备方法,其特征在于,包括如下步骤:
    S1、同时制备芯片、分光棱镜和反射结构;
    S2、在所述芯片的凸起部的上表面生长第一环形电极;在所述芯片的外凹部的上表面生长第二环形电极;
    S3、将所述分光棱镜安装在所述芯片的凸起部的上方,将所述反射结构安装在所述芯片的外凹部的上方,在所述第一环形电极与所述第二环形电极上分别焊接电极引线后,对制备完成的光电探测器进行封装。
  16. 根据权利要求15所述的具有分光结构的光电探测器的制备方法,其特征在于,所述分光棱镜的制备过程具体包括如下步骤:
    S110、在所述分光棱镜的侧面镀二向色分光膜;
    S120、在所述分光棱镜的底面镀近可见光增透膜。
  17. 根据权利要求16所述的具有分光结构的光电探测器的制备方法,其特征在于,所述二向色分光膜和所述可见光增透膜由折射率不同的薄膜交替叠加组成,通过调整所述薄膜的厚度实现二向色分光和可见光增透。
  18. 根据权利要求17所述的具有分光结构的光电探测器的制备方法,其特征在于,所述反射结构的制备过程为:通过对金属块进行切割形成所述反射结构,再对所述金属块的内表面进行抛光形成直角反射镜面。
  19. 根据权利要求17所述的具有分光结构的光电探测器的制备方法,其特征在于,所述反射结构的制备过程为:将所述反射镜面安装在所述反射镜体的内表面形成直角反射镜面。
  20. 根据权利要求19所述的具有分光结构的光电探测器的制备方法,其特征在于,将两个反射镜面通过上下、左右或前后的方式进行拼接,所述反射结构拼接后形成首尾相连的闭合环形结构。
  21. 根据权利要求20所述的具有分光结构的光电探测器的制备方法,其特征在于,所述反射镜体的材料为金属、半导体材料、玻璃或塑料;所述反射镜面为金属反射镜、金属薄膜反射镜、介质膜反射镜或环状折反射 棱镜。
  22. 根据权利要求18或21所述的具有分光结构的光电探测器的制备方法,其特征在于,所述分光棱镜的侧面与底面夹角的范围为45°±3°,所述反射结构的反射镜面与水平面夹角的范围为45°±3°。
  23. 根据权利要求22所述的具有分光结构的光电探测器的制备方法,其特征在于,在所述步骤S1前还有预处理步骤S0,所述步骤S0具体为:S0、选取N型层或P型层作为衬底材料,对所述衬底材料进行清洁处理。
  24. 根据权利要求23所述的具有分光结构的光电探测器的制备方法,其特征在于,所述芯片的制备过程具体包括如下步骤:
    S101、在所述N型层的上表面外延生长所述I型层;
    S102、在所述I型层的上表面外延生长所述P型层;
    S103、对所述芯片的边缘进行刻蚀形成外凹部,所述刻蚀的厚度为从所述P型层到所述N型层;所述芯片进行刻蚀后所述N型层为凸形结构,所述N型层的凸起部与所述I型层和所述P型层直径相同;
    S104、在所述P型层的上表面镀可见光增透膜;
    S105、在所述P型层和所述I型层的侧面镀近红外光增透膜。
  25. 根据权利要求24所述的具有分光结构的光电探测器的制备方法,其特征在于,所述可见光增透膜和所述近红外光增透膜由折射率不同的薄膜交替叠加组成,通过调整所述薄膜的厚度实现可见光增透和近红外光增透。
  26. 根据权利要求25所述的具有分光结构的光电探测器,其特征在于,所述芯片包括:从下往上依次层叠的N型层、I型层、P型层;或从下往上依次层叠的P型层、I型层、N型层。
  27. 根据权利要求26所述的具有分光结构的光电探测器,其特征在于,所述芯片的横截面为圆形、正方形或长方形。
  28. 根据权利要求27所述的具有分光结构的光电探测器,其特征在于,
    当所述芯片的横截面为圆形时:所述分光棱镜为圆锥,所述反射结构为圆环形,所述反射镜面的横截面为圆环形;
    当所述芯片的横截面为正方形时:所述分光棱镜为四棱锥,所述反射结构为正方环形,所述反射镜面的横截面为梯形;
    当所述芯片的横截面为长方形时:所述分光棱镜为三棱柱,所述反射结构为长方环形,所述反射镜面的横截面为梯形。
  29. 根据权利要求28所述的具有分光结构的光电探测器,其特征在于,所述P型层和所述I型层的材料为硅;所述N型层的材料为硅、锗或SOI;
    所述N型层的材料为高掺杂P、As、Sb中的任意一种;
    所述I型层的材料为轻掺杂所述N型层的材料或轻掺杂所述P型层的材料;
    所述P型层的材料为高掺杂B、Al、Ga中的任意一种。
  30. 根据权利要求29所述的具有分光结构的光电探测器的制备方法,其特征在于,所述外凹部的制备过程具体包括如下步骤:
    S1031、在所述P型层表面制备环形掩模图型;
    S1032、将所述芯片边缘进行刻蚀形成沟槽;
    S1033、去除所述掩膜图型,形成所述外凹部。
  31. 根据权利要求30所述的具有分光结构的光电探测器的制备方法,其特征在于,所述第一环形电极的制备过程具体包括如下步骤:
    S201、在所述P型层的上表面制备电极的第一掩模图型;
    S202、在所述第一掩模图型表面生长电极;
    S203、去除所述第一掩膜图型,形成所述第一环形电极。
  32. 根据权利要求30所述的具有分光结构的光电探测器的制备方法,其特征在于,所述第二环形电极的制备过程具体包括如下步骤:
    S210、在所述N型层的外凹部制备电极的第二掩模图型;
    S211、在所述第二掩模图型表面生长电极;
    S212、去除所述第二掩膜图型,形成所述第二环形电极。
  33. 根据权利要求31或32所述的具有分光结构的光电探测器的制备方法,其特征在于,所述第一环形电极和所述第二环形电极的形状与所述芯片横截面的形状相匹配,所述第一环形电极和所述第二环形电极的材料为Au、Ag、Cu、Al、Cr、Ni、Ti、Pt中的任意一种或几种的合金。
  34. 根据权利要求33所述的具有分光结构的光电探测器的制备方法,其特征在于,所述步骤S3具体包括如下步骤:
    S301、对所述芯片进行划片;
    S302、将所述分光棱镜的底面和所述芯片顶部的可见光增透膜贴合;
    S303、将所述反射结构装配在所述外凹部的上方;
    S304、焊接所述电极引线,将制备完成的光电探测器进行封装。
PCT/CN2021/133893 2021-11-18 2021-11-29 具有分光结构的光电探测器及其制备方法 WO2023087376A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111371164.1 2021-11-18
CN202111371164.1A CN114068752B (zh) 2021-11-18 2021-11-18 具有分光结构的光电探测器
CN202111371196.1 2021-11-18
CN202111371196.1A CN114068762B (zh) 2021-11-18 2021-11-18 具有分光结构的光电探测器的制备方法

Publications (1)

Publication Number Publication Date
WO2023087376A1 true WO2023087376A1 (zh) 2023-05-25

Family

ID=86396186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133893 WO2023087376A1 (zh) 2021-11-18 2021-11-29 具有分光结构的光电探测器及其制备方法

Country Status (1)

Country Link
WO (1) WO2023087376A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237771A1 (en) * 2007-03-30 2008-10-02 Subrahmanyam Pilla Imaging system
CN105742397A (zh) * 2016-03-14 2016-07-06 电子科技大学 一种可见光到红外光探测的宽波段光电二极管
CN106129168A (zh) * 2016-08-26 2016-11-16 电子科技大学 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法
CN109155340A (zh) * 2015-12-21 2019-01-04 文和文森斯设备公司 微结构增强吸收光敏器件
CN110165012A (zh) * 2019-06-28 2019-08-23 河北工业大学 一种具有弧形增透作用的光电探测器结构及其制备方法
CN112490305A (zh) * 2020-11-25 2021-03-12 天津津航技术物理研究所 一种可见-紫外双色探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237771A1 (en) * 2007-03-30 2008-10-02 Subrahmanyam Pilla Imaging system
CN109155340A (zh) * 2015-12-21 2019-01-04 文和文森斯设备公司 微结构增强吸收光敏器件
CN105742397A (zh) * 2016-03-14 2016-07-06 电子科技大学 一种可见光到红外光探测的宽波段光电二极管
CN106129168A (zh) * 2016-08-26 2016-11-16 电子科技大学 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法
CN110165012A (zh) * 2019-06-28 2019-08-23 河北工业大学 一种具有弧形增透作用的光电探测器结构及其制备方法
CN112490305A (zh) * 2020-11-25 2021-03-12 天津津航技术物理研究所 一种可见-紫外双色探测器

Similar Documents

Publication Publication Date Title
JP4749978B2 (ja) 光検出器が集積可能な光結合装置
US7276770B1 (en) Fast Si diodes and arrays with high quantum efficiency built on dielectrically isolated wafers
CN103367370B (zh) 亚波长光栅反射增强型硅基宽光谱集成光探测器及其制备方法
CN104576786B (zh) 新型零伏响应雪崩光电探测器芯片及其制作方法
CN105070779A (zh) 具有亚波长光栅结构的面入射硅基锗光电探测器及其制备方法
KR20090035355A (ko) 고효율 태양전지 및 그 제조방법
CN109273561A (zh) 一种msm光电探测器的制备方法
CN110752268A (zh) 一种集成周期限光结构的msm光电探测器的制备方法
KR100464333B1 (ko) 수광소자 및 그 제조방법
US20120037208A1 (en) Thin film solar cell structure
US5045908A (en) Vertically and laterally illuminated p-i-n photodiode
WO2023087376A1 (zh) 具有分光结构的光电探测器及其制备方法
CN114068762B (zh) 具有分光结构的光电探测器的制备方法
CN114068752B (zh) 具有分光结构的光电探测器
KR102307789B1 (ko) 후면 입사형 애벌런치 포토다이오드 및 그 제조 방법
CN115188854A (zh) 一种光电探测器及其制备方法
KR102176477B1 (ko) 후면 입사형 광 검출기
JP2007504659A (ja) 埋め込み酸化物層による金属−半導体−金属(msm)光検出器を有するシステムおよび方法
JP6660282B2 (ja) 受光素子
JPH0653537A (ja) 半導体受光素子
CN111739952A (zh) 光探测器及制作方法
JPH05102513A (ja) 半導体受光素子
CN218299812U (zh) 一种雪崩光电探测器结构
JPH02185070A (ja) 受光素子とその製造方法
CN114141903B (zh) 双pn结式硅基光电二极管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964521

Country of ref document: EP

Kind code of ref document: A1