CN110047967A - 一种宽谱InGaAs雪崩焦平面探测器及其制造方法 - Google Patents

一种宽谱InGaAs雪崩焦平面探测器及其制造方法 Download PDF

Info

Publication number
CN110047967A
CN110047967A CN201910246107.7A CN201910246107A CN110047967A CN 110047967 A CN110047967 A CN 110047967A CN 201910246107 A CN201910246107 A CN 201910246107A CN 110047967 A CN110047967 A CN 110047967A
Authority
CN
China
Prior art keywords
ingaas
inp
snowslide
layer
wide range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910246107.7A
Other languages
English (en)
Inventor
马英杰
顾溢
邵秀梅
李雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201910246107.7A priority Critical patent/CN110047967A/zh
Publication of CN110047967A publication Critical patent/CN110047967A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种宽谱InGaAs雪崩焦平面探测器及其制造方法。采用InP衬底和背照射结构。自衬底起依次包含InP腐蚀牺牲层,InGaAs腐蚀牺牲层,重掺杂InP腐蚀截止层,InGaAs吸收层,能带递变层,电荷层,重掺杂接触层,铟柱及读出电路;还公开了一种制造所述探测器的方法,主要步骤为:1)产生与读出电路互联的雪崩焦平面模块;2)机械研磨抛光InP衬底层;3)化学腐蚀掉InP牺牲层;4)化学腐蚀掉InGaAs牺牲层。本发明的优点在于实现InGaAs雪崩焦平面对400‑1700nm可见及近红外波段的宽光谱响应,控制精度高、损伤低。

Description

一种宽谱InGaAs雪崩焦平面探测器及其制造方法
技术领域
本发明属于半导体芯片制造技术领域,特别涉及一种宽谱InGaAs雪崩焦平面探测器及其制造方法。
背景技术
与InP衬底晶格匹配的InGaAs焦平面探测器,光谱响应范围900-1700nm,具有近室温工作、高探测率、高均匀性、性能稳定、低成本等优点,且具有优异的透烟、透雾及透尘埃成像能力,是短波红外探测器的理想选择之一。InGaAs 雪崩焦平面探测器基于InGaAs雪崩光电二极管像元,通过利用载流子的碰撞离化雪崩倍增效应,可在像元内实现高达105量级的光电流增益,突破量子效率瓶颈,灵敏度比传统基于PIN像元的InGaAs焦平面显著提升。此外,雪崩探测器像元由于宽耗尽或全耗尽,结电容更小带宽更高,使其兼具高速、高灵敏度的优良性能。上述突出优势使得InGaAs雪崩焦平面有望具备下一代红外焦平面所要求的主动/被动双模式、高灵敏、高速、多功能、多波段等特性,因而受到广泛的重视。
InGaAs雪崩焦平面在用作被动成像器件时,由于具有内增益,可获得比传统PIN焦平面更好的夜视成像效果,图像更清晰,细节更丰富。由于月光、大气辉光、星光等微光环境下的光子能量主要分布在400~2500nm可见-短波红外波段,且在400-900nm可见及近红外范围内的辐射度比900~2500nm更高,而常规InGaAs焦平面仅能覆盖900-1700nm范围,因此有大量400-900nm 可见及近红外范围内的环境光子并未被充分利用。使得InGaAs焦平面获得具有对400-900nm范围内得光子探测的能力,将极大地提升微光夜视成像效果。由于基于PIN像元的常规InGaAs焦平面结构简单,目前,国外已经有单位实现了其对可见光波段的响应拓展,并进行了可见-近红外宽光谱成像演示。2005 年,美国Sensor Unlimited公司已基于InP衬底剥离工艺,成功研制出基于 InGaAs/InP PIN像元的可见拓展焦平面探测器,400nm波长量子效率为15%,实现了增强的宽光谱夜视成像效果(T.Martin et al.,Proc.of SPIE 5783,12-20 (2005))。2012年,以色列SCD公司也研制出类似的可见拓展InGaAs PIN焦平面器件(R.Fraenkel et al.,Proc.of SPIE 8353,835305-1(2012))。
对于InGaAs雪崩焦平面而言,由于存在像元内增益,因此,若将InGaAs 雪崩焦平面的光谱响应范围也由900-1700nm拓展至覆盖可见光波段的 400-1700nm,将能更充分利用目标反射的光子能量,能同时发挥内增益和宽谱响应的双重优势,获得更清晰的图像和更多目标信息,增强夜视成像能力。而由于InGaAs雪崩焦平面的工作原理、器件结构及制备工艺均比PIN焦平面复杂,目前尚没有基于雪崩光电二极管像元的InGaAs雪崩焦平面探测器。实现可见响应拓展技术上存在困难,需同时在雪崩探测器像元器件结构设计和光谱拓展工艺上进行技术创新创造。
发明内容
本发明所要解决的技术问题是提供一种具有可见-近红外宽光谱响应能力的InGaAs雪崩焦平面探测器。
为解决上述问题,本发明公开了一种InGaAs雪崩焦平面探测器,其结构依次包括:InP衬底层1,InP腐蚀牺牲层2,InGaAs腐蚀牺牲层3,重掺杂InP腐蚀截止层4,InGaAs光吸收层5,能带过渡层6,电荷层7,雪崩层 8,电极接触层9,铟柱10和Si读出电路11,见附图1。
进一步地,所述宽谱InGaAs雪崩焦平面探测器的InP腐蚀牺牲层厚度在5 nm~10μm范围内,InGaAs腐蚀牺牲层的厚度在5nm~5μm范围内,InP腐蚀截止层厚度为10-100nm。InP腐蚀截止层除充当选择性腐蚀截止层外,同时作为雪崩探测器像元的N型或P型电极接触层,因此要求具有一定厚度,掺杂浓度≥1×1018cm-3以形成良好欧姆接触。同时,由于InP禁带宽度为1.34eV,对400-925nm范围内的可见-近红外光子存在吸收,即InP腐蚀截止层对入射可见光形成阻挡,影响InGaAs光吸收层对可见光的响应,因此,需要InP腐蚀截止层尽可能薄,减少对可见光的吸收。综合确定厚度范围为10-100nm。
进一步地,所述宽谱InGaAs雪崩焦平面探测器的InP腐蚀截止层之后的外延层结构顺序固定,依次为InGaAs光吸收层,过渡层,电荷层,雪崩层,电极接触层,铟柱和Si读出电路。由于InAlAs、InP等雪崩材料禁带宽度大对可见光有吸收,因此InGaAs必须紧邻InP腐蚀截止层,且通过精确控制InP 腐蚀截止层厚度,实现InGaAs对可见光的吸收。也因此,雪崩探测器的能带过渡层、电荷层和雪崩层顺序固定。
进一步地,所述宽谱InGaAs雪崩焦平面探测器的电荷层为InAlAs或InP,雪崩层为InAlAs、InP或InAlGaAs,接触层为InAlAs或InP,器件掺杂结构为P-on-N或N-on-P。
本发明还公开了一种制造上述宽谱InGaAs雪崩焦平面探测器的方法,包括以下步骤:
1)产生与读出电路互联的雪崩焦平面模块;
2)机械研磨抛光去除InP衬底层;
3)化学选择性腐蚀掉InP牺牲层;
4)化学选择性腐蚀掉InGaAs牺牲层。
进一步地,所述雪崩焦平面模块为将InGaAs雪崩焦平面光敏芯片与匹配的Si读出电路芯片采用铟柱倒焊互联的方式连接,并在铟柱空隙处填充粘合剂粘合固化,形成雪崩焦平面模块。
进一步地,所述机械研磨为将1)步产生的雪崩焦平面模块作为一个整体,读出电路一侧与石英载盘以石蜡固定,并将InP衬底一侧安装在研磨盘上,采用抛光液和机械旋转研磨抛光的方式,将InP衬底厚度从初始厚度减薄至剩余 100nm~10μm。
进一步地,所述化学选择性腐蚀采用含HCl:H3PO4的选择性腐蚀溶液,将 2)步产生的减薄抛光后的雪崩焦平面模块浸入溶液,腐蚀掉减薄后剩余的InP 衬底层及后续InP牺牲层。该腐蚀液对InGaAs选择性截止,即完全腐蚀掉InP 牺牲层后在InP牺牲层与InGaAs牺牲层界面处反应停止,不再产生进一步化学腐蚀。
进一步地,所述化学选择性腐蚀采用含H3PO4:H2O2选择性腐蚀溶液,将3) 步产生的去除InP牺牲层厚的雪崩焦平面模块浸入溶液,腐蚀掉InGaAs腐蚀牺牲层。该腐蚀液对InP选择性截止,即完全腐蚀掉InGaAs腐蚀牺牲层后在 InGaAs腐蚀牺牲层与InP腐蚀截止层界面处反应停止,不再产生进一步化学腐蚀。
进一步地,所述4)步化学选择性腐蚀完成后,剩余厚度为10-100nm的 InP腐蚀截止层。此时,InGaAs雪崩焦平面的具备对400-1700nm波长范围入射光子的宽谱响应能力。
有益效果
(1)得益于选择性化学腐蚀的材料损伤低、选择比高的技术特点,本发明在 InP衬底与InGaAs光吸收层之间采用InP腐蚀牺牲层和InGaAs腐蚀牺牲层的双牺牲层结构设计,以及匹配双选择性化学腐蚀工艺设计,可实现对InP腐蚀截止层厚度的纳米级控制,实现高精度、低损伤衬底剥离。
(2)本发明所述包含InP腐蚀截止层–InGaAs光吸收层的雪崩焦平面结构设计,可同时兼容平面扩散结和刻蚀台面结两种焦平面工艺,兼容InGaAs/InP、 InGaAs/InAlAs、InGaAs/InAlGaAs等多种现有雪崩探测器像元结构,兼容P-on-N和N-on-P掺杂结构,具有广泛的结构适用性。
(3)由于InP对400-925nm范围内的光子存在吸收,InGaAs光吸收层在 400-900nm范围内的量子效率与InP腐蚀截止层厚度成反比。本发明的InGaAs 牺牲层-InP腐蚀截止层-InGaAs光吸收层结构设计和高选择性化学腐蚀工艺设计,使得可以精确将InP层控制到10nm,实现焦平面对可见光波段的高量子效率吸收和雪崩倍增。
(4)本发明的雪崩焦平面结构设计与制造工艺,均与现有InGaAs材料外延工艺及InGaAs焦平面制备工艺兼容,实现InGaAs雪崩焦平面的可见响应能力,使得同时具备内增益和可见响应的双重探测优势,在激光雷达、被动夜视成像等领域有广阔应用前景。
附图说明
图1为本发明的宽谱InGaAs雪崩焦平面探测器结构示意图。
图中:
1—InP衬底层;
2—InP腐蚀牺牲层;
3—InGaAs腐蚀牺牲层;
4—InP腐蚀截止层;
5—InGaAs光吸收层;
6—能带过渡层;
7—电荷层;
8—雪崩层;
9—电极接触层;
10—铟柱;
11—Si读出电路。
图2为本发明实施例1的InGaAs/InAlAs雪崩焦平面探测器的材料结构示意图。
图3为本发明实施例2的InGaAs/InP雪崩焦平面的可见响应拓展结构示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,该实施例仅用于说明本发明而不用于限定本发明的范围。此处应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
本实施例目的是针对采用In0.52Al0.48As倍增层和背照射结构的InGaAs雪崩焦平面,采用本发明公开的雪崩探测器材料结构和制造方法,实现具有可见 -近红外的宽光谱响应能力的InGaAs/InAlAs雪崩焦平面,验证本发明的可行性。雪崩探测采用P-on-N掺杂结构,其结构示意图见附图2,由下至上依次包括:
①半绝缘(S.I.)InP(001)衬底,厚度350μm。
②N型InP腐蚀牺牲层,同时作为外延缓冲层和电极接触层,厚度500nm。
③N型In0.53Ga0.47As腐蚀牺牲层,厚度100nm。
④N型重掺杂(N+)InP腐蚀截止层,厚度10nm。
⑤非故意掺杂In0.53Ga0.47As光吸收层,厚度2000nm。
⑥非故意掺杂In0.53AlxGa0.47-xAs能带过渡层(x:0→0.47),厚度90nm。
⑦N型中等掺杂In0.52Al0.48As电荷层。厚度100nm。
⑧非故意掺杂In0.52Al0.48As倍增层,厚度600nm。
⑨P型重掺杂(P+)In0.52Al0.48As接触层。厚度500nm。
可见-近红外宽谱响应雪崩焦平面制造步骤如下:
(1)将InGaAs雪崩焦平面光敏芯片与匹配的Si读出电路芯片采用铟柱互联的方式倒焊,在铟柱空隙处填充胶性粘合剂并固化,形成雪崩焦平面模块。
(2)将上步产生的模块的读出电路一侧与石英载盘以石蜡融化固定,采用机械研磨抛光机装载石英载盘。使用303号刚玉粉抛光液将InP衬底一侧在研磨盘上机械旋转研磨减薄至50μm,进一步使用306号刚玉粉抛光液将InP 衬底一侧在研磨盘上机械旋转研磨减薄并抛光至10μm。
(3)将上步产生的减薄抛光后模块浸入HCl:H3PO4:H2O=1:3:3腐蚀液,腐蚀掉减薄后剩余的10μm InP衬底层及后续500nm InP牺牲层。该腐蚀液对 InGaAs选择性截止。
(4)将上步产生的减薄抛光后模块浸入H3PO4:H2O2:H2O=1:5:5腐蚀液,腐蚀掉100nm InGaAs牺牲层。该腐蚀液对InP接触层选择性截止。
(5)加热模块并取下清洗。
上述工艺完成后,获得具备对400-1700nm波长范围入射光子的宽谱响应能力的InGaAs雪崩焦平面探测器,结构见附图3。

Claims (9)

1.一种宽谱InGaAs雪崩焦平面探测器,其特征在于:所述的焦平面探测器在InP衬底(1)上依次有InP腐蚀牺牲层(2),InGaAs腐蚀牺牲层(3),重掺杂InP腐蚀截止层(4),InGaAs光吸收层(5),能带过渡层(6),电荷层(7),雪崩层(8),电极接触层(9),铟柱(10)和Si读出电路(11)。
2.根据权利要求1所述的一种宽谱InGaAs雪崩焦平面探测器,其特征在于:所述的InP腐蚀牺牲层(2)的厚度为5nm~10μm。
3.根据权利要求1所述的一种宽谱InGaAs雪崩焦平面探测器,其特征在于:所述的InGaAs腐蚀牺牲层(3)的厚度为5nm~5μm。
4.根据权利要求1所述的一种宽谱InGaAs雪崩焦平面探测器,其特征在于:所述的重掺杂InP腐蚀截止层(4)的厚度为10-100nm,掺杂类型为P或N,掺杂浓度≥1×1018cm-3
5.根据权利要求1所述的一种宽谱InGaAs雪崩焦平面探测器,其特征在于:所述的电荷层(7)为InAlAs或InP。
6.根据权利要求1所述的一种宽谱InGaAs雪崩焦平面探测器,其特征在于:所述的雪崩层(8)为InAlAs、InP或InAlGaAs。
7.根据权利要求1所述的一种宽谱InGaAs雪崩焦平面探测器,其特征在于:所述的电极接触层(9)为InAlAs或InP。
8.根据权利要求1所述的一种宽谱InGaAs雪崩焦平面探测器,其特征在于:所述的探测器器件的掺杂结构为P-on-N或N-on-P。
9.一种制备如权利要求1所述一种宽谱InGaAs雪崩焦平面探测器的方法,其特征在于包括以下步骤:
1)产生与读出电路互联的雪崩焦平面模块;
2)机械研磨将InP衬底厚度从初始厚度减薄至剩余100nm~10μm;
3)采用含HCl:H3PO4的选择性化学腐蚀液,完全腐蚀掉剩余InP衬底层及InP腐蚀牺牲层,并对InGaAs腐蚀牺牲层选择性截止;
4)采用含H3PO4:H2O2的选择性化学腐蚀液,完全腐蚀掉InGaAs腐蚀牺牲层,并对InP腐蚀截止层选择性截止。
CN201910246107.7A 2019-03-29 2019-03-29 一种宽谱InGaAs雪崩焦平面探测器及其制造方法 Pending CN110047967A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910246107.7A CN110047967A (zh) 2019-03-29 2019-03-29 一种宽谱InGaAs雪崩焦平面探测器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910246107.7A CN110047967A (zh) 2019-03-29 2019-03-29 一种宽谱InGaAs雪崩焦平面探测器及其制造方法

Publications (1)

Publication Number Publication Date
CN110047967A true CN110047967A (zh) 2019-07-23

Family

ID=67275552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910246107.7A Pending CN110047967A (zh) 2019-03-29 2019-03-29 一种宽谱InGaAs雪崩焦平面探测器及其制造方法

Country Status (1)

Country Link
CN (1) CN110047967A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916469A (zh) * 2020-08-31 2020-11-10 山西国惠光电科技有限公司 一种新型双色InGaAs红外焦平面探测器的制备方法
CN113130676A (zh) * 2021-04-16 2021-07-16 中国科学院半导体研究所 焦平面红外探测器芯片、探测器和制备方法
CN114497244A (zh) * 2022-01-21 2022-05-13 中山德华芯片技术有限公司 一种红外探测器芯片及其制作方法与应用
CN114551618A (zh) * 2022-02-10 2022-05-27 中国科学院上海技术物理研究所 一种宽谱铟镓砷焦平面的结构及其制备方法
GB2602731A (en) * 2019-11-18 2022-07-13 Univ Sheffield An avalanche photodiode structure
CN116565043A (zh) * 2023-07-07 2023-08-08 江苏华兴激光科技有限公司 一种红外拓展波长光探测器芯片外延片结构
CN118380499A (zh) * 2024-04-22 2024-07-23 睿创光子(无锡)技术有限公司 一种红外探测芯片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829915B2 (en) * 2008-06-19 2010-11-09 National Central University Avalanche photodiode
CN105118886A (zh) * 2015-08-31 2015-12-02 中国科学院半导体研究所 一种高响应度雪崩光电二极管制备方法
CN107004734A (zh) * 2014-12-05 2017-08-01 日本电信电话株式会社 雪崩光电二极管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829915B2 (en) * 2008-06-19 2010-11-09 National Central University Avalanche photodiode
CN107004734A (zh) * 2014-12-05 2017-08-01 日本电信电话株式会社 雪崩光电二极管
CN105118886A (zh) * 2015-08-31 2015-12-02 中国科学院半导体研究所 一种高响应度雪崩光电二极管制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2602731A (en) * 2019-11-18 2022-07-13 Univ Sheffield An avalanche photodiode structure
GB2602731B (en) * 2019-11-18 2023-02-22 Univ Sheffield An avalanche photodiode structure
CN111916469A (zh) * 2020-08-31 2020-11-10 山西国惠光电科技有限公司 一种新型双色InGaAs红外焦平面探测器的制备方法
CN111916469B (zh) * 2020-08-31 2022-06-28 山西国惠光电科技有限公司 一种新型双色InGaAs红外焦平面探测器的制备方法
CN113130676A (zh) * 2021-04-16 2021-07-16 中国科学院半导体研究所 焦平面红外探测器芯片、探测器和制备方法
CN114497244A (zh) * 2022-01-21 2022-05-13 中山德华芯片技术有限公司 一种红外探测器芯片及其制作方法与应用
CN114497244B (zh) * 2022-01-21 2023-02-24 中山德华芯片技术有限公司 一种红外探测器芯片及其制作方法与应用
CN114551618A (zh) * 2022-02-10 2022-05-27 中国科学院上海技术物理研究所 一种宽谱铟镓砷焦平面的结构及其制备方法
CN114551618B (zh) * 2022-02-10 2023-09-12 中国科学院上海技术物理研究所 一种宽谱铟镓砷焦平面的结构及其制备方法
CN116565043A (zh) * 2023-07-07 2023-08-08 江苏华兴激光科技有限公司 一种红外拓展波长光探测器芯片外延片结构
CN118380499A (zh) * 2024-04-22 2024-07-23 睿创光子(无锡)技术有限公司 一种红外探测芯片及其制备方法

Similar Documents

Publication Publication Date Title
CN110047967A (zh) 一种宽谱InGaAs雪崩焦平面探测器及其制造方法
US5567975A (en) Group II-VI radiation detector for simultaneous visible and IR detection
US9076702B2 (en) Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same
JP4440615B2 (ja) 苛酷な環境で使用するためのアバランシェ・フォトダイオード
CN106169516A (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
US11810988B2 (en) Integrated infrared circular polarization detector with high extinction ratio and design method thereof
WO2018022622A1 (en) Infrared detector devices and focal plane arrays having a transparent common ground structure and methods of fabricating the same
CN106601859B (zh) 量子点宽谱单光子探测器及其探测方法
CN105742397A (zh) 一种可见光到红外光探测的宽波段光电二极管
CN106057957B (zh) 具有周期性纳米结构的雪崩光电二极管
CN110047968A (zh) 一种AlGaN基3D倒装焊MSM阵列紫外探测器的制备方法
CN106299015A (zh) 一种采用低维量子点倍增层的半导体雪崩光电探测器
US20190214428A1 (en) Germanium-modified, back-side illuminated optical sensor
CN110021617A (zh) 一种InGaAs雪崩焦平面探测器的串扰抑制结构
US7129104B2 (en) Wavelength-insensitive radiation coupling for multi-quantum well sensor based on intersubband absorption
CN113782621A (zh) 一种等离激元增强的碲镉汞微腔红外探测器及制备方法
CN102646747A (zh) 红外上转换成像或探测器件及其实现方法
CN208596679U (zh) 一种具有高吸收率的双波段量子阱红外探测器
CN106129168A (zh) 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法
CN108630781A (zh) 3~5μm红外波段雪崩光电二极管探测器及其制作方法
Musca et al. Analysis of crosstalk in HgCdTe p-on-n heterojunction photovoltaic infrared sensing arrays
CN106684180B (zh) 具有吸收增强结构的ii类超晶格光电探测器及其制备方法
US10566475B2 (en) High-efficiency photoelectric element and method for manufacturing same
CN114023831A (zh) 一种高速高响应光电探测器及其制作方法
CN100541832C (zh) 光伏型多量子阱红外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190723