CN114551618B - 一种宽谱铟镓砷焦平面的结构及其制备方法 - Google Patents

一种宽谱铟镓砷焦平面的结构及其制备方法 Download PDF

Info

Publication number
CN114551618B
CN114551618B CN202210123379.XA CN202210123379A CN114551618B CN 114551618 B CN114551618 B CN 114551618B CN 202210123379 A CN202210123379 A CN 202210123379A CN 114551618 B CN114551618 B CN 114551618B
Authority
CN
China
Prior art keywords
layer
focal plane
inas
corrosion
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210123379.XA
Other languages
English (en)
Other versions
CN114551618A (zh
Inventor
李雪
刘雅歌
马英杰
顾溢
李淘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202210123379.XA priority Critical patent/CN114551618B/zh
Publication of CN114551618A publication Critical patent/CN114551618A/zh
Application granted granted Critical
Publication of CN114551618B publication Critical patent/CN114551618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • G01J2003/2816Semiconductor laminate layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种宽谱铟镓砷焦平面的结构及其制备方法,宽谱铟镓砷焦平面的基底为InP,自基底起依次有InP腐蚀牺牲层,周期性薄层低维量子点层,腐蚀截止层,In0.83Ga0.17As吸收层和重掺杂接触层;还公开了一种制备所述探测器的方法,主要步骤为:1)产生混成结构In0.83Ga0.17As焦平面探测器;2)机械研磨去除InP基底层;3)化学腐蚀去除牺牲层;4)干法等离子刻蚀去除部分截止层;本发明的优点在于实现单片响应范围覆盖400‑2600nm的铟镓砷焦平面探测器,可简化各类高光谱成像系统的光路,降低功耗、体积、重量,提升探测敏感度。

Description

一种宽谱铟镓砷焦平面的结构及其制备方法
技术领域
本发明属于半导体芯片制造技术领域,一种宽光谱InGaAs探测器的结构及其制备方法,适用于光谱响应的范围为400-2600nm。
背景技术
光谱成像技术属于发展中的多维光电探测新技术。与传统成像技术仅获取目标二维空间信息不同,光谱成像技术采用面阵探测器通过扫描目标区域,在垂直扫描的方向上获取目标空间维信息,同时在平行扫描方向上获取目标光谱维信息。在物质探测、目标识别等方面具有重要技术优势。高光谱及超光谱成像探测系统的光谱通道数和光谱分辨率取决于焦平面探测器的像元规模,系统的光谱范围取决于焦平面器件的响应波长范围,而系统的探测灵敏度则取决于焦平面探测器的波段探测率。由于光谱维多,因而单个通道的光辐射能量小。为满足光谱探测系统的要求,器件必须具有高像元规模、高灵敏度。由于自然界物质的分子振动特征光谱主要集中在1000-2600nm短波红外波段,且自然界目标在400-750nm可见光波段具有光子能量强,因此覆盖400-2600nm波段的光谱成像探测系统具有重要应用价值。
AVIRIS航空短波红外超光谱成像仪、Landsat8上搭载的陆地光谱成像仪等航天、航空可见-短波红外高光谱、超光谱载荷也大多采用Si线列探测器和InSb线列探测器双焦平面拼接技术方案,通过分光技术将光信号传输到各个不同响应波段的探测器,实现覆盖400-2600nm可见-近红外宽光谱范围的光谱成像探测。由于采用多探测器拼接,导致系统光学系统复杂,体积重量庞大。此外,InSb探测器暗电流大、制冷需求大、探测率低。体积功耗和灵敏度等成为该类遥感仪器发展的主要制约之一。
III-V族短波红外InGaAs探测器在同样的工作温度下具有较好的性能、探测率高、均匀性好等优点,使得仪器小型化、低功耗和可靠性大大提高,已经成为遥感卫星有效载荷上扫描成像仪、短波红外相机、成像光谱仪等先进光电遥感仪器的核心器件之一。常规InGaAs焦平面响应波段覆盖1-1.7μm,室温下暗电流密度低至5nA/cm2,探测率高达5×1012cmHz1/2/W。具有低噪声、高灵敏度、低功耗、工艺成熟的技术优势。
目前,已有响应波段覆盖400-1700nm的InGaAs焦平面探测器报道。2005年,美国Sensor Unlimited公司报道了基于InP基底剥离工艺的InGaAs可见拓展焦平面探测器,400nm波长量子效率为15%(T.Martin et al.,Proc.of SPIE 5783,12-20(2005))。2012年,以色列SCD公司也报道了类似的可见拓展InGaAs焦平面器件(R.Fraenkel et al.,Proc.of SPIE 8353,835305-1(2012))。而满足高光谱应用的响应范围覆盖400-2600nm的焦平面探测器目前尚无。常规高铟组分InGaAs探测器外延材料存在应力引起的晶圆翘曲问题,制备形成的焦平面探测器由于翘曲形变在数微米至数十微米,无法精确地均匀剥离衬底层至剩余数十纳米。此外,由于常规高铟组分InGaAs探测器采用递变晶格缓冲结构,位错缺陷的穿透效应,导致材料中存在大量穿通缺陷,在采用湿法化学腐蚀时,溶液沿穿通缺陷的钻蚀使得器件失效。
发明内容
本发明所要解决的技术问题是提供一种光响应范围覆盖400-2600nm的宽光谱铟镓砷焦平面探测器。
为解决上述问题,本发明公开了一种400-2600nm宽光谱InGaAs焦平面探测器,其结构在InP衬底1上依次有InP腐蚀牺牲层2,周期性薄层低维量子点层3,腐蚀截止层4,In0.83Ga0.17As光吸收层5和重掺杂接触层6。见附图1。
进一步地,所述400-2600nm宽光谱InGaAs焦平面探测器的周期性薄层低维量子点层3结构如下:
周期性薄层低维量子点层为InxAl1-xAs/InAs,其中x由0.52均匀增加至0.83,包含4-20个子周期,每周期内铟组分均匀递增,累计厚度不超过2μm。
或者周期性薄层低维量子点层为InAsyP1-y/InAs,其中y由0均匀增加至0.61,包含4-20个子周期,每周期内铟组分均匀递增,累计厚度不超过2μm。
进一步地,当周期性薄层低维量子点层3为InxAl1-xAs/InAs时,所述腐蚀截止层4为InAs0.61P0.39;当周期性薄层低维量子点层3为InAsyP1-y/InAs时,所述腐蚀截止层4为In0.83Al0.17As;所述腐蚀截止层4厚度为20-200nm,掺杂类型为N型,掺杂浓度介于5×1017cm-3至1×1019cm-3之间。
进一步地,所述400-2600nm宽光谱InGaAs焦平面探测器的In0.83Ga0.17As光吸收层5的掺杂类型为N型,掺杂浓度介于1×1015cm-3至1×1017cm-3之间;
进一步地,所述400-2600nm宽光谱InGaAs焦平面探测器的重掺杂接触层6为In0.83Al0.17As或InAs0.61P0.39,厚度为200-1000nm,掺杂类型为P型,掺杂浓度介于5×1017cm-3至1×1019cm-3之间。
本发明还公开了一种制备上述400-2600nm宽光谱InGaAs焦平面探测器的方法,包括以下步骤:
1)产生与读出电路混成互连的In0.83Ga0.17As焦平面探测器模块;
2)用机械研磨将InP基底1厚度减薄至剩余小于20μm。
3)用含盐酸和磷酸的化学溶液,腐蚀去除余下InP基底1及InP腐蚀牺牲层2,并对周期性薄层低维量子点层3选择性截止。
4)用含酒石酸和双氧水的化学溶液,腐蚀去除周期性薄层低维量子点层3并对腐蚀截止层4选择性截止。
5)用离子干法精确刻蚀去除部分腐蚀截止层4,至剩余腐蚀截止层4厚度小于50nm。此时,InGaAs焦平面具备400-2600nm波长范围入射光子的宽谱响应能力。
有益效果
(1)得益于选择性化学腐蚀的材料损伤低、选择比高的技术特点,本发明在InP基底与InGaAs光吸收层之间采用InP腐蚀牺牲层和周期性量子点层的双牺牲层结构设计,以及匹配双选择性化学腐蚀工艺设计以及Ar离子刻蚀方法,可实现对腐蚀截止层厚度的纳米级控制,实现高精度、低损伤基底剥离。
(2)本发明所述包含腐蚀截止层–InGaAs光吸收层的焦平面结构设计,可同时兼容InGaAs/InP、InGaAs/InAlAs、InGaAs/InAlGaAs等多种结构,兼容P-on-N和N-on-P掺杂结构,具有广泛的结构适用性。
(3)本发明所述的周期性薄层低维量子点层结构,采用亚微米薄层低维量子点层,引入周期性InxAl1-xAs/InAs和InAsyP1-y/InAs量子点缺陷束缚层,将位错缺陷局域在周期性薄层中,实现高速低位错缺陷应变释放。
(3)由于InAlAs和InAsP对可见光的光子存在吸收,InGaAs光吸收层在400-900nm范围内的量子效率与InAsP腐蚀截止层厚度成反比。本发明的周期性量子点层-腐蚀截止层-InGaAs光吸收层结构设计和高选择性化学腐蚀以及Ar离子刻蚀的工艺设计,使得可以精确地将腐蚀截止层控制到10-50nm,实现焦平面对可见光波段的高量子效率吸收。
(4)本发明的焦平面结构设计与制造工艺,均与现有InGaAs材料外延工艺及InGaAs焦平面制备工艺兼容,实现单片InGaAs焦平面的400-2600nm光谱范围响应能力,有利于实现小型化、低功耗、高灵敏度的红外系统,提升高光谱、超光谱等红外光电系统的成像探测能力。
附图说明
图1为本发明的400-2600nm宽光谱InGaAs焦平面探测器结构示意图,其中:1-InP基底,2-InP腐蚀牺牲层,3-周期性薄层低维量子点层,4-腐蚀截止层,5-In0.83Ga0.17As吸收层,6-重掺杂接触层。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,该实施例仅用于说明本发明而不用于限定本发明的范围。此处应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
本实施例目的是针对采用In0.83Ga0.17As光吸收层和背照射结构的焦平面,采用本发明公开的探测器材料结构和制造方法,实现具有400-2600nm的可见-近红外宽光谱响应能力的InGaAs/InAlAs焦平面,验证本发明的可行性。其结构由下至上依次包括:
①半绝缘(S.I.)InP(001)基底,厚度625μm;
②N型InP腐蚀牺牲层,同时作为外延缓冲层和电极接触层,厚度200nm;
③InxAl1-xAs/InAs周期性薄层低维量子点层(0.52≤x≤0.83),由下至上依次包括厚度为100nm的In0.52Al0.48As/InAs、100nm的In0.59Al0.41As/InAs、100nm的In0.67Al0.33As/InAs、100nm的In0.75Al0.15As/InAs和100nm的In0.83Al0.17As/InAs。
④N型重掺杂(N+)InAs0.61P0.39腐蚀截止层,厚度100nm,掺杂浓度为
1×1018cm-3
⑤非故意掺杂In0.83Ga0.17As光吸收层,厚度1600nm,掺杂浓度为5×1015cm-3
⑥P型重掺杂(P+)In0.83Al0.17As接触层,厚度530nm,掺杂浓度为1×1018cm-3
400-2600nm可见-近红外宽谱响应焦平面制造步骤如下:
(1)将In0.83Ga0.17As焦平面光敏芯片与匹配的Si读出电路芯片采用铟柱互联的方式倒焊,在铟柱空隙处填充胶性粘合剂并固化,形成焦平面模块。
(2)将上步产生的模块的读出电路一侧与石英载盘以石蜡融化固定,采用机械研磨抛光机装载石英载盘。使用刚玉粉抛光液将InP基底一侧在研磨盘上机械旋转研磨减薄至50μm,进一步使用刚玉粉抛光液将InP基底一侧在研磨盘上机械旋转研磨减薄并抛光至20μm。
(3)将上步产生的减薄抛光后模块浸入HCl:H3PO4:H2O=1:3:3腐蚀液,腐蚀掉减薄后剩余的20μm InP基底层及后续200nm InP牺牲层。该腐蚀液对InAlAs选择性截止。
(4)将上步产生的减薄抛光后模块浸入酒石酸溶液(酒石酸:H2O=1:1):H2O2=10:1腐蚀液,腐蚀掉周期性量子点层。该腐蚀液对InAsP接触层选择性截止。
(5)加热模块并取下清洗。采用Ar离子刻蚀方法,对残留的周期性量子点层和部分InAsP腐蚀截止层进行刻蚀,使InAsP腐蚀截止层精准控制在50nm。
上述工艺完成后,获得具备对400-2600nm波长范围入射光子的宽谱响应能力的InGaAs焦平面探测器。
实施例2
本实施例的宽光谱In0.83Ga0.17As焦平面结构由下至上依次包括:
①半绝缘(S.I.)InP(001)基底,厚度625μm;
②N型InP腐蚀牺牲层,同时作为外延缓冲层和电极接触层,厚度200nm;
③InAsyP1-y/InAs周期性薄层低维量子点层(0<y≤0.61),由下至上依次包括厚度为100nm的InAs0.12P0.88/InAs、100nm的InAs0.24P0.76/InAs、100nm的InAs0.37P0.63/InAs,100nm的InAs0.49P0.51/InAs和100nm的InAs0.61P0.39/InAs。
④N型重掺杂(N+)In0.83Al0.17As腐蚀截止层,厚度100nm,掺杂浓度为1×1018cm-3
⑤非故意掺杂In0.83Ga0.17As光吸收层,厚度1600nm,掺杂浓度为5×1015cm-3
⑥P型重掺杂(P+)In0.83Al0.17As接触层。厚度530nm,掺杂浓度为1×1018cm-3。400-2600nm可见-近红外宽谱响应焦平面制造步骤如下:
(1)将In0.83Ga0.17As焦平面光敏芯片与匹配的Si读出电路芯片采用铟柱互联的方式倒焊,在铟柱空隙处填充胶性粘合剂并固化,形成焦平面模块。
(2)将上步产生的模块的读出电路一侧与石英载盘以石蜡融化固定,采用机械研磨抛光机装载石英载盘。使用刚玉粉抛光液将InP基底一侧在研磨盘上机械旋转研磨减薄至50μm,进一步使用刚玉粉抛光液将InP基底一侧在研磨盘上机械旋转研磨减薄并抛光至20μm。
(3)将上步产生的减薄抛光后模块浸入酒石酸溶液(酒石酸:H2O=1:1):H2O2=10:1腐蚀液,腐蚀掉减薄后剩余的20μm InP基底层及后续200nm InP牺牲层。该腐蚀液对InAsP选择性截止。
(4)将上步产生的减薄抛光后模块浸入HCl:H3PO4:H2O=1:3:3腐蚀液,腐蚀掉周期性量子点层。该腐蚀液对InAlAs腐蚀截止层层选择性截止。
(5)加热模块并取下清洗。采用Ar离子刻蚀方法,对残留的周期性量子点层和部分InAlAs腐蚀截止层进行刻蚀,使InAlAs腐蚀截止层精准控制在50nm。
上述工艺完成后,获得具备对400-2600nm波长范围入射光子的宽谱响应能力的InGaAs焦平面探测器。
实施例3
本实施例的宽光谱In0.83Ga0.17As焦平面结构由下至上依次包括:
①半绝缘(S.I.)InP(001)基底,厚度625μm;
②N型InP腐蚀牺牲层,同时作为外延缓冲层和电极接触层,厚度200nm;
③InxAl1-xAs/InAs周期性薄层低维量子点层(0.52≤x≤0.83),由下至上依次包括厚度为100nm的In0.52Al0.48As/InAs、100nm的In0.56Al0.44As/InAs、100nm的In0.61Al0.39As/InAs、100nm的In0.65Al0.35As/InAs、100nm的In0.70Al0.30As/InAs、100nm的In0.74Al0.26As/InAs、100nm的In0.78Al0.22As/InAs和100nm的In0.83Al0.17As/InAs。
④N型重掺杂(N+)InAs0.61P0.39腐蚀截止层,厚度100nm,掺杂浓度为5×1018cm-3
⑤非故意掺杂In0.83Ga0.17As光吸收层,厚度1600nm,掺杂浓度为3×1016cm-3
⑥P型重掺杂(P+)InAs0.61P0.39接触层,厚度600nm,掺杂浓度为5×1018cm-3。400-2600nm可见-近红外宽谱响应焦平面制造步骤如下:
(1)将In0.83Ga0.17As焦平面光敏芯片与匹配的Si读出电路芯片采用铟柱互联的方式倒焊,在铟柱空隙处填充胶性粘合剂并固化,形成焦平面模块。
(2)将上步产生的模块的读出电路一侧与石英载盘以石蜡融化固定,采用机械研磨抛光机装载石英载盘。使用刚玉粉抛光液将InP基底一侧在研磨盘上机械旋转研磨减薄至50μm,进一步使用刚玉粉抛光液将InP基底一侧在研磨盘上机械旋转研磨减薄并抛光至20μm。
(3)将上步产生的减薄抛光后模块浸入HCl:H3PO4:H2O=1:3:3腐蚀液,腐蚀掉减薄后剩余的20μm InP基底层及后续200nm InP牺牲层。该腐蚀液对InAlAs选择性截止。
(4)将上步产生的减薄抛光后模块浸入酒石酸溶液(酒石酸:H2O=1:1):H2O2=10:1腐蚀液,腐蚀掉周期性量子点层。该腐蚀液对InAsP接触层选择性截止。
(5)加热模块并取下清洗。采用Ar离子刻蚀方法,对残留的周期性量子点层和部分InAsP腐蚀截止层进行刻蚀,使InAsP腐蚀截止层精准控制在50nm。
上述工艺完成后,获得具备对400-2600nm波长范围入射光子的宽谱响应能力的InGaAs焦平面探测器。

Claims (4)

1.一种宽谱铟镓砷焦平面的结构,其特征在于:
所述铟镓砷焦平面的结构以InP为基底(1),在基底上依次有InP腐蚀牺牲层(2),周期性薄层低维量子点层(3),腐蚀截止层(4),In0.83Ga0.17As光吸收层(5)和重掺杂接触层(6);
所述的周期性薄层低维量子点层为InxAl1-xAs/InAs,其中x由0.52均匀增加至0.83,包含4-20个子周期,每周期内铟组分均匀递增,累计厚度不超过2μm;或者周期性薄层低维量子点层为InAsyP1-y/InAs,其中y由0均匀增加至0.61,包含4-20个子周期,每周期内铟组分均匀递增,累计厚度不超过2μm。
2.根据权利要求1所述的一种宽谱铟镓砷焦平面的结构,其特征在于:
所述腐蚀截止层(4)厚度为20-200nm,掺杂类型为N型,掺杂浓度介于5×1017cm-3至1×1019cm-3之间;
当周期性薄层低维量子点层(3)为InxAl1-xAs/InAs时,所述腐蚀截止层(4)为InAs0.61P0.39
当周期性薄层低维量子点层为InAsyP1-y/InAs时,所述腐蚀截止层(4)为In0.83Al0.17As。
3.根据权利要求1所述的一种宽谱铟镓砷焦平面的结构,其特征在于:所述In0.83Ga0.17As光吸收层(5),掺杂类型为N型,掺杂浓度介于1×1015cm-3至1×1017cm-3之间。
4.根据权利要求1所述的一种宽谱铟镓砷焦平面的结构,其特征在于:所述重掺杂接触层(6)为In0.83Al0.17As或InAs0.61P0.39,厚度为200-1000nm,掺杂类型为P型,掺杂浓度介于5×1017cm-3至1×1019cm-3之间。
CN202210123379.XA 2022-02-10 2022-02-10 一种宽谱铟镓砷焦平面的结构及其制备方法 Active CN114551618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210123379.XA CN114551618B (zh) 2022-02-10 2022-02-10 一种宽谱铟镓砷焦平面的结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210123379.XA CN114551618B (zh) 2022-02-10 2022-02-10 一种宽谱铟镓砷焦平面的结构及其制备方法

Publications (2)

Publication Number Publication Date
CN114551618A CN114551618A (zh) 2022-05-27
CN114551618B true CN114551618B (zh) 2023-09-12

Family

ID=81673323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210123379.XA Active CN114551618B (zh) 2022-02-10 2022-02-10 一种宽谱铟镓砷焦平面的结构及其制备方法

Country Status (1)

Country Link
CN (1) CN114551618B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773729A (zh) * 2005-09-23 2006-05-17 中国科学院上海技术物理研究所 自放大红外探测器
CN101262025A (zh) * 2008-04-18 2008-09-10 中国科学院上海技术物理研究所 量子放大的p型量子阱红外探测器
WO2011050165A2 (en) * 2009-10-21 2011-04-28 Stc.Unm Plasmonic detectors
CN102790100A (zh) * 2012-08-15 2012-11-21 中国科学院物理研究所 一种基于中间能带的InSb量子点多色红外探测器
CN108878585A (zh) * 2018-06-25 2018-11-23 中国科学院半导体研究所 多波段可见光至近红外焦平面探测器的制备方法
CN110047967A (zh) * 2019-03-29 2019-07-23 中国科学院上海技术物理研究所 一种宽谱InGaAs雪崩焦平面探测器及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906326B2 (en) * 2003-07-25 2005-06-14 Bae Systems Information And Elecronic Systems Integration Inc. Quantum dot infrared photodetector focal plane array
US7351601B2 (en) * 2003-10-15 2008-04-01 California Institute Of Technology Methods of forming nanocavity laser structures
US8071945B2 (en) * 2007-08-01 2011-12-06 Stc.Unm Infrared retina
JP4538516B2 (ja) * 2008-08-08 2010-09-08 防衛省技術研究本部長 光半導体装置
US9537027B2 (en) * 2013-03-28 2017-01-03 University Of Massachusetts Backside configured surface plasmonic structure for infrared photodetector and imaging focal plane array enhancement
JP6822151B2 (ja) * 2017-01-06 2021-01-27 富士通株式会社 光検知器及び撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773729A (zh) * 2005-09-23 2006-05-17 中国科学院上海技术物理研究所 自放大红外探测器
CN101262025A (zh) * 2008-04-18 2008-09-10 中国科学院上海技术物理研究所 量子放大的p型量子阱红外探测器
WO2011050165A2 (en) * 2009-10-21 2011-04-28 Stc.Unm Plasmonic detectors
CN102790100A (zh) * 2012-08-15 2012-11-21 中国科学院物理研究所 一种基于中间能带的InSb量子点多色红外探测器
CN108878585A (zh) * 2018-06-25 2018-11-23 中国科学院半导体研究所 多波段可见光至近红外焦平面探测器的制备方法
CN110047967A (zh) * 2019-03-29 2019-07-23 中国科学院上海技术物理研究所 一种宽谱InGaAs雪崩焦平面探测器及其制造方法

Also Published As

Publication number Publication date
CN114551618A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
US9076702B2 (en) Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same
Wu et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates
EP2023398B1 (en) Infrared sensor IC, and infrared sensor and manufacturing method thereof
Jiang et al. Demonstration of a 256× 256 middle-wavelength infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors
Delaunay et al. Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs–GaSb superlattices
Gunapala et al. 640/spl times/512 pixel long-wavelength infrared narrowband, multiband, and broadband QWIP focal plane arrays
US9755090B2 (en) Quantum detection element with low noise and method for manufacturing such a photodetection element
US8143687B2 (en) Multi-band, reduced-volume radiation detectors and methods of formation
US20120193608A1 (en) Frontside-illuminated inverted quantum well infrared photodetector devices and methods of fabricating the same
US9647155B1 (en) Long wave photo-detection device for used in long wave infrared detection, materials, and method of fabrication
JP6471120B2 (ja) 光電変換素子およびそれを備えた光電変換装置
Delaunay et al. High-Performance Focal Plane Array Based on InAs–GaSb Superlattices With a 10-$\mu {\hbox {m}} $ Cutoff Wavelength
Rehm et al. InAs/(GaIn) Sb short-period superlattices for focal plane arrays
CN114551618B (zh) 一种宽谱铟镓砷焦平面的结构及其制备方法
CN102832289B (zh) 基于光子频率上转换的太赫兹成像器件、转换方法
Peters et al. Nanoantenna-enabled midwave infrared focal plane arrays
CN112204756A (zh) 在缓冲器上方形成的光电子器件
Lu et al. A modulation-doped longwave infrared quantum dot photodetector with high photoresponsivity
CN211700284U (zh) 一种集成光伏电池结构的红外探测器
Gravrand et al. Status of very long infrared-wave focal plane array development at DEFIR
Zheng et al. Update on III-V antimonide-based superlattice FPA development and material characterization
Dolaş Dark current optimization designs for mesa and planar type processed short wavelength infrared photodetectors
Vaillancourt et al. A voltage-tunable multispectral 320× 256 InAs/GaAs quantum-dot infrared focal plane array
Sundaram et al. Infrared imaging with quantum wells and strained layer superlattices
WANG et al. Ultra-broadband UV-VIS-SWIR InGaAs focal plane arrays via n-InP contact layer removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant