CN111705297A - 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法 - Google Patents

高性能晶圆级硫化铅近红外光敏薄膜及其制备方法 Download PDF

Info

Publication number
CN111705297A
CN111705297A CN202010532605.0A CN202010532605A CN111705297A CN 111705297 A CN111705297 A CN 111705297A CN 202010532605 A CN202010532605 A CN 202010532605A CN 111705297 A CN111705297 A CN 111705297A
Authority
CN
China
Prior art keywords
pbs
substrate
film
temperature
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010532605.0A
Other languages
English (en)
Other versions
CN111705297B (zh
Inventor
邱继军
骆英民
边继明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010532605.0A priority Critical patent/CN111705297B/zh
Publication of CN111705297A publication Critical patent/CN111705297A/zh
Priority to US17/345,539 priority patent/US11661648B2/en
Application granted granted Critical
Publication of CN111705297B publication Critical patent/CN111705297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种高性能晶圆级硫化铅近红外光敏薄膜及其制备方法,属于光电子器件领域。首先,对选取基底材料的表面进行清洁处理。其次,在高背景真空度下,将气化后的氧化剂引入真空蒸镀腔体,在洁净基底表面缓慢沉积PbS薄膜,获得颗粒适中、结构疏松、取向一致的微观结构。最后,在一定温度和压强条件下,载气携带碘蒸汽敏化处理S2所述PbS薄膜,得高性能晶圆级PbS光敏薄膜。本发明制备方法简单、制备成本低廉、重复性好,可实现晶圆级PbS光敏薄膜的制备,利于大规模商业化生产;制备PbS光敏薄膜光电探测率高,600K黑体室温峰值探测率>8×1010Jones;本发明制备PbS光敏薄膜表面光滑,晶圆级光敏面内相应不均匀性<5%,满足制备PbS百万像素级阵列成像系统的要求。

Description

高性能晶圆级硫化铅近红外光敏薄膜及其制备方法
技术领域
本发明属于光电子器件领域,涉及一种红外光导型探测器光敏薄膜及其制备方法。具体 是指采用真空物理低温氧化沉积技术制备对近红外(1~3μm)辐射敏感硫化铅(PbS)光敏薄 膜。所述的高性能是指室温峰值探测率(D*)不低于8×1010Jones。
背景技术
红外焦平面探测器是将不可见的红外辐射转变为可视图像,是探测、识别和分析物体红 外信息的核心部件。非制冷红外探测器无需制冷装置,能够在室温状态下工作,具有体积小、 质量轻、功耗小、寿命长、成本低、启动快等优点,在工业检测、制程控制、城市监控、消 防安保、交通管理、气车无人驾驶等领域得到了广泛的应用。
硫化铅(PbS)已被证实可用于开发非制冷近红(1-3μm)外光子型探测器,具有非常广 泛的应用前景。2001年,美国Litton Electro-Optical Systems公司采用湿化学制备方法成功制 备出混成式320×240像素规模、30μm像元尺寸PbS近红外光导型焦平面成像系统,开启了 非制冷光子型成像系统大规模研发的序幕(T.Beystrum,N.Jacksen,M.Sutton,et al.,Low cost 320×240Lead Salt Focal Plane Array,Proc.SPIE:InfraredImaging Systems:Design,Analysis, Modeling,and Testing XII,2001,4372,96-104)。作为制备铅盐薄膜的标准工艺,湿化学(CBD) 制备PbS技术较为成熟,辅助于温和的中低温氧化处理工艺(称之为敏化工艺),可获得高 灵敏度的PbS近红外探测器,满足军事领域对器件性能的苛刻要求。然而,湿化学PbS光敏 薄膜存在工艺复杂、薄膜表面粗糙、均匀度差、制作成本高、可重复操控性差、难于实现大 面积制备等问题,极大限制了PbS百万像素级阵列成像系统的发展,成为湿化学制备技术无 法逾越的障碍(T.H.Johnson,Lead SaltDetectors And Arrays PbS And PbSe,Proc.SPIE 0443: Infrared Detectors,1983,60-94;司俊杰,制备红外探测器光敏铅盐薄膜的方法, CN200610156551.2,2009.11.04;孙维国,胡荣武,硫化铅多晶薄膜的激光敏化方法, CN87102141,1991.05.15;陈松,亚红,孟锦等,一种可实现自校功能的硫化铅红外探测器, CN201620725303.4,2018.03.27;山奇,史智,肖竹,硫化铅红外探测器,CN94218772.5, 19960110;邓宏,陈金菊,韦敏,李国伟,一种(200)择优取向硫化铅薄膜的制备方法, CN101792930B,2011.12.21;石磊,孙喜桂,沈向丞等,一种化学液相法制备硫化铅薄膜的 方法,CN109559977A,实质审查的生效2019.03.01)。相比与CBD方法,物理工艺虽然易 于制备大面积、表面光滑、均匀度高的光敏薄膜,是突破湿化学工艺的技术壁垒最理想的替 代技术。
然而,现有制备PbS薄膜的物理工艺,如热蒸发法、磁控溅射法、分子束外延法、化学 气象沉积法等制造的PbS探测器不仅灵敏度低(比CBD工艺器件低一个量级),而且缺乏重现性,成为物理制备工艺产业化应用的最大技术壁垒(J.V.Morgan,U.S.3,026,218,1962。) 因此,开发高性能、晶圆级PbS光敏薄膜物理制备技术是推进百万像素级近红外非制冷成像 系统的关键。
发明内容
本发明的目的在于提供一种高性能晶圆级PbS光敏薄膜的物理制备方法。本发明方法简 单、重复性高,具有优异的红外光敏特性,且均匀性能达到晶圆尺寸。
为了达到上述目的,本发明采用的技术方案为:
一种高性能晶圆级硫化铅近红外光敏薄膜的制备方法,包括以下步骤:
S1:选取适宜的晶圆级基底材料,并对选取基底材料的表面进行清洁处理,用于提升PbS 薄膜和晶圆级基底的附着力。
S2:在高背景真空度下,将气化后的氧化剂引入真空蒸镀腔体,在S1所述洁净基底表面 缓慢沉积PbS薄膜,获得颗粒适中、结构疏松、取向一致的微观结构。
S3:在一定温度和压强条件下,载气携带碘蒸气敏化处理S2所述PbS薄膜,得高性能 晶圆级PbS光敏薄膜。
在上述技术方案中,步骤S1中所述晶圆级基底应具有良好的绝缘特性,且能够在高温 (>450℃)处理后依然保持良好的化学稳定性、机械性能和电学性能。包括但不限于高阻硅 (Si)、蓝宝石(Al2O3)、熔融石英玻璃(SiO2)、普通玻璃(Glass)、硫化锌(ZnS)、 硒化锌(ZnSe)、氟化钙(CaF2)中的一种。
在上述技术方案中,步骤S1中的晶圆级基底表面处理可采用但不限于湿化学清洗或者高 温热清洗。优选地,采用湿化学清洗处理。其工艺包括如下:
A:依次置于丙酮、乙醇、去离子水中进行超声清洗;
B:用酸洗、碱洗、等离子体清洗方式中的一种或多种清洗;
C:用去离子水对清洗后的基底进行洗净,干燥后得到表面洁净的晶圆级基底。
在上述技术方案中,步骤S2中引入真空腔室中的氧化剂包括但不限于卤素气体、臭氧、 双氧水等。优选地,采用卤素气体。其工艺如下:
A:真空室的背景真空度不低于2×10-4Pa;
B:流量控制在10~25sccm;
C:引入氧化剂后真空室中真空度维持在2~5×10-2Pa;
在上述技术方案中,步骤S2真空室中PbS薄膜制备可以采用但不限于电阻热蒸发、电 子束热蒸发或磁控溅射等沉积技术。优选地,采用电阻热蒸发沉积技术。其工艺如下:
A:PbS蒸发源的纯度不低于99.99%;
B:PbS沉积温度控制在50~120摄氏度;
C:PbS沉积速率控制在0.4~1.2微米/小时;
D:PbS厚度控制在1.2~1.5微米;
在上述技术方案中,步骤S3中引载气可以选择但不限于空气、高纯氧气(纯度不低于 99.99%)和惰性气体。优选的,采用氧气。其碘蒸气敏化工艺如下:
A:引载气的流量在1~10SCCM;
B:碘蒸气的流量控制在0.01~1sccm;
C:敏化压强控制在1.001~1.005标准大气压;
D:敏化温度控制在250~400摄氏度;温度降至250℃后停止供给碘蒸气;温度降至室温 后,停止供给引载气;
E:敏化时间控制在5~240min。
一种高性能晶圆级硫化铅近红外光敏薄膜,是由上述制备方法制备得到的。
本发明的有益效果在于:
(1)本发明制备方法简单,制备成本低廉,工艺控制简单易操作,重复性好,可实现晶 圆级PbS光敏薄膜的制备,有利于大规模商业化生产。
(2)本发明制备PbS光敏薄膜光电探测率高,600K黑体室温峰值探测率>8×1010Jones。
(3)本发明制备PbS光敏薄膜表面光滑,晶圆级光敏面内相应不均匀性<5%,满足制备 PbS百万像素级阵列成像系统的要求。
附图说明
图1典型PbS光敏薄膜截面SEM图像;
图2氧化剂流量对PbS光敏薄膜探测率的影响;
图3敏化工艺中敏化温度对PbS光敏薄膜探测率的影响;
图4敏化工艺中敏化时间对PbS光敏薄膜探测率的影响;
图5敏化工艺中氧气/碘气流量比对PbS光敏薄膜探测率的影响。
具体实施方式
下面结合实例及附图,对本发明进一步地详细说明,但本发明的实施方式不限于此。
实施例一
S1将3英寸普通玻璃依次置于丙酮、乙醇、去离子水中各超声清洗10min后,再置于浓硫酸中浸渍2h,随后采用流动的去离子水对玻璃基底进行反复冲洗,并再次用去离子水中 超声清洗10min,干燥后得到表面洁净的玻璃晶圆基底;
S2将洁净的玻璃晶圆基底送入PbS蒸发反应室内,待真空度达到5×10-4Pa后,将基底 温度升高到50℃后,逐渐升高PbS源温至喷发温度。随后引入流量为10sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在2×10-2Pa。稳定后,打开生长挡板,开始PbS薄膜沉积。2h后关闭挡板,以及停止PbS源及基底加热电源,并停止氯气输入。薄膜厚度为1.2微米。PbS沉积速率为0.6微米/小时。
S3将玻璃晶圆PbS薄膜置于敏化炉中,通入氧气,流量控制在10sccm,使得炉内压强 维持在1.001个大气压下。而后升温至400℃后,通入0.1sccm的碘蒸气,并维持30min。随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给氧气。此时,600K 黑体探测率室温峰值为2.5×1011Jones,如图2、图3、图4和图5中A点所示。
实施例二
S1将高阻硅晶圆放置于高温炉中进行高温氧化热清洗。热清洗温度为600℃,热清洗时 间为3h,氧气的流量为10sccm。
S2将洁净的Si晶圆送入PbS蒸发反应室内,待真空度达到5×10-4Pa后,将基底温度升 高到50℃后,逐渐升高PbS源温至喷发温度。随后引入流量为10sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在2×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。2h后关闭挡板和PbS源及基底加热电源,并停止氯气输入。薄膜厚度为1.2微米。PbS沉积 速率为0.6微米/小时。
S3将晶圆Si基底上PbS薄膜置于敏化炉中,通入氧气,流量控制在10sccm,使得炉内 压强维持在1.01个大气压下。而后升温至400℃后,通入0.1sccm的碘蒸气,并维持30min。 随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给氧气。此时,600 K黑体,PbS探测器室温峰值探测率为2.2×1011Jones。
实施例三
S1将3英寸普通玻璃晶圆依次置于丙酮、乙醇、去离子水中各超声清洗10min后,再置于浓硫酸中浸渍2h,随后采用流动的去离子水对基底进行反复冲洗,并再次在去离子水中 超声清洗10min,干燥后得到表面洁净的玻璃晶圆基底。
S2将洁净的玻璃基底送入PbS蒸发反应室内,待真空度达到2×10-4Pa后,将基底温度 升高到50℃后,逐渐升高PbS源温至喷发温度。随后引入流量为25sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在5×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。3h后关闭挡板和PbS源及基底加热电源,并停止氧化剂输入。薄膜厚度为1.2微米。PbS沉 积速率为0.4微米/小时。
S3将玻璃基底PbS薄膜置于敏化炉中,通入氧气,流量控制在10sccm,使得炉内压强 维持在1.005个大气压下。而后升温至400℃后,通入0.1sccm的碘蒸气,并维持30min。随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给氧气。此时,600K 黑体,PbS探测器室温峰值探测率为0.8×1011Jones,如图2中B点所示。
实施例四
S1将3英寸普通玻璃依次置于丙酮、乙醇、去离子水中各超声清洗10min后,再置于浓硫酸中浸渍2h,随后采用流动的去离子水对基底进行反复冲洗,并再次在去离子水中超声 清洗10min,干燥后得到表面洁净的基底。
S2将洁净的玻璃基底送入PbS蒸发反应室内,待真空度达到2×10-4Pa后,将基底温度 升高到50℃后,逐渐升高PbS源温至喷发温度。随后引入流量为10sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在2×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。2h后关闭挡板和PbS源及基底加热电源,并停止氧化剂输入。薄膜厚度为1.2微米。PbS沉 积速率为0.6微米/小时。
S3将玻璃基底PbS薄膜置于敏化炉中,通入氧气,流量控制在10sccm,使得炉内压强 维持在1.001个大气压下。而后升温至200℃后,通入0.1sccm的碘蒸气,并维持30min。随后开始降温,并停止供给碘蒸气。降至室温后,停止供给氧气。此时,600K黑体,PbS探测 器室温峰值探测率为0.78×1011Jones,如图3C点所示。
实施例五
S1将3英寸普通玻璃晶圆依次置于丙酮、乙醇、去离子水中各超声清洗10min后,再置于浓硫酸中浸渍2h,随后采用流动的去离子水对基底进行反复冲洗,并再次在去离子水中 超声清洗10min,干燥后得到表面洁净的玻璃晶圆基底;
S2将洁净的玻璃基底送入PbS蒸发反应室内,待真空度达到2×10-4Pa后,将基底温度 升高到50℃后,逐渐升高PbS源温至喷发温度。随后引入流量为10sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在2×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。2h后关闭挡板和PbS源及基底加热电源,并停止氧化剂输入。薄膜厚度为1.2微米。PbS沉 积速率为0.6微米/小时。
S3将玻璃基底PbS薄膜置于敏化炉中,通入氧气,流量控制在10sccm,使得炉内压强 维持在1.001个大气压下。而后升温至400℃后,通入0.1sccm的碘蒸气,并维持75min。随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给氧气。此时,600K 黑体,PbS探测器室温峰值探测率为0.92×1011Jones,如图4D点所示。
实施例六
S1将3英寸普通玻璃依次置于丙酮、乙醇、去离子水中各超声清洗10min后,再置于浓硫酸中浸渍2h,随后采用流动的去离子水对基底进行反复冲洗,并再次在去离子水中超声 清洗10min,干燥后得到表面洁净的基底;
S2将洁净的玻璃基底送入PbS蒸发反应室内,待真空度达到2×10-4Pa后,将基底温度 升高到50℃后,逐渐升高PbS源温至喷发温度。随后引入流量为10sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在2×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。2h后关闭挡板和PbS源及基底加热电源,并停止氧化剂输入。薄膜厚度为1.2微米。PbS沉 积速率为0.6微米/小时。
S3将玻璃基底PbS薄膜置于敏化炉中,通入氧气,流量控制在1sccm,使得炉内压强维 持在1.0001个大气压下。而后升温至400℃后,通入1sccm的碘蒸气,并维持2min。随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给氧气。此时,600K黑 体,PbS探测器室温峰值探测率为0.76×1011Jones,如图5E点所示。
实施例七
S1将3英寸普通玻璃依次置于丙酮、乙醇、去离子水中各超声清洗10min后,再置于浓硫酸中浸渍2h,随后采用流动的去离子水对基底进行反复冲洗,并再次在去离子水中超声 清洗10min,干燥后得到表面洁净的基底。
S2将洁净的玻璃基底送入PbS蒸发反应室内,待真空度达到2×10-4Pa后,将基底温度 升高到50℃后,逐渐升高PbS源温至喷发温度。随后引入流量为10sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在2×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。2h后关闭挡板和PbS源及基底加热电源,并停止氧化剂输入。薄膜厚度为1.2微米。PbS沉 积速率为0.6微米/小时。
S3将玻璃基底PbS薄膜置于敏化炉中,通入氧气,流量控制在1sccm,使得炉内压强维 持在1.001个大气压下。而后升温至400℃后,通入0.1sccm的碘蒸气,并维持10min。随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给氧气。此时,600K 黑体,PbS探测器室温峰值探测率为1.5×1011Jones,如图5F点所示。
实施例八
S1将3英寸普通玻璃依次置于丙酮、乙醇、去离子水中各超声清洗10min后,再置于浓硫酸中浸渍2h,随后采用流动的去离子水对基底进行反复冲洗,并再次在去离子水中超声 清洗10min,干燥后得到表面洁净的基底。
S2将洁净的玻璃基底送入PbS蒸发反应室内,待真空度达到2×10-4Pa后,将基底温度 升高到50℃后,逐渐升高PbS源温至喷发温度。随后引入流量为10sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在2×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。2h后关闭挡板和PbS源及基底加热电源,并停止氧化剂输入。薄膜厚度为1.2微米。PbS沉 积速率为0.6微米/小时。
S3将玻璃基底PbS薄膜置于敏化炉中,通入氧气,流量控制在10sccm,使得炉内压强 维持在1.01个大气压下。而后升温至400℃后,通入0.01sccm的碘蒸气,并维持240min。随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给氧气。此时,600 K黑体,PbS探测器室温峰值探测率为2.0×1011Jones,如图5G点所示。
实施例九
S1将3英寸普通玻璃晶圆依次置于丙酮、乙醇、去离子水中各超声清洗10min后,再置于浓硫酸中浸渍2h,随后采用流动的去离子水对基底进行反复冲洗,并再次在去离子水中 超声清洗10min,干燥后得到表面洁净的玻璃晶圆基底。
S2将洁净的玻璃基底送入PbS蒸发反应室内,待真空度达到2×10-4Pa后,将基底温度 升高到120℃后,逐渐升高PbS源温至喷发温度。随后引入流量为20sccm的氯气,并调节真空系统抽力使得反应室内的真空度维持在4×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。3h后关闭挡板和PbS源及基底加热电源,并停止氧化剂输入。薄膜厚度为1.3微米。PbS沉积速率为0.45微米/小时。
S3将玻璃基底PbS薄膜置于敏化炉中,通入氧气,流量控制在10sccm,使得炉内压强 维持在1.01个大气压下。而后升温至400℃后,通入0.1sccm的碘蒸气,并维持30min。随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给氧气。此时,600K 黑体,PbS探测器室温峰值探测率为1.6×1011Jones。
实施例十
S1将蓝宝石(Al2O3)晶圆放置于高温炉中进行高温氧化热清洗。热清洗温度为600℃, 热清洗时间为3h,氧气的流量为10sccm。
S2将洁净的蓝宝石晶圆送入PbS蒸发反应室内,待真空度达到8×10-4Pa后,将基底温 度升高到120℃后,逐渐升高PbS源温至喷发温度。随后引入流量为18sccm的臭氧,并调节真空系统抽力使得反应室内的真空度维持在5×10-2Pa。稳定后,打开生长挡板,开始PbS沉积。沉积后关闭挡板和PbS源及基底加热电源,并停止臭氧输入。薄膜厚度为1.2微米,PbS沉积速率控制在0.8微米/小时。
S3将蓝宝石晶圆基底上PbS薄膜置于敏化炉中,通入空气,流量控制在2sccm,使得炉 内压强维持在1.001个大气压下。而后升温至360℃后,通入1sccm的碘蒸气,并维持3min。 随后开始降温,温度降至250℃后停止供给碘蒸气。降至室温后,停止供给空气。此时,600 K黑体,PbS探测器室温峰值探测率为1.1×1011Jones。
实施例十一
S1将硫化锌(ZnS)晶圆依次置于丙酮、乙醇、去离子水中各超声清洗10min后,干燥后得到表面洁净的基底。
S2将洁净的ZnS晶圆送入PbS蒸发反应室内,待真空度达到5×10-4Pa后,将基底温度 升高到80℃后,逐渐升高PbS源温至喷发温度。随后用氧气作为载气,通过过氧化氢液体, 流量为25sccm,并调节真空系统抽力使得反应室内的真空度维持在3×10-2Pa。稳定后,打开 生长挡板,开始PbS沉积。沉积后关闭挡板和PbS源及基底加热电源,并停止载气和过氧化 氢输入。薄膜厚度为1.5微米,PbS沉积速率控制在1.2微米/小时。
S3将ZnS晶圆基底上PbS薄膜置于敏化炉中,通入氩气,流量控制在5sccm,使得炉内压强维持在1.005个大气压下。而后升温至250℃后,通入0.01sccm的碘蒸气,并维持240min。随后开始降温并停止供给碘蒸气。降至室温后,停止供给氩气。此时,600K黑体,PbS探测器室温峰值探测率为0.96×1011Jones。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围 的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做 出若干变形和改进,这些均属于本发明的保护范围。

Claims (10)

1.一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,包括以下步骤
S1:选取适宜的基底材料,并对选取基底材料的表面进行清洗处理,得到表面洁净的基底;所述基底具有绝缘特性、且能够耐高温处理;
S2:在高背景真空度下,将气化后的氧化剂引入真空蒸镀腔体,在步骤S1得到的洁净基底表面缓慢沉积PbS薄膜,获得颗粒适中、结构疏松、取向一致的微观结构;所述引入氧化剂后真空室中真空度维持在2~5×10-2帕斯卡,引入氧化剂的流量控制在10~25sccm;所述PbS薄膜沉积温度控制在50~120摄氏度,PbS沉积速率控制在0.5~1.2微米/小时,PbS厚度控制在1.2~1.5微米;
S3:在200~400℃温度条件下,载气携带碘蒸汽敏化处理步骤S2得到的PbS薄膜,处理时间5~240min,得到高性能PbS光敏薄膜。
2.根据权利要求1所述的一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,步骤S1中所述基底能够耐>450℃的高温处理,包括高阻硅Si、蓝宝石Al2O3、熔融石英玻璃SiO2、普通玻璃、硫化锌ZnS、硒化锌ZnSe、氟化钙CaF2中的一种。
3.根据权利要求1所述的一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,所述步骤S1中的基底表面处理采用湿化学清洗或者高温热清洗;其工艺包括如下:
1)依次置于丙酮、乙醇、去离子水中进行超声清洗;
2)用酸洗、碱洗、等离子体清洗方式中的一种或多种清洗;
3)用去离子水对清洗后的基底进行洗净,干燥后得到表面洁净的基底。
4.根据权利要求3所述的一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,所述步骤S1中基底表面处理优选湿化学清洗处理。
5.根据权利要求1所述的一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,所述步骤S2中引入真空腔室中的氧化剂包括卤素气体、臭氧、双氧水,引入氧化剂后前真空室的背景真空度不低于5×10-4帕斯卡。
6.根据权利要求5所述的一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,所述步骤S2中引入真空腔室中的氧化剂优选卤素气体。
7.根据权利要求1所述的一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,所述步骤S2真空室中PbS薄膜沉积方法采用电阻热蒸发沉积技术、电子束热蒸发沉积技术或磁控溅射沉积技术,PbS蒸发源的纯度不低于99.99%。
8.根据权利要求7所述的一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,所述步骤S2真空室中PbS薄膜沉积方法优选电阻热蒸发沉积技术。
9.根据权利要求1所述的一种高性能晶圆级硫化铅近红外光敏薄膜制备方法,其特征在于,所述步骤S3中载气可以选择空气、高纯氧气和惰性气体,引载气流量在1-10sccm;碘蒸汽的流量控制在0.01~1sccm;敏化处理压强条件为1.001~1.005标准大气压。
10.一种高性能晶圆级硫化铅近红外光敏薄膜,其特征在于,所述高性能晶圆级硫化铅近红外光敏薄膜是由权利要求1-9任一所述的制备方法制备得到的,所述硫化铅近红外光敏薄膜的光电探测率高,600K黑体室温峰值探测率>8×1010Jones;其表面光滑,晶圆级光敏面内相应不均匀性<5%。
CN202010532605.0A 2020-06-12 2020-06-12 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法 Active CN111705297B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010532605.0A CN111705297B (zh) 2020-06-12 2020-06-12 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法
US17/345,539 US11661648B2 (en) 2020-06-12 2021-06-11 High-performance wafer-level lead sulfide near infrared photosensitive thin film and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010532605.0A CN111705297B (zh) 2020-06-12 2020-06-12 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111705297A true CN111705297A (zh) 2020-09-25
CN111705297B CN111705297B (zh) 2021-07-06

Family

ID=72540316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010532605.0A Active CN111705297B (zh) 2020-06-12 2020-06-12 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法

Country Status (2)

Country Link
US (1) US11661648B2 (zh)
CN (1) CN111705297B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531065A (zh) * 2020-12-22 2021-03-19 中国科学院重庆绿色智能技术研究院 用于红外光电的铅盐薄膜结构及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87102141A (zh) * 1987-03-21 1988-10-12 航空工业部第014中心 硫化铅多晶薄膜的激光敏化方法
CN101792930A (zh) * 2009-10-16 2010-08-04 电子科技大学 一种(200)择优取向硫化铅薄膜的制备方法
CN101983254A (zh) * 2008-03-14 2011-03-02 朗姆研究公司 用于将膜沉积至衬底上的方法
CN102203954A (zh) * 2008-10-31 2011-09-28 Aqt太阳能公司 用于光伏应用的硫属元素化物合金溅射靶及其制造方法
CN102417204A (zh) * 2011-07-29 2012-04-18 天津大学 一种溶液化学原位反应合成硫化铅薄膜的方法
CN102994964A (zh) * 2012-12-07 2013-03-27 中国地质大学(北京) 一种金属硫化物掺杂类金刚石复合薄膜的制备方法
CN104995750A (zh) * 2012-12-13 2015-10-21 俄克拉何马大学董事会 多晶光检测器及使用和制造方法
US20160035919A1 (en) * 2013-11-06 2016-02-04 Samsung Electronics Co., Ltd. Quantum dot solar cell performance with a metal salt treatment
US20160079552A1 (en) * 2014-09-17 2016-03-17 National Taiwan University Perovskite solar cell
CN107315215A (zh) * 2017-06-15 2017-11-03 中国科学院合肥物质科学研究院 宽吸收光谱的硫化铅薄膜及其制备方法
CN110299430A (zh) * 2019-06-06 2019-10-01 华中科技大学 一种半导体薄膜光电探测器及其制备方法
CN111129198A (zh) * 2020-01-10 2020-05-08 中国科学院重庆绿色智能技术研究院 一种石墨烯/硫化铅红外探测器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3026218A (en) * 1956-12-21 1962-03-20 Eastman Kodak Co Procedure for forming photosensitive lead sulfide layers by vacuum evaporation
US6509066B1 (en) * 2000-05-02 2003-01-21 Bae Systems Information And Electronic Systems Integration Inc. Sensitized photoconductive infrared detectors
US8195039B2 (en) * 2007-12-12 2012-06-05 Advanced Integration, Inc. Delivery of iodine gas

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87102141A (zh) * 1987-03-21 1988-10-12 航空工业部第014中心 硫化铅多晶薄膜的激光敏化方法
CN101983254A (zh) * 2008-03-14 2011-03-02 朗姆研究公司 用于将膜沉积至衬底上的方法
CN102203954A (zh) * 2008-10-31 2011-09-28 Aqt太阳能公司 用于光伏应用的硫属元素化物合金溅射靶及其制造方法
CN101792930A (zh) * 2009-10-16 2010-08-04 电子科技大学 一种(200)择优取向硫化铅薄膜的制备方法
CN102417204A (zh) * 2011-07-29 2012-04-18 天津大学 一种溶液化学原位反应合成硫化铅薄膜的方法
CN102994964A (zh) * 2012-12-07 2013-03-27 中国地质大学(北京) 一种金属硫化物掺杂类金刚石复合薄膜的制备方法
CN104995750A (zh) * 2012-12-13 2015-10-21 俄克拉何马大学董事会 多晶光检测器及使用和制造方法
US20160035919A1 (en) * 2013-11-06 2016-02-04 Samsung Electronics Co., Ltd. Quantum dot solar cell performance with a metal salt treatment
US20160079552A1 (en) * 2014-09-17 2016-03-17 National Taiwan University Perovskite solar cell
CN107315215A (zh) * 2017-06-15 2017-11-03 中国科学院合肥物质科学研究院 宽吸收光谱的硫化铅薄膜及其制备方法
CN110299430A (zh) * 2019-06-06 2019-10-01 华中科技大学 一种半导体薄膜光电探测器及其制备方法
CN111129198A (zh) * 2020-01-10 2020-05-08 中国科学院重庆绿色智能技术研究院 一种石墨烯/硫化铅红外探测器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOSE MARIACLEMENTE DA SILVA FILHO等: "Perovskite Thin Film Synthesised from Sputtered Lead Sulphide", 《SCIENTIFIC REPORTS》 *
LIHUA ZHAO等: "Understanding sensitization behavior of lead selenide photoconductive detectors by charge separation model", 《JOURNAL OF APPLIED PHYSICS》 *
SRIKANTH REDDY TULSANI等: "Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell", 《JOURNAL OF COLLID AND INTERFACE SCIENCE》 *
魏小梅等: "红外敏感硫化铅薄膜的化学机理探讨", 《红外》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531065A (zh) * 2020-12-22 2021-03-19 中国科学院重庆绿色智能技术研究院 用于红外光电的铅盐薄膜结构及其制备方法
CN112531065B (zh) * 2020-12-22 2021-06-29 中国科学院重庆绿色智能技术研究院 用于红外光电的铅盐薄膜结构及其制备方法

Also Published As

Publication number Publication date
US20210388480A1 (en) 2021-12-16
US11661648B2 (en) 2023-05-30
CN111705297B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN100468787C (zh) 一种ZnO MSM型紫外光电导探测器的制备方法
JP6653377B2 (ja) 透明導電膜付き基板の製造方法、透明導電膜付き基板の製造装置、透明導電膜付き基板、及び太陽電池
CN109713058A (zh) 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
CN111705297B (zh) 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法
CN106024971A (zh) 单根硒微米管光电探测器及其制备方法和响应度增强方法
CN107819044B (zh) 一种硫化锑基光电探测器的制备方法
Patel et al. Preparation and characterization of SnO2 thin film coating using rf-plasma enhanced reactive thermal evaporation
CN110265501B (zh) 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法
CN102312201A (zh) 一种Al掺杂的氧化锌透明导电薄膜的制备方法
CN111705306A (zh) 一种锌掺杂氧化锡透明导电薄膜及其制备方法和用途
CN102943244A (zh) 一种钽酸锂薄膜离子束增强沉积制备工艺方法
CN112017945B (zh) 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法
CN113193069B (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
JPS6084716A (ja) 透明導電性膜およびその作成方法
CN114561617A (zh) 一种金属氧化物薄膜的制备方法及金属氧化物薄膜
Pokaipisit et al. Influence of annealing temperature on the properties of ITO films prepared by electron beam evaporation and ion-assisted deposition
Boukhenoufa et al. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol—gel dip coating process
Yousif et al. Structural, Optical and IV Characteristics of ITO/p-Si Heterojunction deposited by chemical Spray Pyrolysis
CN106653573B (zh) 一种晶硅薄膜的制备方法
CN116314390A (zh) 基于Ga2O3薄膜-PdTe2颗粒/Si杂化异质结的自驱动日盲紫外光电探测器
JPH03185769A (ja) 太陽電池
CN113594003B (zh) 复合石英窗的Cs2Te日盲紫外光电阴极及其制备方法
KR20140120663A (ko) 산화알루미늄아연 박막의 제조 방법
CN115125488B (zh) 基于混频脉冲反应磁控溅射制备的热敏薄膜
WO2023038251A1 (ko) 열 소산 어닐링을 이용한 금속 산화물 박막의 결정화 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant