CN112017945B - 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法 - Google Patents

利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法 Download PDF

Info

Publication number
CN112017945B
CN112017945B CN202010889166.9A CN202010889166A CN112017945B CN 112017945 B CN112017945 B CN 112017945B CN 202010889166 A CN202010889166 A CN 202010889166A CN 112017945 B CN112017945 B CN 112017945B
Authority
CN
China
Prior art keywords
vapor deposition
microwave plasma
chemical vapor
lead selenide
plasma chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010889166.9A
Other languages
English (en)
Other versions
CN112017945A (zh
Inventor
于乐泳
冯双龙
魏兴战
史浩飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing University
Priority to CN202010889166.9A priority Critical patent/CN112017945B/zh
Publication of CN112017945A publication Critical patent/CN112017945A/zh
Application granted granted Critical
Publication of CN112017945B publication Critical patent/CN112017945B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • C23C16/306AII BVI compounds, where A is Zn, Cd or Hg and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using ion beam radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明属于红外探测技术领域,一种利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法。该方法包括以下步骤:(1)采用热蒸发法在衬底上生长硒化铅薄膜;(2)采用微波等离子体化学气相沉积法处理硒化铅薄膜。本发明微波等离子处理方法没有导致硒元素流失,不改变原材料的元素构成与材料性质,仅烧结现象提高其结晶程度,增强光电性能。

Description

利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法
技术领域
本发明属于红外探测技术领域,一种利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法。
背景技术
硒化铅(PbSe)是一种典型的窄带半导体材料,吸收范围为3-30um,与中远红外吸收范围相对应,在红外探测器、太阳能电池、激光二极管等领域有着广泛的应用。近年来,硒化铅薄膜因其窄带宽度(EF=0.278ev)、量子效率高、光电灵敏度高、室温稳定性好等优点,引起了人们的广泛关注。通常,通过改变制备方法和相应的参数可以改变PbSe薄膜的组成和微观结构。目前已成功地利用化学镀液沉积、电化学沉积、热蒸发、脉冲激光沉积、分子束外延等多种化学、电化学和物理方法制备了PbSe薄膜。但是,一些明显的缺陷限制了应用程序的范围和开发。例如,在氧化环境中对制备好的PbSe薄膜进行退火,即敏化过程,是决定制备好的光电导探测器性能的关键因素。然而,关于敏化机理的澄清的分歧已经持续了很长时间,这可能会给此类器件的制造带来不确定性。伴随现代红外探测器探测波长范围和灵敏度要求不断提高,传统方法制备与处理PbSe材料的吸收选择性和热敏特性的限制,探索PbSe材料新型制备处理方法以及基于PbSe材料的红外探测器性能的提升正逐渐受到重视。
微波等离子体化学气相沉积(MPCVD)是一种常见的化学汽相淀积技术合成纳米结构或散装材料,如碳纳米管、无定形碳和钻石薄膜由于分子激发,离解和电离能够产生大量的高反应活性原子基态或兴奋和带电粒子在等离子体分子不平衡的功能。基于此方法,对PbSe材料加工处理的改善与升级,我们提出本专利提出一种利用微波等离子体化学气相沉积技术对红外探测器用PbSe薄膜进行快速加工的方法。
发明内容
本发明目的在于提供一种制备硒化铅薄膜的方法。
微波等离子体化学气相沉积法(MPCVD),MPCVD是一种常见的化学汽相淀积技术合成纳米结构或散装材料,如碳纳米管、无定形碳和钻石薄膜由于分子激发,离解和电离能够产生大量的高反应活性原子基态或兴奋和带电粒子在等离子体分子不平衡的功能。
传统高温退火的敏化处理方法的机理仍存在争议,对此类器件的制造带来不确定性。本发明基于微波等离子体化学气相沉积法(MPCVD),利用氩气等离子体能够扩散到PbSe薄膜表面,腐蚀内部的PbSe,通过调节改性的MPCVD设备中阳极离子的比例,利用有源Ar微波等离子体腐蚀PbSe薄膜。快速微波等离子处理避免硒原子流失,保证铅与硒的原子比约稳定在1:1。并在此基础上,使PbSe出现烧结现象,进一步提高其晶化程度与薄膜致密程度,增强其光电性能。本发明针对现在常用常用的高温敏化处理方法,旨在提供一种基于微波等离子体化学气相沉积技术的快速有效的处理方法,简化处理步骤,减少处理时间,增强处理过程的控制。
所述方法包括以下步骤:
(1)采用热蒸发法在硅或二氧化硅衬底上生长硒化铅薄膜;
(2)采用微波等离子体化学气相沉积法处理硒化铅薄膜。
进一步,在步骤(1)前对所述衬底清洗后用高纯氮气吹干。
进一步,步骤(1)所述热蒸发法具体为:将硒化铅粉末在300-400W功率下,5.0-6.0×104Pa压力下加热,优选为将硒化铅粉末在340W功率下,5.5×104Pa压力下加热。
进一步,所述硒化铅粉末的纯度≥99.99%。
进一步,步骤(2)所述微波等离子体化学气相沉积法中等离子刻蚀功率为65-75W,压强为0.5-1.5×10-1Pa,优选为所述微波等离子体化学气相沉积法中等离子刻蚀功率为70W,压强为10-1Pa。
进一步,步骤(2)所述微波等离子体化学气相沉积法中气体为氩气。
进一步,所述微波等离子体化学气相沉积法中微波等离子体化学气相沉积设备的功率的比例调至为400-700W。
进一步,步骤(2)所述微波等离子体化学气相沉积法使硒化铅出现烧结现象。
本发明目的在于还提供一种前述方法制备的硒化铅薄膜,所述硒化铅薄膜光电响应率≥126.4A/W。
本发明目的在于还提供一种前述的方法制备的硒化铅薄膜在在红外探测器和/或太阳能电池和/或激光二极管中的应用。
本发明的有益效果在于:
本发明微波等离子处理方法没有导致硒元素流失,不改变原材料的元素构成与材料性质,仅烧结现象提高其结晶程度,增强光电性能。
本发明方法简化处理步骤,减少处理时间,便于实验操作与实验控制。
本发明与传统高温退火的敏化过程相比,该制作过程简单可控,稳定性和可重复性高,且相应率高,这对器件的大批量生产有着至关重要的意义。
附图说明
此处所说明的附图用来提供对本方法的进一步理解,构成本申请的一部分。
图1为自制的MPCVD系统结构示意图。
图2为使用微波等离子体化学气相沉积技术(MPCVD)对PbSe薄膜进行快速加工的流程示意图。
图3为微波处理前后的电子扫描显微镜照片(SEM)。
图4为微波处理前后的XRD图像。
图5为未处理,退火处理,微波处理的光电响应图像。
具体实施方式
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1制备PbSe薄膜
参照图1,为自制的MPCVD系统结构示意图,该系统由家用微波炉(功率设置为700w)、供气系统、石英管(外径25mm)和真空泵组成,供气系统包括氩气、流量调节阀和进气阀。
参照图2,利用图2所示的微波等离子体化学气相沉积技术(MPCVD)对PbSe薄膜进行快速加工的流程示意图进行试验。
(1)用丙酮、去离子水和乙醇依次对Si/SiO2衬底进行超声清洗,高纯氮气吹干后干燥储存;
(2)高纯度PbSe粉末(99.99%)置于石墨坩埚中,坩埚/底物距离约26cm将PbSe源材料在340W功率下,5.5×104Pa基压下加热,沉积在Si/SiO2衬底上,得到制备好的PbSe薄膜;
(3)利用微波等离子体化学气相沉积技术(MPCVD),通过自制的MPCVD系统进行微波等离子处理,该系统由家用微波炉(功率设置为700w)、供气系统、石英管(外径25mm)和真空泵组成。将制备好的PbSe薄膜放入石英管中心,氩气Ar(70sccm)流入石英管,并持续泵送。最后,关闭微波炉/气阀,取出处理过的样品。
实施例1中,步骤(2)得到的PbSe薄膜进行显微镜拍片,然后经过步骤(3)进行微波等离子处理后进行显微镜拍片,如图3,左右两幅图分别是微波处理前和微波处理后图。
实施例1中,步骤(2)得到的PbSe薄膜进行XRD处理,然后经过步骤(3)进行微波等离子处理后再进行XRD处理,其微波处理前后的XRD图像如图4所示。
实施例1中,在未进行处理前(PbSe)进行光电相应测试,在经过步骤(2)处理后得到的PbSe薄膜(anneealing)进行光电响应测试,然后经过等离子微波处理后(plasma)再进行光电相应测试,光电相应测试图如图5所示。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种硒化铅薄膜的制备方法,其特征在于,其制备方法包括以下步骤:
(1)采用热蒸发法在硅或二氧化硅衬底上生长硒化铅薄膜;
(2)采用微波等离子体化学气相沉积法处理硒化铅薄膜;
步骤(2)所述微波等离子体化学气相沉积法中等离子刻蚀功率为65-75W,压强为0.5-1.5×10-1Pa;
步骤(2)所述微波等离子体化学气相沉积法中气体为氩气;
所述微波等离子体化学气相沉积法中微波等离子体化学气相沉积设备的功率的比例调至为400-700W;
步骤(2)所述微波等离子体化学气相沉积法使硒化铅出现烧结现象。
2.根据权利要求1所述的制备方法,其特征在于,在步骤(1)前对所述衬底清洗后用高纯氮气吹干。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述热蒸发法具体为:将硒化铅粉末在300-400W功率下,5.0-6.0×104Pa压力下加热。
4.根据权利要求3所述的制备方法,其特征在于,所述硒化铅粉末的纯度≥99.99%。
5.根据权利要求1-4任一所述的制备方法,其特征在于,所述硒化铅薄膜光电响应率≥126.4A/W。
6.权利要求5所述的制备方法制备的硒化铅薄膜在红外探测器和/或太阳能电池和/或激光二极管中的应用。
CN202010889166.9A 2020-08-28 2020-08-28 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法 Active CN112017945B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010889166.9A CN112017945B (zh) 2020-08-28 2020-08-28 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010889166.9A CN112017945B (zh) 2020-08-28 2020-08-28 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法

Publications (2)

Publication Number Publication Date
CN112017945A CN112017945A (zh) 2020-12-01
CN112017945B true CN112017945B (zh) 2022-02-11

Family

ID=73503885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010889166.9A Active CN112017945B (zh) 2020-08-28 2020-08-28 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法

Country Status (1)

Country Link
CN (1) CN112017945B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345972B (zh) * 2021-03-22 2024-05-14 江苏大学 一种分层多晶硒化铅光电薄膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200518A (zh) * 2015-10-14 2015-12-30 西北工业大学 一种基于氧离子束辅助沉积制备硒化铅多晶薄膜的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133364B2 (en) * 2004-02-17 2012-03-13 Advanced Integration, Inc. Formation of photoconductive and photovoltaic films
US7524776B2 (en) * 2004-11-30 2009-04-28 Spire Corporation Surface-activation of semiconductor nanostructures for biological applications
ATE415706T1 (de) * 2005-04-29 2008-12-15 Ministerio De Defensa Verfahren zum behandeln von ungekühlten, spektralselektiven bleiselenid-infrarotdetektoren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200518A (zh) * 2015-10-14 2015-12-30 西北工业大学 一种基于氧离子束辅助沉积制备硒化铅多晶薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Changes in the Conductivity of Lead-Selenide Thin Films after Plasma Etching;S.P.Zimin, I.I.Amirovb, V.V.Naumov;《Semiconductors》;20160802;第50卷(第8期);第1125-1127页 *

Also Published As

Publication number Publication date
CN112017945A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
US5173443A (en) Method of manufacture of optically transparent electrically conductive semiconductor windows
US4939043A (en) Optically transparent electrically conductive semiconductor windows
US5232749A (en) Formation of self-limiting films by photoemission induced vapor deposition
CN109713058A (zh) 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
CN108660416A (zh) 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器
CN112017945B (zh) 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法
US5776819A (en) Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using "safe" silicon source gas
CN110373636B (zh) 一种硅化钼过渡金属化合物薄膜材料的制备方法
Cheylan et al. Luminescence from Si nanocrystals in silica deposited by helicon activated reactive evaporation
McCandless et al. Vapor phase treatment of CdTe/CdS thin films with CdCl/sub 2: O/sub 2
CN108004506B (zh) 一种基于In合金的贵金属纳米颗粒及其制备方法
JP2878746B2 (ja) 光透過型電気伝導性半導体ウィンドー
CN111850556B (zh) 基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法
CN114566566A (zh) 一种氮化铝日盲光电探测器及其制备方法
Rudder et al. Planar magnetron sputtering of a‐Si: H and a‐Ge: H thin films
TW201027781A (en) Method and apparatus for fabricating IB-IIIA-VIA2 compound semiconductor thin films
Hsu et al. Efficient Metal‐Halide Perovskite Photovoltaic Cells Deposited via Vapor Transport Deposition
Pinarbasi et al. Hydrogenated amorphous silicon films deposited by DC planar magnetron reactive sputtering
Hassan et al. The Influence of RF power, pressure and substrate temperature on optical properties of RF Sputtered vanadium pentoxide thin films.
Maqsood et al. Properties of Cu-doped Zn Te thin films prepared by closed space sublimation (CSS) techniques
Learn et al. Reactive Deposition of Cubic Silicon Carbide
CN102517552A (zh) 一种硒化铅半导体薄膜的制备方法
CN113789574B (zh) 一种在二维材料cvd生长中掺入稀土材料的方法
JPS5935016A (ja) 含水素シリコン層の製造方法
CN118360579B (zh) 基于金属靶材制作钙钛矿薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant