CN111850556B - 基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法 - Google Patents

基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法 Download PDF

Info

Publication number
CN111850556B
CN111850556B CN202010651962.9A CN202010651962A CN111850556B CN 111850556 B CN111850556 B CN 111850556B CN 202010651962 A CN202010651962 A CN 202010651962A CN 111850556 B CN111850556 B CN 111850556B
Authority
CN
China
Prior art keywords
cobalt
cobalt selenide
dimensional
film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010651962.9A
Other languages
English (en)
Other versions
CN111850556A (zh
Inventor
吴幸
梁芳
王超伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202010651962.9A priority Critical patent/CN111850556B/zh
Publication of CN111850556A publication Critical patent/CN111850556A/zh
Application granted granted Critical
Publication of CN111850556B publication Critical patent/CN111850556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/3442Applying energy to the substrate during sputtering using an ion beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法,利用双离子束溅射技术在衬底上溅射生长一定厚度的钴膜,在此基础上,以氯化钴粉末、硒粉为反应源,以氩气为载气,利用化学气相沉积法制备硒化钴薄膜。在硒化钴薄膜上设置与其欧姆接触的金属电极为源漏电极,构成二维硒化钴薄膜基光电探测器。所得的硒化钴薄膜基光电探测器在室温下首次可实现450纳米到10.6微米激光的宽光谱响应波段,其响应率高达2.58瓦/安。本发明提供了一种新型高性能二维材料基室温宽光谱光电探测器,拓展了二维硒化钴材料在光电领域及磁光领域的应用。

Description

基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法
技术领域
本发明涉室温光电探测领域,尤其是一种二维硒化钴薄膜基室温宽光谱光电探测器及其制备方法。
背景技术
光电探测器在人们日常生活、安保、医学、工业、气候监测等方面有着广泛而且重要的应用,尤其在航天航空领域里的人造地球卫星探测和红外天文探测等,以及高端武器平台上的红外告警与制导、红外侦察、红外通讯等,更是发达国家重点关注与投入的研究热点,对发展尖端前沿科学技术、加强国防核心力量的建设具有举足轻重的意义。目前我国的红外探测技术正处于向第四代发展的起步阶段,特别是在对新一代低成本、室温红外探测器的探索和发展迫在眉睫。目前商业化的红外光电探测器主要以传统硅基、铟镓砷基以及碲镉汞基光电探测器为主,但是这些光电探测器的应用受限于其复杂的制备工艺、较高的成本和低温操作环境。相比于传统薄膜半导体材料,二维材料的纵向尺度在纳米级,其载流子浓度极易被外电场或极化电场调控,从而在室温下实现极低的暗电流,提升器件信噪比;二维材料在价带顶和导带底处存在很强的范霍夫奇点,出现很强的态密度峰,对光具有较强的吸收,更适用于光电探测器的制备。二维材料为高性能红外光电探测器的制备提供了理想的设计平台。近年来基于二维材料的长波红外光电探测器如黑磷基光电探测器、黑砷磷基长波红外光电探测器相继被发现,但此类器件在空气环境下不稳定,在光、氧、水等外部因素导致此类材料氧化。探寻室温环境稳定的二维材料基宽光谱光电探测器是近年来光电领域的研究热点。
发明内容
本发明的目的旨在解决上述问题而提供一种制备工艺简单、响应波段宽响应率高、室温空气稳定的新型二维硒化钴基室温宽光谱光电探测器。采用化学气相沉积法在镀有钴膜的衬底上沉积得到二维硒化钴薄膜,利用电极制备技术在硒化钴薄膜上制备与其欧姆接触的金属电极为源漏电极,构成二维硒化钴薄膜基光电探测器。硒化钴薄膜制备方法的特点是:以氯化钴粉末为一种钴源,有利于较低温度下化学气相沉积法制备高质量硒化钴薄膜,避免较高的生长温度破坏材料结构;利用双离子束溅射法在生长衬底上生长一定厚度的钴膜,以钴膜作为另一种钴源,利用硒化法制备硒化钴薄膜,进一步保证了高质量、大面积硒化钴薄膜的制备;由于硒化钴薄膜在红外光的照射下具有很强的光吸收,利用制备得到的硒化钴薄膜制作的光电探测器,在室温空气条件下的响应波段覆盖450纳米到10.6微米。此光电探测器具有优异的响应性能和探测性能。
实现本发明目的的具体技术方案是:
一种二维硒化钴薄膜的制备方法,是一种利用双离子束溅射技术和化学气相沉积法,以钴膜、氯化钴粉末、硒粉为前驱体,在衬底上沉积二维光电硒化钴薄膜的方法,特点是该方法包括以下具体步骤:
a)利用双子束溅射法以2.5纳米/分钟的速率在清洗干净的衬底上镀3-8纳米钴膜;
b)将镀有钴膜的衬底倾斜倒扣于装有氯化钴颗粒的石英舟上方,并将此石英舟放置在马弗炉高温区,将装有硒粉的石英舟置于马弗炉低温区,两石英舟的距离保持在8-15cm,将管内置换为真空状态;
c)向管内通入40-100 sccm的惰性气体,以50℃/分钟的速率将马弗炉迅速由室温升到300℃并在此温度下保持30分钟;以20-50℃/分钟的速率将马弗炉从300℃升至生长温度500-900℃,并在生长温度下保持8-35分钟;停止加热,马弗炉自然冷却至室温,即可在衬底上得到二维硒化钴薄膜。
所述衬底为二氧化硅-硅、蓝宝石或柔性云母。
一种上述方法制得的二维硒化钴薄膜。
一种基于所述二维硒化钴薄膜的室温宽光谱光电探测器的制备方法,该方法包括:
利用电子束曝光或者激光直写的方法在所述二维硒化钴薄膜上书写电极图案,利用热蒸发、磁控溅射或双离子束溅射方法沉积金属电极,利用剥离方法剥离金属电极,制得所述的室温宽光谱光电探测器;其中,所述金属电极为铬-金合金。
一种上述方法制得的基于二维硒化钴薄膜的室温宽光谱光电探测器。
所述的基于二维硒化钴薄膜的室温宽光谱光电探测器的光敏材料为二维硒化钴薄膜,其薄膜厚度为1~200纳米;所述金属电极作为源漏电极。
与已有技术相比,本发明有益效果体现在:
1)区别于普通的化学气相沉积方法利用单一前驱体制备二维单体材料,如“Phase-Tunable Synthesis of Ultrathin Layered TetragonalCoSe and NonlayeredHexagonal CoSe Nanoplates,Huifang Maet al., Adv. Mater.2019, 1900901”,本发明采用两种不同的钴源前驱体,一种是利用双离子束溅射法在衬底上生长的一定厚度的钴膜,另一种是氯化钴粉末。双离子束法蒸镀的钴膜为硒化法制备硒化钴薄膜提供了钴源,保证了高质量、大面积硒化钴薄膜的制备;氯化钴粉末较氧化钴粉末而言,具有较低的熔点,有利于较低温度下化学气相沉积制备高质量硒化钴薄膜,避免较高的生长温度破坏引入的缺陷结构。由流体动力学可知,衬底倾斜可以改变衬底上气体的流动方式,更有利于样品的沉积,本发明利用倾斜衬底放置这一设计,进一步促进了大面积硒化钴样品的制备。
2)本发明提供了一种工艺简单、成本低廉、室温环境稳定的硒化钴基宽光谱光电探测器的制备方法,室温条件下,该光电探测器在450纳米-10.6微米波长范围内均有显著的光响应,具有优异的光响应率和探测率。本发明首次实现了室温空气稳定的二维硒化钴基室温宽光谱探测器的制备,拓展了二维硒化钴材料的应用,为硒化钴在二维光电领域和磁光领域的研究提供了新的捷径。本发明提供了一种室温空气稳定的硒化钴基宽光谱光电探测器,为室温空气稳定的红外光电探测器家族新增一员。
3)硒化钴由于其本征的结构特征,很难通过剥离等方法得到薄层的硒化钴薄膜。化学气相沉积方法制备工艺简单,制备得到的材料结晶性高,层数尺寸可控。本发明采用硒化法和化学气相沉积法,成功制备了高质量薄层的硒化钴薄膜,解决了由于材料本征结构无法轻易实现薄层硒化钴薄膜制备的问题。
附图说明
图1为实施例1所制备的硒化钴薄膜光学图;
图2为实施例2所制备的硒化钴薄膜光学图;
图3为实施例1所制备的硒化钴薄膜能量色散X射线能谱图;
图4为实施例1所制备的硒化钴薄膜透射电子显微镜图和元素面扫图;
图5为实施例3所制备的硒化钴基探测器结构示意图;
图6为实施例3所制备的硒化钴基探测器的输出特性曲线图;
图7为实施例3所制备的硒化钴基探测器的光响应率-波长图;
图8为实施例3所制备的硒化钴基探测器在10.6微米激光激发下的光响应率随入射光功率变化曲线图。
具体实施方式
以下通过附图及具体实施例对本发明作进一步的详细说明。
实施例1
二维硒化钴薄膜在二氧化硅-硅衬底上的化学气相沉积生长,具体步骤为:
1、衬底清洗:以300纳米二氧化硅-硅衬底作为生长衬底,将衬底置于浓度为99.5%的丙酮溶液中,超声清洗30分钟后置于浓度为99.5 %的异丙醇溶液中,超声清洗30分钟后再置于去离子水中,超声清洗30分钟后将其取出并用氮气枪吹干。利用双离子束沉积的方法在清洗干净的衬底上以2.5纳米/分钟的速率镀上一层5纳米的钴膜,步骤如下:(1)将清洗干净的二氧化硅-硅衬底粘在金属片上,打开放气阀,打开腔体,将钴靶材和金属片分别放置在腔内对应的位置,关挡板和腔体;(2)关放气阀、开机气泵、上管阀、下管阀,腔内真空2 Pa以下开扩散泵、开高阀、关上管阀;(3)开分子泵控制器,2小时后打开电离开关,待气压计显示为2*10-3 Pa后,打开恒温循环器、制冷开关,充入氩气;(4)打开主辅电源,打开阴极、阳极、屏栅,加速按钮,将阴极电流调至5安培,阳极电压调制50伏,加速调至160伏;(5)调节屏栅数值为400 伏特,60 毫安,对应于镀钴膜的速度为2.5纳米/分钟;(6)开始溅射,打开挡板,等待溅射2分钟后,成功在衬底上溅射了5纳米的钴膜,关闭挡板,关闭相应程序,取出衬底,结束溅射,关掉设备。
2、前驱体准备:用电子天平称取18毫克氯化钴颗粒置于一石英舟载体中;用电子天平称取600毫克的硒粉放置在另一石英舟中。
3、化学气相沉积制备:将镀有钴膜的衬底倾斜倒扣于装有氯化钴颗粒的石英舟载体上,将此石英舟载体放置在马弗炉高温中心腔,将装有硒粉的石英舟放置在上游低温进气口处,硒粉与氯化钴的距离为8厘米。启动马弗炉前,打开载气装置,通入200 sccm的氩气1小时清洗管式炉,之后将氩气的气流流速调至80 sccm。启动马弗炉,以50℃/分钟的速率将马弗炉迅速由室温升到300℃并在此温度下保持30分钟;此处主要目的是进一步清洁管子,保持马弗炉的干净,避免反应过程中引入别的杂质如一些可能存在的有机物、水分子等;之后以30℃/分钟的速率将马弗炉从300℃升至生长温度700℃并在此温度下保温20分钟供前驱体气体充分反应,反应结束后管式炉自然降温至室温。之后关闭载气装置,关闭马弗炉电源,取出衬底,在光学显微镜下观察,衬底上沉积的六边形形状产物即为硒化钴薄膜,如图1所示,图中比列尺表示5微米;上述二氧化硅衬底上的产物经能量色散X射线光谱仪进行元素表征,如图3所示,材料元素钴与硒的比值似于1∶1.15,间接表明所制备的样品质量高;高分辨透射电镜图像及对应的选区电子衍射图如图4所示,结果表明样品结晶度高,缺陷少,通过衍射图谱和晶面间距的分析验证了此样品与硒化钴的晶体学参数一致。
实施例2
二维硒化钴薄膜在蓝宝石衬底上的化学气相沉积生长,具体步骤为:
1、衬底清洗:以蓝宝石衬底作为生长衬底,将衬底置于浓度为99.5 %的丙酮溶液中,超声清洗30分钟后置于浓度为99.5 %的异丙醇溶液中,超声清洗30分钟后再置于去离子水中,超声清洗30分钟后将其取出并用氮气枪吹干。利用双离子束沉积的方法在清洗干净的衬底上以2.5纳米/分钟的速率镀上一层3纳米的钴膜,步骤如下:(1)将清洗干净的蓝宝石衬底粘在金属片上,打开放气阀,打开腔体,将钴靶材和金属片分别放置在腔内对应的位置,关挡板和腔体;(2)关放气阀、开机气泵、上管阀、下管阀,腔内真空2 Pa以下开扩散泵、开高阀、关上管阀;(3)开分子泵控制器,2小时后打开电离开关,待气压计显示为2*10-3 Pa后,打开恒温循环器、制冷开关,充入氩气;(4)打开主辅电源,打开阴极、阳极、屏栅,加速按钮,将阴极电流调至5安培,阳极电压调制50伏特,加速调至160伏特;(5)调节屏栅数值为400伏特,60毫安,对应于镀钴膜的速度为2.5纳米/分钟;(6)开始溅射,打开挡板,等待溅射72秒后,成功在衬底上溅射了3纳米的钴膜,关闭挡板,关闭相应程序,取出衬底,结束溅射,关掉设备。
2、前驱体准备:用电子天平称取22毫克氯化钴颗粒置于一石英舟载体中;用电子天平称取400毫克的硒粉放置在另一石英舟中。
3、化学气相沉积制备:将镀有钴膜的衬底倾斜倒扣于装有氯化钴颗粒的石英舟载体上,将此石英舟载体放置在马弗炉高温中心腔,将装有硒粉的石英舟放置在上游低温进气口处,硒粉与氯化钴的距离为10厘米。启动马弗炉前,打开载气装置,通入200 sccm的氩气1小时清洗管式炉,之后将氩气的气流流速调至80 sccm。启动马弗炉,以50℃/分钟的速率将马弗炉迅速由室温升到300摄氏度并在此温度下保持30分钟;此处主要目的是进一步清洁管子,保持马弗炉的干净,避免反应过程中引入别的杂质如一些可能存在的有机物、水分子等;之后以40℃/分钟的速率将马弗炉从300℃升至生长温度650℃并在此温度下保温15分钟供前驱体气体充分反应,反应结束后管式炉自然降温至室温。之后关闭载气装置,关闭马弗炉电源,取出衬底,在光学显微镜下观察,衬底上沉积的六边形形状产物即为硒化钴薄膜,如图2所示,图中比列尺表示5微米。
实施例3
二维硒化钴薄膜基室温宽光谱光电探测器的制备,以实施例1制备得到的二维硒化钴薄膜为例,具体步骤为:
1)、利用旋涂机将聚甲基丙烯酸甲酯旋涂在有硒化钴薄膜的二氧化硅-硅衬底上,转速为4000转/分钟,旋涂时间为40秒;
2)、将涂好聚甲基丙烯酸甲酯的硒化钴薄膜衬底放置在加热台上固化5分钟,固化温度为150摄氏度;
3)、利用电子束曝光的方法将电极图形化在固化好的硒化钴薄膜衬底上;
4)、将曝光好的样品放入显影液中显影10-30秒,再将显影好的样品放入异丙醇中去除显影液,之后用氮气枪吹干,在显微镜下可观察到电极图案在硒化钴薄膜上;
5)、利用热蒸发的方法蒸镀15纳米/60纳米的铬/金合金电极,蒸铬的速率为0.1埃/秒,蒸金的速率为0.3埃/秒;
6)、将蒸镀好电极的硒化钴样品放入丙酮中在50℃的加热台上剥离20分钟,之后取出来放入异丙醇中清洗并用氮气枪吹干。
图5为制备得到的二维硒化钴薄膜基光电探测器结构图,1为硅衬底,2为二氧化硅绝缘膜,3为铬金电极,4为二维硒化钴薄膜。图6为二维硒化钴薄膜基光电探测器的输出特性曲线图,可知样品与电极良好的欧姆接触,图7为二维硒化钴薄膜基光电探测器在450纳米、637纳米、830纳米、940纳米、131纳米、1550纳米、2698纳米、3638纳米、4135纳米激光激发下的光响应率曲线图,展示了此材料从可见到中红外的宽光谱光响应性能。图8为在10.6微米激光照射下,维硒化钴薄膜基光电探测器光响应率随入射光功率变化曲线图,入射功率越小,光响应率越大。偏压为1伏时,入射光功率为0.465微瓦时,其光响应高达2.58安培/瓦特。本发明首次实现了二维硒化钴在长波红外探测器上的应用,为光电领域提供了一种新的可选择的红外长波光电材料。
以上实施例只是对本发明做进一步说明,并非用以限制本发明,在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。

Claims (6)

1.一种二维硒化钴薄膜的制备方法,其特征在于,该方法包括以下具体步骤:
利用双子束溅射法以2.5纳米/分钟的速率在清洗干净的衬底上镀3-8纳米钴膜;
将镀有钴膜的衬底倾斜倒扣于装有氯化钴颗粒的石英舟上方,并将此石英舟放置在马弗炉高温区,将装有硒粉的石英舟置于马弗炉低温区,两石英舟的距离保持在8-15cm,将管内置换为真空状态;
向管内通入40-100 sccm的惰性气体,以50℃/分钟的速率将马弗炉迅速由室温升到300℃并在此温度下保持30分钟;以20-50℃/分钟的速率将马弗炉从300℃升至生长温度500-900℃,并在生长温度下保持8-35分钟;停止加热,马弗炉自然冷却至室温,即可在衬底上得到二维硒化钴薄膜。
2.根据权利要求1所述的制备方法,其特征在于,所述衬底为二氧化硅-硅、蓝宝石或柔性云母。
3.一种权利要求1所述方法制得的二维硒化钴薄膜。
4.一种基于权利要求3所述二维硒化钴薄膜的室温宽光谱光电探测器的制备方法,其特征在于,该方法包括:
利用电子束曝光或者激光直写的方法在所述二维硒化钴薄膜上书写电极图案,利用热蒸发、磁控溅射或双离子束溅射方法沉积金属电极,利用剥离方法剥离金属电极,制得所述的室温宽光谱光电探测器;其中,所述金属电极为铬-金合金。
5.一种权利要求4所述方法制得的基于二维硒化钴薄膜的室温宽光谱光电探测器。
6.根据权利要求5所述的基于二维硒化钴薄膜的室温宽光谱光电探测器,其特征在于,所述的室温宽光谱光电探测器的光敏材料为二维硒化钴薄膜,其薄膜厚度为1~200纳米;所述金属电极作为源漏电极。
CN202010651962.9A 2020-07-08 2020-07-08 基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法 Active CN111850556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010651962.9A CN111850556B (zh) 2020-07-08 2020-07-08 基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010651962.9A CN111850556B (zh) 2020-07-08 2020-07-08 基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN111850556A CN111850556A (zh) 2020-10-30
CN111850556B true CN111850556B (zh) 2022-07-08

Family

ID=73153144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010651962.9A Active CN111850556B (zh) 2020-07-08 2020-07-08 基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN111850556B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471323B (zh) * 2021-06-30 2023-07-25 电子科技大学 一种光电探测器、具有记忆功能的运算处理器及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090269511A1 (en) * 2008-04-25 2009-10-29 Aruna Zhamu Process for producing hybrid nano-filament electrodes for lithium batteries
US20180375282A1 (en) * 2016-06-16 2018-12-27 Shenzhen University Two-dimensional semiconductor saturable absorber mirror and fabrication method, and pulse fiber laser
US20190249300A1 (en) * 2018-02-15 2019-08-15 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090269511A1 (en) * 2008-04-25 2009-10-29 Aruna Zhamu Process for producing hybrid nano-filament electrodes for lithium batteries
US20180375282A1 (en) * 2016-06-16 2018-12-27 Shenzhen University Two-dimensional semiconductor saturable absorber mirror and fabrication method, and pulse fiber laser
US20190249300A1 (en) * 2018-02-15 2019-08-15 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus

Also Published As

Publication number Publication date
CN111850556A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
Zhang et al. High efficiency solution-processed thin-film Cu (In, Ga)(Se, S) 2 solar cells
Wang et al. A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe 2/Ge heterojunction
Liang et al. Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition
Song et al. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics
CN104813482B (zh) 用于cigs光伏器件的钼基材
Wang et al. Effects of silver-doping on properties of Cu (In, Ga) Se2 films prepared by CuInGa precursors
Chalapathi et al. Two-stage-processed AgSbS2 films for thin-film solar cells
CN111850556B (zh) 基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法
Zi et al. Sputtering Al2O3 as an effective interface layer to improve open-circuit voltage and device performance of Sb2Se3 thin-film solar cells
CN112687809B (zh) 一种碲化锑光电探测器件及其制备方法
CN113193073A (zh) 一种BaZrS3太阳能电池薄膜材料的制备方法
Soonmin et al. A short review of recent advances in copper oxide nanostructured thin films
Sannakashappanavar et al. Synthesis of ZnO ultra-thin film-based bottom-gate phototransistors for UV detection
Dwivedi et al. One-step hydrothermal synthesis of Cu2ZnSn (S, Se) 4 nanoparticles: structural and optical properties
Minemura et al. Preparation of SnS films by low temperature sulfurization
Choi et al. Thermally Co-Evaporated Ternary Chalcogenide AgBiS2 Thin Films for Photovoltaic Applications: New Route for AgBiS2 Synthesis and Phase Investigation
KR20080109240A (ko) 태양전지용 황화구리인듐 흡수층 및 그의 제조 방법
Chalapathi et al. Synthesis of AgBiS2 films by sulfurizing Bi/Ag stacks for thin film photovoltaics
Kumar et al. Optimization of annealing temperature on the formation CZTSe absorber layer
Shehab et al. Fabrication and Characterization of P-Cuo/NSi Heterojunction for solar cell applications
Makki et al. Fabrication and characterization of P-Cuo/N-Si heterojunction for solar cell applications
Piraviperumal et al. Heterojunction thin film solar cells based on Sb 2 Se 3/CdS and evaluation of their performance by dark JV analysis
Olğar et al. PREPARATION OF CZTS THIN FILM EMPLOYING RAPID THERMAL PROCESSING METHOD
Yang et al. A study of the properties of cuins 2 thin film by sulfurization
Veeramalai et al. Photoelectronic properties of antimony selenide nanowire synthesized by hydrothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant