CN108660416A - 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器 - Google Patents

一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器 Download PDF

Info

Publication number
CN108660416A
CN108660416A CN201810600303.5A CN201810600303A CN108660416A CN 108660416 A CN108660416 A CN 108660416A CN 201810600303 A CN201810600303 A CN 201810600303A CN 108660416 A CN108660416 A CN 108660416A
Authority
CN
China
Prior art keywords
film
mos
manufacturing thin
thin film
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810600303.5A
Other languages
English (en)
Inventor
吴真平
焦雷
王月晖
陈政委
张晓�
唐为华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201810600303.5A priority Critical patent/CN108660416A/zh
Publication of CN108660416A publication Critical patent/CN108660416A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种薄膜制备方法、MoS2薄膜和光电探测器,所述方法利用激光脉冲轰击靶材,使靶材材料以等离子体的方式溅射出来,进而沉积在衬底表面,并通过原子间作用力相互吸附进而形成薄膜。所述薄膜优选为层状过渡金属二硫族化合物薄膜,特别是MoS2薄膜,通过控制所述激光脉冲的数目对薄膜的层数进行控制。本发明能够制备大面积、厚度可控的MoS2薄膜,利用MoS2薄膜制备的光电探测器具有良好的输出特性,光电响应也十分明显。

Description

一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器
技术领域
本发明涉及光电子器件应用领域,特别是涉及一种利用激光脉冲沉积方法制作二硫化钼(MoS2)薄膜及其制备方法,以及应用该薄膜的光电探测器。
背景技术
二维材料是一种很有潜力的材料,其定义为一个原子层厚度、层状的晶体薄层,层与层之间由范德瓦尔兹力相互作用。自从曼切斯特大学Geim 等人开创性的通过机械剥离获得的石墨烯,并发现其具有有趣的力学和电学性质,引起了人们的广泛关注。然而,尽管其具有奇特的性质和丰富的基础物理学性质,但由于没有带隙,阻碍了石墨烯在晶体管器件方向的潜在应用。
因此,研究人员开发了多种新的二维材料,如层状过渡金属二硫族化合物(TMD)MoS2、MoSe2、WS2和WSe2。在所有的TMD中,MoS2是最令人感兴趣的一个,无论是在其基础物理学方面,还是在下一代电子和光电子器件中的潜在应用方面。MoS2是通过层间弱范德华力连接的层状二维材料,Mo和S原子之间具有强烈的层内共价键。与石墨烯不同,MoS2是一种半导体材料,且带隙随薄膜层数变化,通过减薄MoS2厚度,其带隙可以从块体的间接带隙1.2eV增大到直接带隙1.8eV。
虽然MoS2被认为是克服石墨烯零带隙短板的有希望的候选者,为下一代电子应用提供了可能的解决方案,但如何生长大面积,高质量的MoS2二维材料仍然是一个挑战。传统的自上而下方法,如机械剥离和化学剥离会产生不规则形状的局部薄片,这对于大面积器件应用来说是不适用的。近年来,化学气相沉积(CVD)已被用于生产大面积MoS2少层/单层薄膜,但该技术需要800℃~1000℃的高温生长工艺。尽管目前CVD仍被认为是MoS2单层生长最有前景的技术之一,但人们仍希望开发一种能够在较低温度下生产大面积MoS2超薄膜的方法。
激光脉冲沉积法(PLD)是利用准分子激光器发射出脉冲激光轰击样品的靶材,使靶材溅射出由原子、离子、分子、分子簇等构成的等离子体,并向外扩散形成等离子体羽辉到达衬底表面,在自身能量和衬底表面热能作用下扩散运动、重新组装成膜。激光脉冲沉积已被大量应用在生长各种氧化物、氮化物薄膜中。理论上,利用激光脉冲沉积法也能够获得大面积均匀、且层数可控的MoS2薄膜。
发明内容
本发明提供一种薄膜制作方法,旨在能够解决制作作为二维材料的 MoS2薄膜的面积、厚度不可控的问题。
为解决上述技术问题,本发明提出一种薄膜制备方法,包括:利用激光脉冲轰击靶材,使靶材材料以等离子体的方式溅射出来,进而沉积在衬底表面,并通过原子间作用力相互吸附进而形成薄膜。
根据本发明的优选实施方式,所述薄膜为层状过渡金属二硫族化合物薄膜、所述靶材为过渡金属二硫族化合物。
根据本发明的优选实施方式,通过控制所述激光脉冲的数目对薄膜的层数进行控制。
根据本发明的优选实施方式,所述薄膜为MoS2薄膜、所述靶材为 MoS2
根据本发明的优选实施方式,控制所述激光脉冲的数目,根据激光能量不同,以100~140个脉冲数/层为单位生长MoS2薄膜。
根据本发明的优选实施方式,所述沉积过程在真空环境中进行。
根据本发明的优选实施方式,所述衬底的温度在500~800℃之间。
根据本发明的优选实施方式,所述激光功率设定为100~500mJ/脉冲。
本发明还提一种光电探测器,包括衬底和形成在衬底上的光电薄膜和电极层,所述光电薄膜为上述薄膜制备方法制作的薄膜。
根据本发明的优选实施方式,所述电极层为Au、Ti或Au/Ti多层结构。
本发明的有益效果是:
1.本发明能够按照各种需求有效的制备所需要的大面积、厚度可控的 MoS2薄膜。本发明可根据激光脉冲数目对薄膜的层数进行控制。所以不同厚度的MoS2薄膜可以成功的生长出来。
2.本发明的MoS2薄膜制备的光电探测器具有良好的输出特性,光电响应也十分明显(光电相应的时间非常短为96ms,对光非常敏感)。
附图说明
图1是通过本发明的一个实施例制作的MoS2薄膜光电探测器的结构示意图;
图2是本发明的一个实施例的XRD图;
图3是本发明的一个实施例的在波长为532纳米的激光照射下的 Raman图;
图4是本发明的一个实施例的将MoS2样品横截面的TEM图;
图5A和图5B是本发明的一个实施例的不同厚度MoS2样品的光电响应曲线图;
图6是本发明的一个实施例的单层MoS2样品对波长650纳米光照的电流随时间保持特性曲线图。
具体实施方式
总的来说,本发明提出一种制作均匀、大面积的薄膜的薄膜制作方法。本发明采用了一种激光脉冲沉积法(PLD)来生长大面积的二维材料薄膜,该方法是利用激光脉冲轰击靶材,使靶材材料以等离子体的方式溅射出来,进而沉积在高温的衬底表面,由于钼原子与硫原子在原子间作用力的作用下,相互吸附进而形成薄膜。、
本发明的方法适用于层状过渡金属二硫族化合物(TMD),包括MoS2、 MoSe2、WS2和WSe2,优选为MoS2
本发明采用的衬底为半导体、玻璃等耐高温的材料,例如硅单晶衬底。本发明的方法要求可在高真空环境中进行,例如可以在10-5Pa下进行实验,高真空的真空度要求在1×10-3~1×10-5Pa。
本发明需要对衬度进行加热,使其温度在500~800℃。
本发明的激光功率设定为100~500mJ/脉冲,而激光脉冲的数目则由所要沉积的薄膜的厚度而定。
此外,本发明还提出包括上述方法制作的薄膜的光电探测器,包括衬底、层状过渡金属二硫族化合物层和电极层。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
图1是通过本发明的一个实施例制作的MoS2薄膜光电探测器的结构示意图。如图1所示,该实施例的光电探测器包括Si衬底1、MoS2薄膜层2和电极层3。
在制作上述光电探测器时,进行如下步骤:
S1、准备干净的衬底。
通常需要对衬底进行清洗。该实施例中,将SiO2衬底放在酒精、丙酮、去离子水液体中超声清洗15分钟,需要按照丙酮、酒精、去离子水的顺序,取出样品后用N2气体吹干,等待接下来的使用。
S2、在衬底上通过PLD方法沉积薄膜。
将清洗干净的衬底放入沉积室,安置MoS2靶,调节靶与衬底的距离为5cm,背底真空调节至1×10-3Pa~1×10-5Pa,加热衬底到温度为500~ 800℃,设置激光能量为100~500mJ/pulse,脉冲的数目由所要沉积的薄膜的厚度而定。利用激光脉冲轰击靶材,使MoS2靶材材料以等离子体的方式溅射出来,进而沉积在SiO2衬底表面,由于分子间作用力的作用,分子相互吸附进而在SiO2衬底上形成MoS2薄膜。
对MoS2薄膜的表征:该步骤后可对沉积有MoS2薄膜的衬底从沉积室取出以进行一系列测试和表征。例如进行X射线衍射测试(XRD)、拉曼测试(Raman),X射线光电子能谱分析(XPS)、透射电子显微镜(TEM) 等。因此可进一步验证薄膜的质量及厚度情况。
图2是该实施例的XRD图。如图2所示,样品二硫化钼的衍射峰已经在图中显示出来,图中衍射峰的位置在14度左右,根据jade软件可知该衍射峰是(002)面的二硫化钼,图中没有发现其他的衍射峰,这表明我们的样品结晶情况良好。
图3是该实施例的在波长为532纳米的激光照射下的Raman图。拉曼测试可以间接的了解薄膜的厚度,即利用以下公式进行计算:
如图3所示,不同厚度的二硫化钼样品的拉曼图谱已经显示出来,从最薄的1层(120个激光脉冲)到5层(600个激光脉冲)的拉曼图谱可以看出,两个不同的震动峰E2g 1和A1g之间的距离是随着薄膜厚度的增加而增加,E2g 1发生了红移,A1g发生了蓝移,这与前面提及的公式也相吻合。
图4是该实施例的MoS2样品横截面的TEM图。如图4所示,3层厚度的二硫化钼样品的TEM图中可以清晰的看到每一层的二硫化钼薄膜形貌、薄膜厚度以及薄膜间距(约0.68nm,与理论值相近)也可以从图中得到。
S3、在MoS2薄膜上形成电极。
该实施例中,将沉积好MoS2薄膜的样品取出,用锡纸将插置电极挡板包好放入磁控溅射仪器内,调节仪器参数,功率为40W,先后将Ti和 Au电极镀在样品薄膜上,Au镀制2分钟,Ti镀制20秒,保持真空为10-3 Pa以下,最后取出,由此得到MoS2薄膜光电探测器。
该步骤后可对MoS2薄膜光电探测器的光电性能的测量。输出特性曲线可以利用Keithley 2450系统进行测量,光照可以由采用不同波长的滤波片的氙灯完成。
图5A和图5B是根据本发明的实施例的不同厚度MoS2样品的光电响应曲线图。图6是单层MoS2样品对波长650纳米光照的电流随时间保持特性曲线图。由图5A、图5B及图6可知,该样品光电的反应时间及波普响应都比较好,所以可以成功应用在光电探测方面。
综上所述,本发明提出激光脉冲沉积法制备大面积、层数可控的MoS2薄膜基MSM结构光电探测器。相比于机械剥离法或化学气相沉积法,激光脉冲沉积法具有生长温度低、薄膜层数可控的特点,获得的光电探测器具有较高的光暗比和光响应速度。
本发明利用激光脉冲沉积法生长了大面积、厚度可控的二硫化钼薄膜。对于过渡金属硫化物材料,由于其独特的区别于同种块体材料的热学、电学、光学特性而被广泛利用。本发明正是创造性地利用其因厚度不同导致禁带宽度不同的原理,进一步加工制备成不同厚度的光电探测器,进而应用到不同的应用领域。本专利所使用的方法完全可以应用在其他过渡金属二硫族化合物材料生长上,只是相应的实验参数加以变化即可,例如生长不同厚度的二硫化钨材料,就可以采取调整实验温度、压强、激光脉冲次数等方式来获得,进而加工制备成光电探测器。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种薄膜制备方法,包括:利用激光脉冲轰击靶材,使靶材材料以等离子体的方式溅射出来,进而沉积在衬底表面,并通过原子间作用力相互吸附进而形成薄膜。
2.如权利要求1所述的薄膜制备方法,其特征在于,所述薄膜为层状过渡金属二硫族化合物薄膜、所述靶材为过渡金属二硫族化合物。
3.如权利要求2所述的薄膜制备方法,其特征在于,通过控制所述激光脉冲的数目对薄膜的层数进行控制。
4.如权利要求3所述的薄膜制备方法,其特征在于,所述薄膜为MoS2薄膜、所述靶材为MoS2
5.如权利要求4所述的薄膜制备方法,其特征在于,控制所述激光脉冲的数目,随激光能量不同,以100~140个脉冲数/层为单位生长MoS2薄膜。
6.如权利要求1至5中任一项所述的薄膜制备方法,其特征在于,所述沉积过程在真空环境中进行。
7.如权利要求1至5中任一项所述的薄膜制备方法,其特征在于,所述衬底的温度在500~800℃之间。
8.如权利要求1至5中任一项所述的薄膜制备方法,其特征在于,所述激光功率设定为100~500mJ/脉冲。
9.一种光电探测器,包括衬底和形成在衬底上的光电薄膜和电极层,其特征在于,所述光电薄膜为权利要求1至5中任一项所述的薄膜制备方法制作的薄膜。
10.如权利要求9所述的光电探测器,其特征在于,所述电极层为Au、Ti或Au/Ti多层结构。
CN201810600303.5A 2018-06-12 2018-06-12 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器 Pending CN108660416A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810600303.5A CN108660416A (zh) 2018-06-12 2018-06-12 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810600303.5A CN108660416A (zh) 2018-06-12 2018-06-12 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器

Publications (1)

Publication Number Publication Date
CN108660416A true CN108660416A (zh) 2018-10-16

Family

ID=63775597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810600303.5A Pending CN108660416A (zh) 2018-06-12 2018-06-12 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器

Country Status (1)

Country Link
CN (1) CN108660416A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616541A (zh) * 2018-10-29 2019-04-12 华中科技大学 过渡金属硫族化合物横向同质结太阳能电池及其制备方法
CN112420852A (zh) * 2020-11-28 2021-02-26 郑州大学 一种二维材料光探测器及其制备方法
CN112786751A (zh) * 2021-01-19 2021-05-11 中国科学院长春光学精密机械与物理研究所 一种n极性氮化物模板、n极性氮化物器件及其制备方法
CN114812847A (zh) * 2022-04-29 2022-07-29 中国科学院物理研究所 一种拓扑型温度计、其制备及测量方法
CN115820251A (zh) * 2021-09-16 2023-03-21 中国科学院微电子研究所 一种过渡金属硫化物及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349569A (zh) * 2014-10-30 2015-02-11 北京大学 一种基于等离子体透镜的激光离子加速系统及其加速方法
CN105633191A (zh) * 2016-03-25 2016-06-01 合肥工业大学 一种具有垂直生长结构的二维过渡金属硫属化物同质结光电探测器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349569A (zh) * 2014-10-30 2015-02-11 北京大学 一种基于等离子体透镜的激光离子加速系统及其加速方法
CN105633191A (zh) * 2016-03-25 2016-06-01 合肥工业大学 一种具有垂直生长结构的二维过渡金属硫属化物同质结光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘冰, 李峻青, 刘海燕, 姜巍巍, 张密林: "金属表面二硫化钼处理技术的研究进展", 《表面技术》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616541A (zh) * 2018-10-29 2019-04-12 华中科技大学 过渡金属硫族化合物横向同质结太阳能电池及其制备方法
CN109616541B (zh) * 2018-10-29 2020-07-10 华中科技大学 过渡金属硫族化合物横向同质结太阳能电池及其制备方法
CN112420852A (zh) * 2020-11-28 2021-02-26 郑州大学 一种二维材料光探测器及其制备方法
CN112420852B (zh) * 2020-11-28 2022-07-01 郑州大学 一种二维材料光探测器及其制备方法
CN112786751A (zh) * 2021-01-19 2021-05-11 中国科学院长春光学精密机械与物理研究所 一种n极性氮化物模板、n极性氮化物器件及其制备方法
CN115820251A (zh) * 2021-09-16 2023-03-21 中国科学院微电子研究所 一种过渡金属硫化物及其制备方法
CN115820251B (zh) * 2021-09-16 2024-04-05 中国科学院微电子研究所 一种过渡金属硫化物及其制备方法
CN114812847A (zh) * 2022-04-29 2022-07-29 中国科学院物理研究所 一种拓扑型温度计、其制备及测量方法
CN114812847B (zh) * 2022-04-29 2023-10-03 中国科学院物理研究所 一种拓扑型温度计、其制备及测量方法

Similar Documents

Publication Publication Date Title
CN108660416A (zh) 一种薄膜制备方法及相应的二硫化钼薄膜和光电探测器
JP4977023B2 (ja) 超高速パルスレーザ堆積を使用する電気化学デバイス作製方法。
KR101480817B1 (ko) 보라진 다량체를 전구체로 활용하여 금속촉매 효과로 성장된 고품질의 질화 붕소막 및 그 제조방법
JP2016520032A (ja) 電荷キャリア移動度が非常に高いグラフェン及びその製造方法
CN109713058A (zh) 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用
TWI526559B (zh) 藉由物理氣相沉積法在基板上成長碳薄膜或無機材料薄膜的方法
Abdulrahman The effect of different substrate-inclined angles on the characteristic properties of ZnO nanorods for UV photodetectors applications
Hymavathi et al. Investigations on physical properties of nanostructured Cr doped CdO thin films for optoelectronic applications
US6440276B2 (en) Process for producing thin film gas sensors with dual ion beam sputtering
Hammoodi et al. Structural and optical properties of CuO thin films prepared via RF magnetron sputtering
CN108732791A (zh) 一种极化率可控的可变波长二维旋光器件及其制备方法
Adurodija et al. Effects of stress on the structure of indium-tin-oxide thin films grown by pulsed laser deposition
Shu-Wen A Study of annealing time effects on the properties of Al: ZnO
He et al. XPS analysis of ZnO thin films obtained by pulsed laser deposition
CN109402566B (zh) 一种两步法制备柔性氧化钒薄膜的方法
KR20180113079A (ko) 기상 증착법을 이용한 황화주석 박막 및 이의 형성방법
CN108004506B (zh) 一种基于In合金的贵金属纳米颗粒及其制备方法
CN103320753B (zh) 一种尺寸密度可控铝纳米颗粒阵列的制备方法
Pokaipisit et al. Effect of films thickness on the properties of ITO thin films prepared by electron beam evaporation
Shah et al. Effects of CdCl2 treatment on physical properties of CdTe/CdS thin film solar cell
Khan et al. Synthesis and Characterization of Copper Doped Zinc Oxide Thin Films Deposited by RF/DC Sputtering Technique
RO135754B1 (ro) Procedeu de depunere a unui multistrat uniform de filme subţiri de ag/sio2
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction
CN111850556A (zh) 基于二维硒化钴薄膜的室温宽光谱光电探测器及制备方法
Isiyaku et al. Characterisation of Laser-Treated Ag, Al, and Al/Ag Metal Thin Films Deposited by DC Sputtering.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181016

RJ01 Rejection of invention patent application after publication