CN101792930A - 一种(200)择优取向硫化铅薄膜的制备方法 - Google Patents

一种(200)择优取向硫化铅薄膜的制备方法 Download PDF

Info

Publication number
CN101792930A
CN101792930A CN200910167920A CN200910167920A CN101792930A CN 101792930 A CN101792930 A CN 101792930A CN 200910167920 A CN200910167920 A CN 200910167920A CN 200910167920 A CN200910167920 A CN 200910167920A CN 101792930 A CN101792930 A CN 101792930A
Authority
CN
China
Prior art keywords
solution
lead sulfide
preferred orientation
preparation
sulfide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910167920A
Other languages
English (en)
Other versions
CN101792930B (zh
Inventor
邓宏
陈金菊
韦敏
李国伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2009101679201A priority Critical patent/CN101792930B/zh
Publication of CN101792930A publication Critical patent/CN101792930A/zh
Application granted granted Critical
Publication of CN101792930B publication Critical patent/CN101792930B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Abstract

一种(200)择优取向硫化铅薄膜的制备方法,属于电子材料技术领域,涉及半导体光电薄膜及红外光电探测器,具体是指采用化学浴沉积法制备用于近红外光电探测器的(200)择优取向的硫化铅薄膜的方法。本发明采用化学浴沉积法,通过设计反应前驱物溶液的配置流程,严格控制薄膜的初始成核过程,并通过后续的高温敏化过程,获得(200)择优取向的立方晶相硫化铅薄膜。本发明所制备的硫化铅薄膜具有良好的均匀性和光敏特性,可用于近红外光电探测器。本发明整个制备工艺过程简单、易控,制备装置简单、成本低廉。

Description

一种(200)择优取向硫化铅薄膜的制备方法
技术领域
本发明属于电子材料技术领域,涉及半导体光电薄膜及红外光电探测器,具体是指采用化学浴沉积法制备用于近红外光电探测器的(200)择优取向的硫化铅薄膜的方法。
背景技术
硫化铅是一种重要的窄禁带半导体材料,在300K时其能带间隙为0.41eV,同时具有较大的激子波尔半径(18nm),这些性质使硫化铅半导体薄膜在红外技术上具有重要和广泛的应用。在1~3μm波段,硫化铅红外探测器是红外整机系统的核心器件,用于红外探测、跟踪、导航、非接触引信及方位观测系统,并广泛应用于红外遥感、红外辐射测温、红外安全检测等领域。
硫化铅薄膜的光电导特性与其微结构密切相关,而薄膜的制备工艺直接影响薄膜的微结构。国内外关于硫化铅薄膜制备方法的报道中,极少涉及到制备工艺对薄膜微结构和光电导特性的影响。如Anup Mondal等人[Anup Mondal,Nillohit Mukherjee.Materials Letters,2006,60:2672-2674]以Pb(OAc)2和Na2S2O3为前驱液,以EDTA为络合剂,采用电化学沉积法合成了立方相多晶硫化铅薄膜;E.Pentia等人[E.Pentia,L.Pintilie,T.Botila,I.Pintilie,A.Chaparro,C.Maffiotte.Thin solid films,2003,434:162-170]采用化学沉积法制备了多晶硫化铅薄膜,研究了还原剂Bi3+对薄膜光敏性的影响;J.Puiso等人[J.Puiso,S.Lindroos,S.Tamulevicius,M.
Figure G2009101679201D00011
,V.Snitka.Thin solid films,2003,428:223-226]用不同的含铅前驱物,采用SILAR法在硅基片上制备了多晶硫化铅薄膜;S.Seghaier等人[S.Seghaier,N.Kamoun,R.Brini,A.B.Amara.Materials Chemistry and Physics,2006,97:71-80]采用化学浴沉积法制备了硫化铅多晶薄膜,研究了薄膜的结构和光敏性能。国内司俊杰等人[司俊杰,万海林,陈湘伟,陈凤金,黄战利,张庆军,孙维国.红外技术,2007,29:143-146]研究了大面积PbS光导薄膜的优化制备工艺。现有的硫化铅薄膜制备方法所制备出的硫化铅薄膜多为多晶结构,性质不易控制,且制备工艺较为复杂。
发明内容
本发明的目的是提供一种(200)择优取向硫化铅薄膜的制备方法,所制备出的硫化铅薄膜具有(200)择优取向的立方晶相结构,且具有较好的均匀性和光敏特性。整个制备工艺过程简单、易控,制备装置简单、成本低廉。
为了达到上述目的,本发明采用化学浴沉积法制备硫化铅薄膜过程中,前驱物溶液的配制应严格按照一定的步骤进行操作;在基片上的初始成核过程对薄膜的生长及所制备薄膜的微形貌有重要影响;所制备的薄膜还需进行后续的热处理进行高温敏化。
本发明具体技术方案如下:
一种(200)择优取向硫化铅薄膜的制备方法,如图1所示,包括以下步骤:
步骤1:采用分析纯级氢氧化钠(分子式:NaOH)和去离子水配制浓度为0.1M-2.0M的氢氧化钠溶液,记为溶液A。
步骤2:采用分析纯级硝酸铅(分子式:Pb(NO3)2)和去离子水配制浓度为0.05M-0.5M的硝酸铅溶液,记为溶液B。
步骤3:采用分析纯级硫脲(分子式:CS(NH2)2)和去离子水配制浓度为0.01M-0.5M的硫脲溶液,记为溶液C。
步骤4:将溶液A、溶液B和溶液C分别置于30℃的恒温条件下保存待用。
步骤5:取一定量的溶液A缓慢加入一定量的溶液B中,其中氢氧化钠和硝酸铅的摩尔比为3∶1-6∶1之间,搅拌均匀后静置10至20分钟。
步骤6:将经清洗并干燥处理后的基片竖直浸没于溶液C中,其中溶液C的温度控制在30℃。
步骤7:取步骤5所得溶液A和溶液B混合后的上层清液,缓慢加入到溶液C中,其中硝酸铅和硫脲的摩尔比为2∶1-1∶1之间;在此过程中,采用磁力搅拌器对溶液进行搅拌;保持反应沉积液在30℃的温度条件下反应沉积30至120分钟。
步骤8:取出样品,用去离子水清洗,80℃条件下烘干。
步骤9:将烘干后的样品放入敏化炉中进行恒温敏化处理,敏化温度为450℃-600℃,恒温敏化时间为1~2小时,恒温敏化处理后的样品自然冷却至室温,即得(200)择优取向硫化铅薄膜。
关于本发明技术方案需要说明的是:
1)利用溶液A的不同浓度,可在一定范围内控制反应速度,进而控制光敏薄膜的厚度和微结构。溶液A的浓度大小对化学沉淀制备硫化铅光敏薄膜的光电性能,起着十分重要的作用。
2)溶液C的浓度对硫化铅薄膜的表面状态和微结构起决定性影响,因此,适当选取溶液C的浓度对薄膜的光敏性能是十分关键的。
3)本发明所选用的基片材料可以是硅、石英玻璃或K-9玻璃。基片的表面状态将影响初始成核及沉积薄膜的均匀性。基片需按以下步骤进行清洗:首先将基片置于重铬酸钾溶液中浸泡两个小时用去离子水清洗;然后采用丙酮超声清洗10-15分钟;再采用无水乙醇室温下超声清洗10-15分钟;最后干燥待用。
4)溶液A加入到溶液B中,会发生如下化学反应:
2NaOH+Pb(NO3)2→Pb(OH)2↓+2NaNO3,由于有沉淀的存在,溶液会分为上下两层。本发明的技术方案中,溶液A相对于溶液B是过量,因此Pb(OH)2沉淀将继续与过量的NaOH反应,生成Na4Pb(OH)6,为制备硫化铅薄膜过程中的中间产物,反应式为:Pb(OH)2+4NaOH→Na4Pb(OH)6。因此溶液A和溶液B混合均匀后,需静置10至20分钟,取含有Na4Pb(OH)6的上层清液加入到溶液C中,以保证所制备硫化铅膜层的均匀性。
5)本发明的技术方案中,基片必须先竖直浸没在溶液C中,然后将溶液A和溶液B的混合溶液的上层清液加入到溶液C中。伴随着这两种溶液的混合,硫化铅沉淀将生成。这个过程是硫化铅薄膜的初始成核阶段,对硫化铅薄膜的厚度及微结构产生重要影响。因此,反应初期需控制对溶液的搅拌速度。
6)高温敏化过程是硫化铅薄膜具有光敏性能的关键工艺步骤。敏化时间过长或温度过高,将使硫化铅薄膜变得稀薄而影响光敏性能,适当的高温敏化工艺将使硫化铅薄膜具有优良的光敏性能。高温敏化过程可以在普通的管式炉中进行,敏化气氛可以是大气或含氧气氛。
本发明的有益效果是:
根据本发明所述的(200)择优取向硫化铅薄膜的制备方法,可制备出具有(200)择优取向的立方晶相结构的硫化铅薄膜,且具有较好的均匀性和光敏特性。整个制备工艺过程简单、易控,制备装置简单、成本低廉。
附图说明
图1为本发明的流程示意图图。
图2为本发明实施例1所制备的硫化铅薄膜的XRD图谱。
图3为本发明实施例1所制备的硫化铅薄膜的SEM图。
图4为本发明实施例2所制备的硫化铅薄膜的XRD图谱。
图5为本发明实施例3所制备的硫化铅薄膜的XRD图谱。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
实施例1
具体实施步骤如下:
1)溶液A的配制:称取一定量的分析纯级氢氧化钠,用去离子水配制浓度为0.8M的氢氧化钠溶液。将溶液A置于30℃的恒温箱中。
2)溶液B的配制:称取一定量的分析纯级硝酸铅,用去离子水配制浓度为0.2M的硝酸铅溶液。将溶液B置于30℃的恒温箱中。
3)溶液C的配制:称取一定量的分析纯级硫脲,用去离子水配制浓度为0.2M的硫脲溶液。将溶液C置于30℃的恒温箱中。
4)取一定量的溶液A缓慢加入一定量的溶液B中,溶液A和溶液B的体积比为1∶1,搅拌均匀,静置15min。
5)基片材料采用K-9玻璃,厚度为1mm,尺寸为3mm×5mm。将清洗并干燥后的基片固定在沉淀用样品支架上,并竖直浸没在溶液C中。溶液C置于恒温水浴中,恒温水浴的温度保持在30℃。
6)取步骤4)溶液A和溶液B混合后的上层清液,缓慢加入到溶液C中。混合溶液和溶液C的体积比为2∶1。在此过程中,采用磁力搅拌器对溶液进行搅拌。
8)保持反应沉积液的温度为30℃,反应沉积60min。
9)取出样品,用去离子水清洗,80℃烘干,保持30min。
10)将样品放入敏化炉中,敏化炉的温度从室温升至550℃,升温速率20℃/min。恒温敏化时间为1h。自然冷却至室温。
11)取出样品,得到硫化铅薄膜。
图2是实施例1所制备硫化铅薄膜的XRD图谱。从图中可以看出,位于30.15°的衍射峰对应于面心立方晶相硫化铅薄膜的(002)晶面。
图3是实施例1所制备硫化铅薄膜的SEM图,从图中可以看出立方晶相硫化铅薄膜的典型形貌,颗粒大小较为一致,膜层的整体均匀性较好。
采用真空蒸发法在硫化铅薄膜上蒸镀两个相互平行的金电极,此时光敏面积变为3mm×3mm。将蒸镀有金电极的硫化铅薄膜作为光敏单元封装在晶体管型壳体内,做成单元红外探测器件。将封装成的硫化铅红外探测器接信号读出电路,该红外探测器能对距离80m以外的0.3m×0.3m汽油火作出准确探测。
实施例2
具体实施步骤如下:
1)溶液A的配制:称取一定量的分析纯级氢氧化钠,用去离子水配制浓度为0.3M的氢氧化钠溶液。将溶液A置于30℃的恒温箱中。
2)溶液B的配制:称取一定量的分析纯级硝酸铅,用去离子水配制浓度为0.05M的硝酸铅溶液。将溶液B置于30℃的恒温箱中。
3)溶液C的配制:称取一定量的分析纯级硫脲,用去离子水配制浓度为0.05M的硫脲溶液。将溶液C置于30℃的恒温箱中。
4)取一定量的溶液A缓慢加入一定量的溶液B中,溶液A和溶液B的体积比为1∶1,搅拌均匀,静置15min。
5)基片材料采用K-9玻璃,厚度为1mm,尺寸为3mm×5mm。将清洗并干燥后的基片固定在沉淀用样品支架上,并竖直浸没在溶液C中。溶液C置于恒温水浴中,恒温水浴的温度保持在30℃。
6)取步骤4)溶液A和溶液B混合后的上层清液,缓慢加入到溶液C中。混合溶液和溶液C的体积比为2∶1。在此过程中,采用磁力搅拌器对溶液进行搅拌。调节转速为50rpm,保持5min;之后将转速调整为400rpm。
8)保持反应沉积液的温度为30℃,反应沉积60min。
9)取出样品,用去离子水清洗,80℃烘干,保持30min。
10)将样品放入敏化炉中,敏化炉的温度从室温升至600℃,升温速率20℃/min。恒温敏化时间为1h。自然冷却至室温。
11)取出样品,得到硫化铅薄膜。
图4是实施例2所制备硫化铅薄膜的XRD图谱。从图中可以看出,位于30.13°的衍射峰对应于面心立方晶相硫化铅薄膜的(002)晶面。从图中还可以看出立方晶相硫化铅的(111)、(220)和(311)衍射峰,但这些衍射峰的强度都很弱,说明实施例2所制备的硫化铅薄膜为(200)择优取向。
采用真空蒸发法在硫化铅薄膜上蒸镀两个相互平行的金电极,此时光敏面积变为3mm×3mm。将蒸镀有金电极的硫化铅薄膜作为光敏单元封装在晶体管型壳体内,做成单元红外探测器件。将封装成的硫化铅红外探测器接信号读出电路,该红外探测器能对距离70m以外的0.3m×0.3m汽油火作出准确探测。
实施例3
具体实施步骤如下:
1)溶液A的配制:称取一定量的分析纯级氢氧化钠,用去离子水配制浓度为2.0M的氢氧化钠溶液。将溶液A置于30℃的恒温箱中。
2)溶液B的配制:称取一定量的分析纯级硝酸铅,用去离子水配制浓度为0.6M的硝酸铅溶液。将溶液B置于30℃的恒温箱中。
3)溶液C的配制:称取一定量的分析纯级硫脲,用去离子水配制浓度为0.3M的硫脲溶液。将溶液C置于30℃的恒温箱中。
4)取一定量的溶液A缓慢加入一定量的溶液B中,溶液A和溶液B的体积比为1∶1,搅拌均匀,静置15min。
5)基片材料采用K-9玻璃,厚度为1mm,尺寸为3mm×5mm。将清洗并干燥后的基片固定在沉淀用样品支架上,并竖直浸没在溶液C中。溶液C置于恒温水浴中,恒温水浴的温度保持在30℃。
6)取步骤4)溶液A和溶液B混合后的上层清液,缓慢加入到溶液C中。混合溶液和溶液C的体积比为2∶1。在此过程中,采用磁力搅拌器对溶液进行搅拌。调节转速为50rpm,保持5min;之后将转速调整为400rpm。
8)保持反应沉积液的温度为30℃,反应沉积60min。
9)取出样品,用去离子水清洗,80℃烘干,保持30min。
10)将样品放入敏化炉中,敏化炉的温度从室温升至500℃,升温速率20℃/min。恒温敏化时间为2h。自然冷却至室温。
11)取出样品,得到硫化铅薄膜。
图5是实施例3所制备硫化铅薄膜的XRD图谱。从图中可以看出,位于30.12°的衍射峰对应于面心立方晶相硫化铅薄膜的(002)晶面。从图中还可以看出立方晶相硫化铅的(111)、(220)和(311)衍射峰,但这些衍射峰的强度都较弱,说明实施例3所制备的硫化铅薄膜为(200)择优取向。
采用真空蒸发法在硫化铅薄膜上蒸镀两个相互平行的金电极,此时光敏面积变为3mm×3mm。将蒸镀有金电极的硫化铅薄膜作为光敏单元封装在晶体管型壳体内,做成单元红外探测器件。将封装成的硫化铅红外探测器接信号读出电路,该红外探测器能对距离60m以外的0.3m×0.3m汽油火作出准确探测。

Claims (5)

1.一种(200)择优取向硫化铅薄膜的制备方法,包括以下步骤:
步骤1:采用分析纯级氢氧化钠和去离子水配制浓度为0.1M-2.0M的氢氧化钠溶液,记为溶液A;
步骤2:采用分析纯级硝酸铅和去离子水配制浓度为0.05M-0.5M的硝酸铅溶液,记为溶液B;
步骤3:采用分析纯级硫脲和去离子水配制浓度为0.01M-0.5M的硫脲溶液,记为溶液C;
步骤4:将溶液A、溶液B和溶液C分别置于30℃的恒温条件下保存待用;
步骤5:取一定量的溶液A缓慢加入一定量的溶液B中,其中氢氧化钠和硝酸铅的摩尔比为3∶1-6∶1之间,搅拌均匀后静置10至20分钟;
步骤6:将经清洗并干燥处理后的基片竖直浸没于溶液C中,其中溶液C的温度控制在30℃;
步骤7:取步骤5所得溶液A和溶液B混合后的上层清液,缓慢加入到溶液C中,其中硝酸铅和硫脲的摩尔比为2∶1-1∶1之间;在此过程中,采用磁力搅拌器对溶液进行搅拌;保持反应沉积液在30℃的温度条件下反应沉积30至120分钟;
步骤8:取出样品,用去离子水清洗,80℃条件下烘干;
步骤9:将烘干后的样品放入敏化炉中进行恒温敏化处理,敏化温度为450℃-600℃,恒温敏化时间为1~2小时,恒温敏化处理后的样品自然冷却至室温,即得(200)择优取向硫化铅薄膜。
2.根据权利要求1所述的(200)择优取向硫化铅薄膜的制备方法,其特征在于,步骤6中所采用的基片为硅、石英玻璃或K-9玻璃。
3.根据权利要求1所述的(200)择优取向硫化铅薄膜的制备方法,其特征在于,步骤6和步骤7中溶液体系的温度控制方式采用恒温水浴控制方式。
4.根据权利要求1所述的(200)择优取向硫化铅薄膜的制备方法,其特征在于,步骤6中所采用的基片需按以下步骤进行清洗:首先将基片置于重铬酸钾溶液中浸泡两个小时用去离子水清洗;然后采用丙酮超声清洗10-15分钟;再采用无水乙醇室温下超声清洗10-15分钟;最后干燥待用。
5.根据权利要求1所述的(200)择优取向硫化铅薄膜的制备方法,其特征在于,步骤9中所述敏化炉为普通的管式炉,具体恒温敏化处理时采用大气或含氧气氛的敏化气氛。
CN2009101679201A 2009-10-16 2009-10-16 一种(200)择优取向硫化铅薄膜的制备方法 Expired - Fee Related CN101792930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101679201A CN101792930B (zh) 2009-10-16 2009-10-16 一种(200)择优取向硫化铅薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101679201A CN101792930B (zh) 2009-10-16 2009-10-16 一种(200)择优取向硫化铅薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN101792930A true CN101792930A (zh) 2010-08-04
CN101792930B CN101792930B (zh) 2011-12-21

Family

ID=42585836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101679201A Expired - Fee Related CN101792930B (zh) 2009-10-16 2009-10-16 一种(200)择优取向硫化铅薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN101792930B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108540A (zh) * 2010-12-27 2011-06-29 中国科学院长春光学精密机械与物理研究所 合成单分散多元化合物纳米晶的方法
CN102417204A (zh) * 2011-07-29 2012-04-18 天津大学 一种溶液化学原位反应合成硫化铅薄膜的方法
CN106435479A (zh) * 2016-11-03 2017-02-22 山东师范大学 一种纳米半导体光折变薄膜材料及其制备方法
CN107315215A (zh) * 2017-06-15 2017-11-03 中国科学院合肥物质科学研究院 宽吸收光谱的硫化铅薄膜及其制备方法
CN110299430A (zh) * 2019-06-06 2019-10-01 华中科技大学 一种半导体薄膜光电探测器及其制备方法
CN111705297A (zh) * 2020-06-12 2020-09-25 大连理工大学 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法
CN112531065A (zh) * 2020-12-22 2021-03-19 中国科学院重庆绿色智能技术研究院 用于红外光电的铅盐薄膜结构及其制备方法
CN114291841A (zh) * 2021-11-05 2022-04-08 华中科技大学 一种金属元素掺杂硫化铅材料及其制备方法和在金属元素掺杂硫化铅薄膜中的应用
CN114604891A (zh) * 2022-03-25 2022-06-10 华中科技大学 一种固相硫化降低硫化铅材料杂质掺杂浓度的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261358C (zh) * 2004-07-08 2006-06-28 南京大学 PbS纳米带及其制法
CN100557827C (zh) * 2006-10-25 2009-11-04 中国空空导弹研究院 制备红外探测器光敏铅盐薄膜的方法
CN101429679B (zh) * 2008-11-25 2011-09-14 陕西科技大学 一种纳米PbS薄膜的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108540B (zh) * 2010-12-27 2012-07-25 中国科学院长春光学精密机械与物理研究所 合成单分散多元化合物纳米晶的方法
CN102108540A (zh) * 2010-12-27 2011-06-29 中国科学院长春光学精密机械与物理研究所 合成单分散多元化合物纳米晶的方法
CN102417204A (zh) * 2011-07-29 2012-04-18 天津大学 一种溶液化学原位反应合成硫化铅薄膜的方法
CN106435479A (zh) * 2016-11-03 2017-02-22 山东师范大学 一种纳米半导体光折变薄膜材料及其制备方法
CN106435479B (zh) * 2016-11-03 2018-10-26 山东师范大学 一种纳米半导体光折变薄膜材料及其制备方法
CN107315215B (zh) * 2017-06-15 2020-12-08 中国科学院合肥物质科学研究院 宽吸收光谱的硫化铅薄膜及其制备方法
CN107315215A (zh) * 2017-06-15 2017-11-03 中国科学院合肥物质科学研究院 宽吸收光谱的硫化铅薄膜及其制备方法
CN110299430A (zh) * 2019-06-06 2019-10-01 华中科技大学 一种半导体薄膜光电探测器及其制备方法
CN111705297A (zh) * 2020-06-12 2020-09-25 大连理工大学 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法
CN112531065A (zh) * 2020-12-22 2021-03-19 中国科学院重庆绿色智能技术研究院 用于红外光电的铅盐薄膜结构及其制备方法
CN112531065B (zh) * 2020-12-22 2021-06-29 中国科学院重庆绿色智能技术研究院 用于红外光电的铅盐薄膜结构及其制备方法
CN114291841A (zh) * 2021-11-05 2022-04-08 华中科技大学 一种金属元素掺杂硫化铅材料及其制备方法和在金属元素掺杂硫化铅薄膜中的应用
CN114291841B (zh) * 2021-11-05 2024-04-05 华中科技大学 一种金属元素掺杂硫化铅材料及其制备方法和在金属元素掺杂硫化铅薄膜中的应用
CN114604891A (zh) * 2022-03-25 2022-06-10 华中科技大学 一种固相硫化降低硫化铅材料杂质掺杂浓度的方法

Also Published As

Publication number Publication date
CN101792930B (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
CN101792930B (zh) 一种(200)择优取向硫化铅薄膜的制备方法
Song et al. Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2‐CH3NH3I‐H2O system
Yeung et al. A simple chemical vapour deposition method for depositing thin TiO2 films
CN104372412A (zh) 甲胺卤化铅酸盐化合物大尺寸晶体生长方法及装置
Brites et al. Ultrafast low-temperature crystallization of solar cell graded formamidinium-cesium mixed-cation lead mixed-halide perovskites using a reproducible microwave-based process
CN112071984A (zh) 一种基于稀土离子掺杂钙钛矿纳米晶体的深紫外光电探测器及其制备方法
CN103603045A (zh) 铒掺杂四方相钙钛矿结构钛酸铅单晶纳米纤维的制备方法
CN107482121A (zh) 一种基于磁场调控的钙钛矿薄膜的制备方法
CN104900744A (zh) 一种中红外探测器及其制备方法
CN109888049A (zh) 无机钙钛矿厚膜复合材料半导体器件及其制备方法
Chol et al. Effect of the reactant concentration, bath temperature and deposition time on the properties of CdS thin film prepared by the chemical bath deposition method
TW201350199A (zh) 具均一尺寸單層摻鋁氧化鋅奈米微球之薄膜製作方法
CN113026102B (zh) 一种无机钙钛矿材料、光电探测器及其制备方法
CN109321244A (zh) 一种铒和镱双掺杂铌酸锂上转换材料及其制备方法和在光学温度传感器中的应用
CN101698963B (zh) 一种微波水热制备CdS薄膜的方法
CN101602496B (zh) 碲化铅薄膜和纳米粉体的同步制备方法
Shan et al. Effect of sulphur pressure on properties of ZnS thin film prepared by chemical bath deposition technique
CN103496736A (zh) ZnS纳米晶薄膜、其制备方法及应用
Sun et al. Enhanced Seebeck effect of a MAPbBr3 single crystal by an organic and a metal modified layer
CN102299211A (zh) 二步法硫化镉薄膜制备方法
Sheeja et al. Growth and characterization of CdS doped KDP single crystals
CN100572317C (zh) 一种介电常数可调的锌掺杂pst薄膜的制备方法
CN105197985A (zh) 溶剂热法一步合成超长纤锌矿结构Cu2ZnSnS4纳米棒的制备方法
CN109830607A (zh) 一种(HC(NH2)2)xR1-xPbI3钙钛矿单晶探测器及其制备方法
Okoli et al. Growth and characterization of ZnCdS thin films by chemical bath deposition technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111221

Termination date: 20141016

EXPY Termination of patent right or utility model