CN113345972A - 一种分层多晶硒化铅光电薄膜及其制备方法 - Google Patents

一种分层多晶硒化铅光电薄膜及其制备方法 Download PDF

Info

Publication number
CN113345972A
CN113345972A CN202110302121.1A CN202110302121A CN113345972A CN 113345972 A CN113345972 A CN 113345972A CN 202110302121 A CN202110302121 A CN 202110302121A CN 113345972 A CN113345972 A CN 113345972A
Authority
CN
China
Prior art keywords
lead selenide
layer
lead
solution
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110302121.1A
Other languages
English (en)
Other versions
CN113345972B (zh
Inventor
祝园
刘军林
刘桂武
乔冠军
张相召
吕全江
侯海港
杨建�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202110302121.1A priority Critical patent/CN113345972B/zh
Priority to PCT/CN2021/082884 priority patent/WO2022198540A1/zh
Priority to US17/639,328 priority patent/US11781222B2/en
Publication of CN113345972A publication Critical patent/CN113345972A/zh
Application granted granted Critical
Publication of CN113345972B publication Critical patent/CN113345972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种光电薄膜及其制备方法,特别是一种分层多晶硒化铅薄膜及其制备方法。制备方法主要包括:(1)在衬底上用化学浴法制备致密硒化铅层;(2)在致密硒化铅层上用化学浴法制备疏松含氧碱式碳酸铅层;(3)将附有致密硒化铅层和含氧碱式碳酸铅层的样品置于含硒离子溶液中通过离子交换反应,最终形成分层多晶硒化铅薄膜。该制备方法工艺简便、成本低,可控性好,利用该方法制备的硒化铅薄膜由下层致密的多晶立方硒化铅层和上层疏松的多晶立方硒化铅层构成,可广泛应用于制造红外传感器、太阳能电池、激光发射、热电转化器等光电转换或者热电转换领域的元器件。

Description

一种分层多晶硒化铅光电薄膜及其制备方法
技术领域
本发明涉及一种光电薄膜及其制备方法,特别是一种高光吸收、低禁带宽度 的分层多晶硒化铅光电薄膜及其制备方法,该光电薄膜可用于制造红外传感器、 太阳能电池、激光发射、热电转化器等光电转换或者热电转换领域的元器件。
背景技术
红外辐射与光子相互作用会产生一些光电效应,例如光导、光伏、光电磁、 Dember和光子索引效应。光电导探测器实质上就是一个对红外辐射敏感的电阻, 根据是否需要制冷分为制冷型光电导探测器和非制冷型光电导探测器。非制冷型 光电导探测器由于其结构更加简单、制造成本低廉、寿命长、性能稳定、可集成 化程度高等优点而更加的被广泛研究和应用,已然成为民用红外传感器的中流砥 柱。光电导探测中关键部件之一就是光电薄膜,目前光电薄膜主要材质包括硫化 铅、硒化铅、碲化铅、碲化镉、碲砷铟等。然而,硒化铅光电薄膜在中红外范围 内有更高的可靠性和灵敏度。因此,硒化铅光电薄膜更为广泛应用于工业测温、 军事制导、农业检测、天文观测等领域。
目前,制备硒化铅光电导探测器薄膜的方法主要有:电化学沉积法、磁控溅 射法、分子束外延法、热蒸发法、微波法、光化学法和化学浴法等,其中化学浴 法生产设备简单、生产效率高,可以适应不同种类、形状衬底,沉积温度低,掺 杂简单等优点,成为备受关注的重要技术之一。如文献“姚官生等,短波红外纳 米PbSe薄膜的制备及光电性能研究,航空兵器,20011,3:17-27.”以石英为衬 底,以硒脲、醋酸铅和联胺为原料,常温下通过化学浴法沉积90min得到多晶 硒化铅薄膜。与本申请相比,不具有分层结构,其硒化铅晶粒尺寸仅为10nm, 与本申请的致密层和疏松层硒化铅晶粒相差1~2个数量级,由于量子尺寸效应发生严重蓝移导致其禁带宽度增大,且其制备方法不含离子交换过程。如中国专利201510199477.1“一种中红外探测器及其制备方法”采用的是氢氧化钾、硒代硫 酸钠和醋酸铅为原料,化学浴生长硒化铅薄膜,经过退火处理、钝化保护以及封 装工艺制备成硒化铅红外探测器。与本申请相比,该薄膜不含疏松层,即不具有 分层结构,且其制备方法不含离子交换过程。如文献“Hone FG,et al.,The effect of deposition time on thestructural,morphological and optical band gap of lead selenide thin filmssynthesized by chemical bath deposition method.Materials Letters, 2015,155:58-61.”是通过化学浴法,以醋酸铅、硒代硫酸钠、氢氧化钠、氨水 为原料在温度90℃、pH为12的条件下,在石英玻璃衬底上制备纳米晶硒化铅 薄膜。与本申请相比,不具有分层结构,其硒化铅晶粒尺寸远小于本申请的致密 层和疏松层的晶粒,其立方晶粒发育不完善,存在大量不规则晶粒,其光学禁带 宽度为1.11eV,远大于本申请,且其制备方法不含离子交换过程。如文献 “Ghobadi N,et al.,Nanoparticle shape and optical band gapalteration in PbSe nanostructure thin films with deposition temperaturecontrolling.Synthesis and Reactivity in Inorganic and Metal-OrganicChemistry,2015,45:1407-1411.”是以化 学浴法在普通玻璃上沉积硒化铅薄膜,通过改变沉积温度来改变薄膜的形状和光 学禁带宽度。与本申请相比,不具有分层结构,其制备的薄膜出现大量的裂缝、 平整度较差,硒化铅的结晶度差,薄膜在波长400nm会出现吸光度快速下降, 光学禁带宽度最小为1.2eV,远大于本申请,且其制备方法不含离子交换过程。 如文献“Hone FG,et al.,The effect of deposition temperature on the structural,morphological and optical band gap of lead selenide thin films synthesized bychemical bath deposition method.Materials Chemistry and Physics,2016,1-6.”是在二氧化硅玻璃上,分别在60℃、75℃、90℃温度下化学浴法制备多晶硒化铅 薄膜。与本申请相比,不具有分层结构,晶粒为大小不均、不规则,90℃时制备 的样品的光学禁带宽度为1.13eV,远大于本申请,且其制备方法不含离子交换 过程。如文献“Kale RB,et al.,Roomtemperature chemical synthesis of lead selenide thin films with preferredorientation.Applied Surface Science,2006,253: 930-936.”以醋酸铅、氨水、硒代硫酸钠为原料,通过化学浴法在室温下沉积28 小时获得多晶硒化铅薄膜。与本申请相比,不具有分层结构,其反应时间较长, 但立方晶粒大小约为350nm,小于本申请的致密层晶粒大小,且其制备方法不 含离子交换过程。如文献“Karper A,Amorphous PbSe thin filmproduced by chemical bath deposition at pH of 5-8.Surface Review and Letters,2019,1950128: 1-5.”在弱碱性、中性和弱酸性条件下,化学浴法在室温下沉积12小时制备硒 化铅薄膜。与本申请相比,不具有分层结构,其薄膜由非晶态片状硒化铅构成, 在400-1000nm波长内反射率低于20%、吸光度低于0.4,光学禁带宽度最低为 1.46eV,远大于本申请,且其制备方法不含离子交换过程。如文献“Zhu Y,et al., P-type PbSenanocrystalline films fabricated using high concentration of ammonia ascomplexing agent,Materials letters,2020,281:128621”以高浓度氨水、醋酸铅、 硒代硫酸钠为原料,通过化学浴法在室温下沉积P型多晶硒化铅薄膜。与本申请 相比,不具有分层结构,其晶粒大小为70~160nm,远小于本申请的致密层晶粒 大小,光学禁带宽度为1.36eV,远大于本申请,且其制备方法不含离子交换过 程。
含氧碱式碳酸铅层作为制备硒化铅疏松层的前驱层,其制备工艺和结构决定 了疏松层的结构和性能。目前,制备含氧碱式碳酸铅的工艺多为紫外光照射化学 浴法和化学法,制备的薄膜多为致密薄膜,晶体形状多为六边形。如文献 “Mendivil-Reynoso T,etal.,Synthetic plumbonacrite thin films grown by chemical bath depositiontechnique.Chalcogenide Letters,2013,10:11-17.”以醋酸铅、氢氧 化钠、三乙醇胺、甲醛次硫酸氢钠-氢氧化钠以及氨水/氯化铵为原料,通过化学 浴法制备了具有六边形结构、光学禁带宽度为1.8eV的含氧碱式碳酸铅薄膜。 与本申请相比,制备原料中的甲醛次硫酸氢钠对人体有严重的毒副作用,薄膜也 不是由“圆饼状”晶体的堆积构成。如文献“UrbiolaIRC,et al.,Lead Telluride through transformation of plumbonacrite intellurium atmosphere and its behavior as part of PbTe-Si photodiode.IEEESensors Journal,2016,16(15):1-1.”是依次添加 醋酸铅、柠檬酸钠、氢氧化钾和去离子水,然后在紫外灯照射下化学浴沉积可以 用于化学气相沉积反应的含氧碱式碳酸铅薄膜。与本申请相比,该工艺较为繁琐, 且含氧碱式碳酸铅薄膜为片状晶体紧密堆积形成,不存在着大量的孔隙,因此后 续无法采用离子交换技术制备疏松薄膜。
采用离子交换技术可制备硒化铅薄膜,一般硒化铅薄膜的晶粒形状和分布由 前驱层的结构和性能、浸没时间、离子交换溶液浓度等决定。如文献 “Samaniego-BenitezJE,et al.,Thermal transformation of plumbonacrite/Si films intomicrostructured Pb/Si ones.Materials Letters,2017,198:38-41.”以醋酸铅、柠 檬酸钠、氢氧化钾为原料,通过在紫外光照射下的化学浴法制备含氧碱式碳酸铅 薄膜,将该薄膜在氮气氛中700℃退火1小时后置于硒离子溶液中制备PbSe。与 本申请相比,制备含氧碱式碳酸铅、硒化铅的工艺更为复杂,含氧碱式碳酸铅的 晶体形状不是“圆饼状”,立方状硒化铅晶粒会与铅晶粒团聚成球状,且含有大 量的杂质铅。如文献“Heredia-Cancino JA,etal.,Optical and structural properties of PbSe films obtained by ionicexchange of lead oxyhydroxicarbonate in a selenium-rongalitesolution.Materials Science in Semiconductor Processing,2016,56: 90-93.”以醋酸铅、氢氧化钠、三乙醇胺为原料,化学浴法制备六边形晶体交叉 垂直排列的致密含氧碱式碳酸铅薄膜,将该薄膜浸没在由硒粉、柠檬酸钠和甲醛 次硫酸氢钠制备的硒离子溶液中通过离子交换反应制备硒化铅薄膜。与本申请相 比,采用的甲醛次硫酸氢钠对人体有严重的毒副作用,且薄膜会出现了大量杂相, 也看不到明显的立方PbSe晶粒。如文献“Mendivil-Reynoso T,et al.,PbSe films by ion exchange of synthetic plumbonacrite layersimmersed in a selenium ionic solution.Journal of Crystal Growth,2016,443:20-24.”以醋酸铅、氢氧化钠、三乙 醇胺、甲醛次硫酸氢钠-氨水为原料,通过化学浴法制备了具有六边形结构且交 叉垂直排列的含氧碱式碳酸铅薄膜,浸没在硒代硫酸钠溶液中通过离子交换法制 备PbSe薄膜。与本申请相比,采用的甲醛次硫酸氢钠对人体有严重的毒副作用, 也看不到清晰的立方PbSe晶粒。
总之,上述文献和专利与本申请相比,除了致密硒化铅层、含氧碱式碳酸铅 层和疏松硒化铅层的制备原料和工艺参数上的不同外,均不具有分层薄膜结构, 即在致密的大晶粒立方硒化铅层上形成疏松的较小晶粒立方硒化铅层。这种分层 薄膜结构可以大幅度降低光从空气中入射到硒化铅薄膜时在界面处发生很强的 反射,同时由于具有较少的缺陷和大的晶粒可以使薄膜拥有低的禁带宽度,因此 该薄膜可以在宽光波波长范围内有更好的应用。
发明内容
本发明的目的是针对现有技术中的上述问题,本发明提供了一种分层多晶硒 化铅光电薄膜及其制备方法,在致密硒化铅薄膜的基础上形成一层疏松硒化铅层, 可以大幅缓解了空气和硒化铅薄膜界面的光反射,提高硒化铅薄膜的光吸收,增 强硒化铅薄膜的光电导效应,同时还可显著降低硒化铅薄膜的禁带宽度。
为了实现上述目的,本发明是采取如下具体技术方案予以实现:
一种分层多晶硒化铅光电薄膜,包括衬底、硒化铅薄膜层,其特征在于:硒 化铅薄膜层由位于衬底上的致密硒化铅层和位于致密硒化铅层上的疏松硒化铅 层构成,致密硒化铅层由粒径为0.7~1.5μm立方晶粒紧密排列堆积形成,厚度 1.5~5μm;疏松硒化铅层是由粒径为0.2~0.5μm立方晶粒随机排列堆积形成,晶 粒堆之间和晶粒之间存在着大量微米或亚微米级空隙,厚度5~15μm。
更进一步,所述衬底为玻璃、硅、氧化硅、氮化镓、钢和石英中的一种。
上述的一种分层多晶硒化铅光电薄膜的制备方法,其特征在于,主要包括如 下步骤:
(1)衬底清洗:
将衬底依次在去离子水、硫酸双氧水溶液、去离子水、无水乙醇中清洗5min、10min、5min和5min,氮气吹干后储存;
(2)化学浴法制备致密硒化铅层:
在浓度为0.45~1.1mol/L氢氧化钾溶液中滴加浓度为0.3~0.6mol/L醋酸铅溶液,在600转/分钟转速下完全反应再逐滴滴加0.2~0.6mol/L硒代硫酸钠溶液, 搅拌均匀后获得黄褐色悬浊液,其中氢氧化钾溶液、醋酸铅溶液、硒代硫酸钠溶 液的体积比为2~4:1:1;
将配制好的上述黄褐色悬浊液置于60~85℃水浴中,将步骤(1)获得的衬 底通过模具单面暴露垂直插入在水浴热稳定后的黄褐色悬浊液中,沉积3~5h, 以在衬底上沉积形成致密硒化铅层;
(3)化学浴法制备含氧碱式碳酸铅层:
在浓度为0.0164~0.0306mol/L的醋酸铅溶液中倒入浓度为0.2~0.3mol/L柠 檬酸三钠溶液,玻璃棒搅拌后获得乳白色胶体,倒入28wt%氨水搅拌后变为澄清 溶液,其中醋酸铅溶液、柠檬酸三钠溶液、28wt%氨水的体积比为9.8~12.2: 2.8~3.2:0.8~1.2;
将配制好的上述澄清溶液放置于20~50℃水浴中,将沉积有致密硒化铅层的 衬底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为8~24h, 以在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
(4)离子交换法制备疏松硒化铅层:
将步骤(3)得到的含有致密硒化铅层和含氧碱式碳酸铅层的衬底浸没在含 有硒离子的溶液中发生离子交换反应,其中离子交换反应温度为20~40℃,浸没 时间为0.5~5h,以使含氧碱式碳酸铅层转变为疏松硒化铅层。
更进一步,所述含有硒离子的溶液为0.01~0.1mol/L硒代硫酸钠和硒脲中的 一种或二者的组合。
本发明与现有的多晶硒化铅光电薄膜对比的有益效果是:(1)由致密硒化铅 层和疏松硒化铅层构成的分层多晶硒化铅薄膜结构,可以大幅度降低紫外至中近 红外光从空气中入射到硒化铅薄膜时在界面处发生很强的反射,有助于提高薄膜 在宽光波波长范围内的吸光度;(2)具有少的立方晶体缺陷和大的晶粒尺寸,有 助于降低硒化铅薄膜的禁带宽度;(3)含氧碱式碳酸铅前驱层具有特殊的“圆饼 状”疏松排列的结构,有助于后续通过离子交换工艺形成疏松的硒化铅层;(4) 硒化铅薄膜的制备方法工艺简单、成本低、可控性高,且原料相对更为环保,适 合大规模生产,可广泛应用于制造红外传感器、太阳能电池、激光发射、热电转 化器等光电转换或者热电转换领域的元器件。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意 性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明所述制备一种分层多晶硒化铅光电薄膜的化学浴装置示意图。
1.模具;2.衬底;3.磁力搅拌子;4.反应液;5.硅油;6.温度调节及显示;7. 转速调节。
图2为本发明所述制备的一种分层多晶硒化铅光电薄膜的流程图;其中图2 (a)为需清洗的衬底,图2(b)为化学浴法制备得到的致密硒化铅层,图2(c) 为化学浴法制备得到的含氧碱式碳酸铅层,图2(d)为所述分层多晶硒化铅光 电薄膜的结构示意图。
图3为本发明所述制备的一种分层多晶硒化铅薄膜的典型试样的扫描电镜 照片:(a)致密硒化铅层的表面,(b)含氧碱式碳酸铅层的表面,(c)疏松硒化铅 层的表面,(d)分层多晶硒化铅薄膜的剖面。
图4为本发明制备的一种分层多晶硒化铅薄膜的典型试样的反射、吸收谱图: (a)450~2500nm波段反射谱图,(b)2500~5000nm波段反射谱图,(c)450~2500nm 波段吸收谱图,(d)2500~5000nm波段吸收谱图;所述分层多晶硒化铅薄膜在波 长450至5000nm范围内,平均吸光度达0.89~1.31,平均光学反射为 8.58%~13.63%。
图5为本发明所述制备的一种分层多晶硒化铅薄膜的典型试样的光学禁带 宽度图:(a)致密硒化铅层,(b)样品一,(c)样品二,(d)样品三;所述分层多 晶硒化铅薄膜的禁带宽度为0.30~0.32eV。
具体实施方式
为更进一步阐述本发明的技术方案及其特点,以下结合附图1、图2、图3、 图4、图5及典型实施案例,对依据本发明提出的一种分层多晶硒化铅光电薄膜 及其制备方法做出进一步说明,其制备步骤包括:(1)衬底清洗;(2)化学浴法 制备致密硒化铅层;(3)化学浴法制备含氧碱式碳酸铅层;(4)离子交换法制备 疏松硒化铅层。值得注意的是,此处所描述的具体实施例仅用以解释本发明,并 不用于限定本发明。
详细案例说明如下:
实施例1:
(1)将两寸玻璃圆片衬底依次在去离子水、硫酸双氧水溶液、去离子水、 无水乙醇中清洗5min、10min、5min和5min,氮气吹干后储存;
(2)在浓度为0.667mol/L氢氧化钾溶液中滴加浓度为0.45mol/L醋酸铅溶 液,在600转/分钟转速下完全反应后逐滴滴加浓度为0.56mol/L硒代硫酸钠溶 液,搅拌均匀后获得黄褐色悬浊液,其中氢氧化钾溶液、醋酸铅溶液、硒代硫酸 钠溶液的体积比为3:1:1。
称量4.62g的硒粉和14.749g无水亚硫酸钠(硒粉与无水亚硫酸钠的摩尔比 为1:2)加入到105ml的去离子水中,在85℃的温度下回流3h,过滤掉不溶杂质 后获得澄清透明浓度为0.56mol/L硒代硫酸钠溶液;
将配制好的上述黄褐色悬浊液放置于75℃水浴中,将步骤(1)获得的衬底 通过模具单面暴露垂直插入水浴热稳定后的黄褐色悬浊液中,沉积4h,以在衬 底上沉积形成致密硒化铅层;
该工艺制备的致密硒化铅层薄膜的晶粒大小为0.98μm,厚度为2.4μm。本 发明中把该样品命名为“致密硒化铅层”,其表面形貌如图3a所示,“致密硒 化铅层”的光学反射、吸收以及禁带宽度分别如图4和5所示,其光学反射在 450~2500nm范围内约为24.37%,在2500~5000nm范围内约为28.26%,光学吸 收在450~2500nm范围内约为0.61,在2500~5000nm范围内约为0.55,禁带宽 度约0.5eV。
(3)在浓度为0.1812mol/L的醋酸铅溶液中倒入浓度为0.2mol/L柠檬酸三 钠溶液,玻璃棒搅拌后获得乳白色胶体,再添加28wt%氨水搅拌后变为澄清溶液, 其中醋酸铅溶液、柠檬酸三钠溶液、28wt%氨水的体积比为11:3:1;
将配制好的上述澄清溶液放置于25℃水浴中,将沉积有致密硒化铅层的衬 底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为9h,以 使得在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
在致密硒化铅层上制备好的含氧碱式碳酸铅层的表面形貌如图3b所示。
(4)将步骤(3)得到的附有致密硒化铅层和含氧碱式碳酸铅层的衬底置于 在浓度为0.026mol/L硒代硫酸钠的溶液中发生离子交换反应,其中离子交换反 应温度为25℃,时间为2h,以使含氧碱式碳酸铅层转变为疏松硒化铅层;
本申请中将此工艺制备的高光吸收、低禁带宽度的分层多晶硒化铅薄膜命名 为“样品一”,其疏松硒化铅层的晶粒大小约为0.42μm,层厚度约为5.2μm,其表 面形貌分别如图3c所示。“样品一”的光学反射、吸收以及禁带宽度分别如图4 和图5所示,结果表明“样品一”比“致密硒化铅层”的光学反射在 450~2500nm范围内降低了59.62%,在2500~5000nm范围内降低了55.01%,光 学吸收在450~2500nm范围内提高了65.34%,在2500~5000nm范围内提高了 63.24%。“样品一”在波长450至5000nm范围内,平均吸光度达0.95,平均光学反射约为11.41%,禁带宽度由约0.5eV降低到0.307eV。
实施例2:
(1)将两寸玻璃圆片衬底依次在去离子水、硫酸双氧水溶液、去离子水、 无水乙醇中清洗5min、10min、5min和5min,氮气吹干后储存;
(2)在浓度为0.667mol/L氢氧化钾溶液中滴加浓度为0.45mol/L醋酸铅溶 液,在600转/分钟转速下完全反应后逐滴滴加浓度为0.56mol/L硒代硫酸钠溶液, 搅拌均匀后获得黄褐色悬浊液,其中氢氧化钾溶液、醋酸铅溶液、硒代硫酸钠溶 液的体积比为3:1:1。
将配制好的上述黄褐色悬浊液放置于75℃水浴中,将步骤(1)获得的衬底 通过模具单面暴露垂直插入水浴热稳定后的黄褐色悬浊液中,沉积4h,以在衬 底上沉积形成致密硒化铅层;
(3)在浓度为0.1812mol/L的醋酸铅溶液中倒入浓度为0.2mol/L柠檬酸三 钠溶液,玻璃棒搅拌后获得乳白色胶体,再添加28wt%氨水搅拌后变为澄清溶液, 其中醋酸铅溶液、柠檬酸三钠溶液、28wt%氨水的体积比为11:3:1;
将配制好的上述澄清溶液放置于25℃水浴中,将沉积有致密硒化铅层的衬 底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为8h,以 在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
(4)将步骤(3)得到的附有致密硒化铅层和含氧碱式碳酸铅层的衬底置于 在浓度为0.026mol/L硒代硫酸钠的溶液中发生离子交换反应,其中离子交换反 应温度为25℃,时间为1h,以使含氧碱式碳酸铅层转变为疏松硒化铅层;
本申请中将此工艺制备的高光吸收、低禁带宽度的分层多晶硒化铅薄膜命名 为“样品二”,其疏松硒化铅层的晶粒大小约为0.2μm,厚度约为6.1μm。“样 品二”的光学反射、吸收以及禁带宽度分别如图4和5所示,结果表明“样品二” 比“致密硒化铅层”的光学反射在450~2500nm范围内降低了54.74%,在 2500~5000nm范围内降低了44.09%,光学吸收在450~2500nm范围内提高了 57.07%,在2500~5000nm范围内提高了46.2%。“样品二”在波长450至5000nm 范围内,平均吸光度达0.89,平均光学反射约为13.63%,禁带宽度由约0.5eV 降低到0.309eV。
实施例3:
(1)将两寸玻璃圆片衬底依次在去离子水、硫酸双氧水溶液、去离子水、 无水乙醇中清洗5min、10min、5min和5min,氮气吹干后储存;
(2)在浓度为0.667mol/L氢氧化钾溶液中滴加浓度为0.45mol/L醋酸铅溶 液,在600转/分钟转速下完全反应后逐滴滴加浓度为0.56mol/L硒代硫酸钠溶液, 搅拌均匀后获得黄褐色悬浊液,其中氢氧化钾溶液、醋酸铅溶液、硒代硫酸钠溶 液的体积比为3:1:1。
将配制好的上述黄褐色悬浊液放置于75℃水浴中,将步骤(1)获得的衬底 通过模具单面暴露垂直插入水浴热稳定后的黄褐色悬浊液中,沉积4h,以在衬 底上沉积形成致密硒化铅层;
(3)在浓度为0.1812mol/L的醋酸铅溶液中倒入浓度为0.2mol/L柠檬酸三 钠溶液,玻璃棒搅拌后获得乳白色胶体,再添加28wt%氨水搅拌后变为澄清溶液, 其中醋酸铅溶液、柠檬酸三钠溶液、28wt%氨水的体积比为11:3:1;
将配制好的上述澄清溶液放置于25℃水浴中,将沉积有致密硒化铅层的衬 底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为8h,以 在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
(4)将步骤(3)得到的附有致密硒化铅层和含氧碱式碳酸铅层的衬底置于 在浓度为0.026mol/L硒代硫酸钠的溶液中发生离子交换反应,其中离子交换反 应温度为25℃,时间为2h,以使含氧碱式碳酸铅层转变为疏松硒化铅层;
本申请中将此工艺制备的高光吸收、低禁带宽度的分层多晶硒化铅薄膜命名 为为“样品三”,其疏松硒化铅层的晶粒大小约为0.38μm,厚度约为6.4μm。“样 品三”的光学反射、吸收以及禁带宽度分别如图4和5所示,结果表明“样品三” 比“致密硒化铅层”的光学反射在450~2500nm范围内降低了约63.3%,在 2500~5000nm范围内降低了55.64%,光学吸收在450~2500nm范围内提高了 72.46%,在2500~5000nm范围内提高了64.42%。“样品三”在波长450至5000nm 范围内,平均吸光度达0.97,平均光学反射约为10.91%。禁带宽度由约0.5eV 降低到0.313eV。
实施例4:
(1)将两寸多晶硅衬底依次在去离子水、硫酸双氧水溶液、去离子水、无 水乙醇中清洗5min、10min、5min和5min,氮气吹干后储存;
(2)在浓度为0.45mol/L氢氧化钾溶液中滴加浓度为0.3mol/L醋酸铅溶液, 在600转/分钟转速下完全反应后逐滴滴加浓度为0.2mol/L硒代硫酸钠溶液,搅 拌均匀后获得黄褐色悬浊液,其中去离子水、氢氧化钾溶液、醋酸铅溶液、硒代 硫酸钠溶液的体积比为4:1:1;
将配制好的上述黄褐色悬浊液放置于60℃水浴中,将步骤(1)获得的衬底 通过模具单面暴露垂直插入水浴热稳定后的黄褐色悬浊液中,沉积3h,以使得 在衬底上沉积形成致密硒化铅层;
致密硒化铅层的晶粒大小约为0.7μm,厚度约为1.5μm。
(3)在浓度为0.0164mol/L的醋酸铅溶液中倒入浓度为0.2mol/L柠檬酸三 钠溶液,玻璃棒搅拌后获得乳白色胶体,再添加28wt%氨水搅拌后变为澄清溶液, 其中醋酸铅溶液、柠檬酸三钠溶液、28wt%氨水的体积比为12.2:2.8:0.8;
将配制好的上述澄清溶液放置于20℃水浴中,将沉积有致密硒化铅层的衬 底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为10h,以 使得在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
(4)将步骤(3)得到的附有致密硒化铅层和含氧碱式碳酸铅层的衬底置于 在浓度为0.01mol/L硒代硫酸钠的溶液中发生离子交换反应,其中离子交换反应 温度为20℃,时间为5h,以使含氧碱式碳酸铅层转变为疏松硒化铅层;该分层 多晶硒化铅薄膜中疏松硒化铅层晶粒大小约为0.2μm,疏松硒化铅层厚度约为 5μm。该样品在波长450至5000nm范围内,平均吸光度达0.87,平均光学反射 约为14.43%。禁带宽度约为0.32eV。
实施例5:
(1)将两寸氧化硅衬底依次在去离子水、硫酸双氧水溶液、去离子水、无 水乙醇中清洗5min、10min、5min和5min,氮气吹干后储存;
(2)在浓度为1.1mol/L氢氧化钾溶液中滴加浓度为0.6mol/L醋酸铅溶液, 在600转/分钟转速下完全反应后逐滴滴加浓度为0.6mol/L硒代硫酸钠溶液,搅 拌均匀后获得黄褐色悬浊液,其中氢氧化钾溶液、醋酸铅溶液、硒代硫酸钠溶液 的体积比为2:1:1;
将配制好的上述黄褐色悬浊液放置于85℃水浴中,将步骤(1)获得的衬底 通过模具单面暴露垂直插入水浴热稳定后的黄褐色悬浊液中,沉积5h,以在衬 底上沉积形成致密硒化铅层;
致密硒化铅层的晶粒大小约为1.5μm,厚度约为5μm。
(3)在浓度为0.0306mol/L的醋酸铅溶液中倒入浓度为0.3mol/L柠檬酸三 钠溶液,玻璃棒搅拌后获得乳白色胶体,再添加28wt%氨水搅拌后变为澄清溶液, 其中醋酸铅溶液、柠檬酸三钠溶液、28wt%氨水的体积比为9.8:3.2:1.2;
将配制好的上述澄清溶液放置于50℃水浴中,将沉积有致密硒化铅层的衬 底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为24h,以 在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
(4)将步骤(3)得到的附有致密硒化铅层和含氧碱式碳酸铅层的衬底置于 在含有0.05mol/L硒代硫酸钠与0.05mol/L硒脲的混合硒离子的溶液中发生离子 交换反应,其中离子交换反应温度为40℃,时间为0.5h,以使含氧碱式碳酸铅 层转变为疏松硒化铅层;该分层多晶硒化铅薄膜中疏松硒化铅层的晶粒大小约为 0.5μm,厚度约为15μm。该样品在波长450至5000nm范围内,平均吸光度达 1.31,平均光学反射约为8.58%。禁带宽度约为0.30eV。
实施例6:
(1)将氮化镓衬底依次在去离子水、硫酸双氧水溶液、去离子水、无水乙 醇中清洗5min、10min、5min、5min,氮气吹干后储存;
(2)在浓度为1mol/L氢氧化钾溶液中缓慢滴加浓度为0.4mol/L醋酸铅溶 液,在600转/分钟转速下完全反应后逐滴滴加浓度为0.5mol/L硒代硫酸钠溶液, 搅拌均匀后获得黄褐色悬浊液,其中氢氧化钾溶液、醋酸铅溶液、硒代硫酸钠溶 液的体积比为2:1:1;
将配制好的上述黄褐色悬浊液放置于80℃水浴中,将步骤(1)获得的衬底 通过模具单面暴露垂直插入水浴热稳定后的黄褐色悬浊液中,沉积4h,以在衬 底上沉积形成致密硒化铅层;
致密硒化铅层的晶粒大小约为1μm,厚度约为4.45μm,如图3d所示。
(3)在浓度为0.0229mol/L的醋酸铅溶液中倒入浓度为0.25mol/L柠檬酸三 钠溶液,玻璃棒搅拌后获得乳白色胶体,再添加28wt%氨水搅拌后变为澄清溶液, 其中醋酸铅溶液、柠檬酸三钠溶液、28wt%氨水的体积比为10.9:3:1;
将配制好的上述澄清溶液放置于40℃水浴中,将沉积有致密硒化铅层的衬 底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为24h,以 在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
(4)将步骤(3)得到的附有致密硒化铅层和含氧碱式碳酸铅层的衬底置于 在含有0.05mol/L硒代硫酸钠的溶液中发生离子交换反应,其中离子交换反应温 度为35℃,时间为2.5h,以使含氧碱式碳酸铅层转变为疏松硒化铅层;该高光 吸收、低禁带宽度的分层多晶硒化铅薄膜中疏松硒化铅层的晶粒大小约为 0.42μm,厚度约为15μm。该样品在波长450至5000nm范围内,平均吸光度达 0.95,平均光学反射约为10.65%。禁带宽度约为0.30eV。
实施例7:
(1)将石英衬底依次在去离子水、硫酸双氧水溶液、去离子水、无水乙醇 中清洗5min、10min、5min和5min,氮气吹干后储存;
(2)在浓度为0.76mol/L氢氧化钾溶液中滴加浓度为0.6mol/L醋酸铅溶液, 在600转/分钟转速下完全反应后逐滴滴加浓度为0.4mol/L硒代硫酸钠溶液,搅 拌均匀后获得黄褐色悬浊液,其中氢氧化钾溶液、醋酸铅溶液、硒代硫酸钠溶液 的体积比为2.5:1:1;
将配制好的上述黄褐色悬浊液放置于70℃水浴中,将步骤(1)获得的衬底 通过模具单面暴露垂直插入水浴热稳定后的黄褐色悬浊液中,沉积3h,以在衬 底上沉积形成致密硒化铅层;
致密硒化铅层的晶粒大小约为0.9μm,厚度约为3.1μm。
(3)在浓度为0.0283mol/L的醋酸铅溶液中倒入浓度为0.25mol/L柠檬酸三 钠溶液,玻璃棒搅拌后获得乳白色胶体,再添加28wt%氨水搅拌后变为澄清溶液, 其中醋酸铅溶液、柠檬酸三钠溶液、28wt%氨水的体积比为9.9:3:0.9;
将配制好的上述澄清溶液放置于45℃水浴中,将沉积有致密硒化铅层的衬 底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为15h,以 在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
(4)将步骤(3)得到的附有致密硒化铅层和含氧碱式碳酸铅层的衬底置于 在含0.05mol/L硒脲溶液中发生离子交换反应,其中离子交换反应温度为40℃, 时间为2.5h,以使含氧碱式碳酸铅层转变为疏松硒化铅层;该分层多晶硒化铅薄 膜中疏松硒化铅层的晶粒大小约为0.45μm,厚度约为14.6μm。该样品在波长450 至5000nm范围内,平均吸光度达0.96,平均光学反射约为10.92%。禁带宽度 约为0.30eV。
以上所述,仅是本发明的部分典型案例,并不以此对本发明限制,凡是根据 本发明工艺实质对以上实施例所作的任何修改、变更以及等效元素的变换,均仍 属于本发明技术方案的保护范围内。

Claims (9)

1.一种分层多晶硒化铅薄膜,包括衬底、硒化铅薄膜层,其特征在于,所述的硒化铅薄膜层由位于衬底上的致密硒化铅层和位于致密硒化铅层上的疏松硒化铅层构成,致密硒化铅层由粒径为0.7~1.5μm立方晶粒紧密排列堆积形成,厚度1.5~5μm;疏松硒化铅层是由粒径为0.2~0.5μm立方晶粒随机排列堆积形成,晶粒堆之间和晶粒之间存在着大量微米或亚微米级空隙,厚度5~15μm。
2.如权利要求1所述的一种分层多晶硒化铅薄膜,其特征在于,所述分层多晶硒化铅薄膜在波长450至5000nm范围内,平均吸光度达0.89~1.31,平均光学反射为8.58%~13.63%。
3.如权利要求1所述的一种分层多晶硒化铅薄膜,其特征在于,所述分层多晶硒化铅薄膜的禁带宽度为0.30~0.32eV。
4.如权利要求1所述的一种分层多晶硒化铅薄膜,其特征在于,所述衬底为玻璃、硅、氧化硅、氮化镓和石英中的一种。
5.如权利要求1所述的一种分层多晶硒化铅薄膜的制备方法,其特征在于,具体步骤如下:
(1)衬底清洗:
(2)化学浴法制备致密硒化铅层:
在浓度为0.45~1.1mol/L氢氧化钾溶液中滴加浓度为0.3~0.6mol/L醋酸铅溶液,搅拌条件下完全反应后再逐滴滴加浓度为0.2~0.6mol/L硒代硫酸钠溶液,搅拌均匀后获得黄褐色悬浊液,其中氢氧化钾溶液、醋酸铅溶液、硒代硫酸钠溶液的体积比为2~4:1:1;
将配制好的上述黄褐色悬浊液放置于60~85℃水浴中,将步骤(1)获得的衬底通过模具单面暴露垂直插入水浴热稳定后的黄褐色悬浊液中,沉积3~5h,以在衬底上沉积形成致密硒化铅层;
(3)化学浴法制备含氧碱式碳酸铅层:
在浓度为0.0164~0.0306mol/L的醋酸铅溶液中倒入浓度为0.2~0.3mol/L柠檬酸三钠溶液,玻璃棒搅拌后获得乳白色胶体,再添加氨水搅拌后变为澄清溶液,其中醋酸铅溶液、柠檬酸三钠溶液、氨水的体积比为9.8~12.2:2.8~3.2:0.8~1.2;
将配制好的上述澄清溶液放置于20~50℃水浴中,将沉积有致密硒化铅层的衬底通过模具单面暴露垂直插入水浴热稳定后的澄清溶液中,沉积时间为8~24h,以在致密硒化铅层上沉积形成含氧碱式碳酸铅层;
(4)离子交换法制备疏松硒化铅层:将步骤(3)获得的附有致密硒化铅层和含氧碱式碳酸铅层的衬底置于含有硒离子的溶液中发生离子交换反应,其中离子交换反应温度为20~40℃,时间为0.5~5h,以使含氧碱式碳酸铅层转变为疏松硒化铅层。
6.如权利要求5所述的一种分层多晶硒化铅薄膜的制备方法,其特征在于,步骤(1)中,所述衬底清洗的步骤如下:将衬底分别置于去离子水、硫酸双氧水溶液、去离子水、无水乙醇中依次清洗5min、10min、5min和5min,取出后用氮气枪吹干后储存。
7.如权利要求5所述的一种分层多晶硒化铅薄膜的制备方法,其特征在于,步骤(2)中,搅拌转速为600转/分钟。
8.如权利要求5所述的一种分层多晶硒化铅薄膜的制备方法,其特征在于,步骤(3)中,氨水浓度为28wt%。
9.如权利要求5所述的一种分层多晶硒化铅薄膜的制备方法,其特征在于:步骤(4)中,所述含有硒离子的溶液为0.01~0.1mol/L硒代硫酸钠和硒脲中的一种或二者的组合。
CN202110302121.1A 2021-03-22 2021-03-22 一种分层多晶硒化铅光电薄膜及其制备方法 Active CN113345972B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110302121.1A CN113345972B (zh) 2021-03-22 2021-03-22 一种分层多晶硒化铅光电薄膜及其制备方法
PCT/CN2021/082884 WO2022198540A1 (zh) 2021-03-22 2021-03-25 一种分层多晶硒化铅光电薄膜及其制备方法
US17/639,328 US11781222B2 (en) 2021-03-22 2021-03-25 Layered polycrystalline lead selenide photoelectric film and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110302121.1A CN113345972B (zh) 2021-03-22 2021-03-22 一种分层多晶硒化铅光电薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113345972A true CN113345972A (zh) 2021-09-03
CN113345972B CN113345972B (zh) 2024-05-14

Family

ID=77467820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110302121.1A Active CN113345972B (zh) 2021-03-22 2021-03-22 一种分层多晶硒化铅光电薄膜及其制备方法

Country Status (3)

Country Link
US (1) US11781222B2 (zh)
CN (1) CN113345972B (zh)
WO (1) WO2022198540A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301008A (zh) * 2018-10-31 2019-02-01 深圳清华大学研究院 量子点光电探测器及其制备方法
CN109913219A (zh) * 2019-02-25 2019-06-21 深圳清华大学研究院 硒化铅量子点、制备方法及量子点太阳能电池
MX2017010530A (es) * 2018-01-22 2019-07-23 Univ Sonora Método de obtención de películas pbse mediante la técnica de baño químico e intercambio iónico, para aplicaciones optoelectrónicas.
CN110299430A (zh) * 2019-06-06 2019-10-01 华中科技大学 一种半导体薄膜光电探测器及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429679B (zh) * 2008-11-25 2011-09-14 陕西科技大学 一种纳米PbS薄膜的制备方法
CN101871097B (zh) * 2010-06-10 2012-05-16 浙江工业大学 一种致密PbSe多晶薄膜的简单制备方法
DE102013105462A1 (de) * 2013-05-28 2014-12-04 Ernst-Abbe-Fachhochschule Jena Schichtenfolge zur photoelektrischen Umwandlung von Licht sowie Hot Carrier Solarzelle
CN104900744B (zh) * 2015-04-24 2017-01-18 原子健 一种中红外探测器及其制备方法
US20210282663A1 (en) * 2017-01-16 2021-09-16 Koninklijke Philips N.V. Capnography with lead selenide detector and integrated bandpass filter
CN109721036A (zh) * 2019-01-02 2019-05-07 北京科技大学 一种化学液相法制备硒化铅薄膜的方法
CN112017945B (zh) * 2020-08-28 2022-02-11 中国科学院重庆绿色智能技术研究院 利用微波等离子体化学气相沉积法制备硒化铅薄膜的方法
CN112531065B (zh) * 2020-12-22 2021-06-29 中国科学院重庆绿色智能技术研究院 用于红外光电的铅盐薄膜结构及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017010530A (es) * 2018-01-22 2019-07-23 Univ Sonora Método de obtención de películas pbse mediante la técnica de baño químico e intercambio iónico, para aplicaciones optoelectrónicas.
CN109301008A (zh) * 2018-10-31 2019-02-01 深圳清华大学研究院 量子点光电探测器及其制备方法
CN109913219A (zh) * 2019-02-25 2019-06-21 深圳清华大学研究院 硒化铅量子点、制备方法及量子点太阳能电池
CN110299430A (zh) * 2019-06-06 2019-10-01 华中科技大学 一种半导体薄膜光电探测器及其制备方法

Also Published As

Publication number Publication date
US11781222B2 (en) 2023-10-10
CN113345972B (zh) 2024-05-14
US20220396879A1 (en) 2022-12-15
WO2022198540A1 (zh) 2022-09-29

Similar Documents

Publication Publication Date Title
Ferekides et al. High efficiency CSS CdTe solar cells
Pawar et al. Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films
Katagiri et al. The influence of the composition ratio on CZTS-based thin film solar cells
KR101633388B1 (ko) 구리-인듐-갈륨-황-셀레늄 박막 태양전지의 광 흡수층의 제조 방법
TWI455333B (zh) 太陽能電池
US20110017289A1 (en) Cigs solar cell and method of fabricating the same
TWI407575B (zh) A semiconductor device, a method for manufacturing the same, and a solar battery
US20120180870A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
US20140144510A1 (en) Photoelectric conversion element and solar cell
Shah et al. Effect of Ag doping in double antireflection layer on crystalline silicon solar cells
Gu et al. Structural, optical and photoelectric properties of Mn-doped ZnO films used for ultraviolet detectors
Wang et al. Structural, optical and photoelectrical properties of Cu 2 O films electrodeposited at different pH
Lakshmanan et al. Recent advances in cuprous oxide thin film based photovoltaics
Dhere et al. Studies on chemical bath deposited cadmium sulphide films by buffer solution technique
Kermadi et al. An in-depth investigation on the grain growth and the formation of secondary phases of ultrasonic-sprayed Cu2ZnSnS4 based thin films assisted by Na crystallization catalyst
CN113345972B (zh) 一种分层多晶硒化铅光电薄膜及其制备方法
CN114649482A (zh) 基于籽晶诱导生长钙钛矿薄膜的反式太阳能电池制备方法
CN114823346A (zh) 五价金属元素掺杂金属氧化物薄膜的制备方法及应用
CN112563118A (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
Morris et al. Chemical bath deposition of thin film CdSe layers for use in Se alloyed CdTe solar cells
Kartopu et al. Cadmium Telluride and Related II‐VI Materials
Arba et al. Determination of the optimal conditions for the deposition of Cu 2 ZnSnS 4 (CZTS) thin films by spray pyrolysis using Taguchi method
Akçay et al. Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films
KR20110092173A (ko) 연속흐름반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant