CN112563118A - In掺杂CdS薄膜、制备方法及制备的CIGS电池 - Google Patents

In掺杂CdS薄膜、制备方法及制备的CIGS电池 Download PDF

Info

Publication number
CN112563118A
CN112563118A CN202011526666.2A CN202011526666A CN112563118A CN 112563118 A CN112563118 A CN 112563118A CN 202011526666 A CN202011526666 A CN 202011526666A CN 112563118 A CN112563118 A CN 112563118A
Authority
CN
China
Prior art keywords
film
cigs
solution
doped
cds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011526666.2A
Other languages
English (en)
Other versions
CN112563118B (zh
Inventor
周正基
袁胜杰
武四新
常倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202011526666.2A priority Critical patent/CN112563118B/zh
Publication of CN112563118A publication Critical patent/CN112563118A/zh
Application granted granted Critical
Publication of CN112563118B publication Critical patent/CN112563118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02584Delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种In掺杂CdS薄膜、制备方法及制备的CIGS电池,步骤如下:(1)制备CIGS吸收层薄膜;(2)向硝酸镉溶液中加入氨水和硫脲溶液,混合后加入步骤(1)制备得到的CIGS吸收层薄膜,水浴加热;(3)将In(NO3)3溶液加入恒压漏斗中,稀释后逐滴滴加到水热溶液中,控制滴加速度为4 s每滴;(4)滴加完毕后,得到In掺杂CdS薄膜。本发明通过在CdS缓冲层过程中连续滴加In(NO3)3溶液,通过调节溶液中In离子的浓度和滴加速度,控制缓冲层中In、Cd的比例,制备了平整致密的In掺杂CdS薄膜。用In掺杂CdS薄膜做缓冲层的CIGS电池光电转换效率由13.43%提高到16.39%。

Description

In掺杂CdS薄膜、制备方法及制备的CIGS电池
技术领域
本发明涉及太阳能电池领域,具体涉及一种In掺杂CdS薄膜、制备方法及制备的CIGS电池。
背景技术
铜铟镓硒薄膜太阳能电池是以多晶CuIn1-xGaxSe2(CIGS)半导体薄膜为吸收层的太阳电池。典型的CIGS电池结构如附图1所示,包括钠钙玻璃衬底、Mo背电极、CIGS吸收层、CdS缓冲层、本征ZnO和Al掺杂ZnO窗口层以及Ni-Al顶电极组成。
CdS薄膜是目前使用最多且得到最高效率CIGS太阳能电池采用的一种缓冲层。它是一种直接带隙的n型半导体,带隙宽度为2.4 eV。CdS薄膜与p型的CIGS吸收层薄膜形成p-n结,构成了CIGS薄膜太阳能电池最基本的单元。因此,在CIGS吸收层上制备高质量的CdS缓冲层对获得高效率的CIGS电池是非常关键的。
化学浴沉积(CBD)可以制得均匀分布的,完全覆盖整个CIGS吸收层表面的致密CdS薄膜。但是,制备得到的CdS缓冲层可以吸收光子能量大于2.4 eV的太阳光谱,降低了CIGS太阳能电池在短波波段的光谱相应。因此,降低CdS缓冲层的无效光吸收可以有效提高CIGS太阳能电池的光利用效率。目前主要采用两种方法来降低CdS的光吸收:一是进一步减薄CdS的薄膜厚度,减少太阳光透过时的损失。二是通过掺杂提高CdS的带隙,降低其对短波谱段太阳光的无效吸收。In掺杂CdS可以增加CdS薄膜的带隙,而且In离子与Cd离子半径相近,更易发生掺杂。
利用CBD沉积CdS薄膜可以制得均匀致密,厚度很薄且无针孔的高质量薄膜。同时,在CBD沉积过程中,可以溶解掉CIGS吸收层薄膜表面的氧化物,而且Cd离子可以扩散到吸收层表面,修改CIGS吸收层表面缺陷。但是,由于In2S3的溶度积(5.7×10−74)远远小于CdS(8.0×10−27),致使在溶液中In离子浓度较大时,优先形成In2S3薄膜,对用CBD发制备In掺杂CdS薄膜造成困难。
发明内容
本发明提出了一种In掺杂CdS薄膜、制备方法及制备的CIGS电池,解决了目前采用CBD法沉积CdS薄膜时,由于In2S3的溶度积远小于CdS,而导致In无法掺杂的问题。
实现本发明的技术方案是:
一种用于CIGS太阳能电池缓冲层的In掺杂CdS薄膜的制备方法,步骤如下:
(1)利用铜粉、铟粉、镓粉和硒粉制备CIGS前驱体薄膜,将CIGS前驱体薄膜硒化处理,制得CIGS吸收层薄膜;
(2)向硝酸镉溶液中加入氨水和硫脲溶液,混合后加入步骤(1)制备得到的CIGS吸收层薄膜,65-85℃水浴加热;
(3)将In(NO3)3溶液加入恒压漏斗中,稀释后逐滴滴加到步骤(2)的水热溶液中,控制滴加速度为4 s每滴;
(4)滴加完毕后,待薄膜表面呈蓝紫色后取出,得到In掺杂CdS薄膜。
所述步骤(1)中将铜粉、铟粉、镓粉和硒粉按照质量比为1:0.8:0.4:2溶于乙二胺和乙二硫醇的混合溶剂中,于70℃搅拌形成均匀稳定的褐色溶液,将褐色溶液旋涂到钼玻璃上,在350 ℃加热1 min,重复旋涂和加热的步骤,制得1-2μm的CIGS前驱体薄膜。
所述步骤(1)中CIGS前驱体薄膜置于装有0.4 g硒粉的石墨盒中,在通入氩气的快速升温炉中550 ℃下硒化处理15 min,制得CIGS吸收层薄膜。
所述步骤(2)中硫脲溶液的浓度是1.0~1.5mol/L,硝酸镉溶液的浓度是0.01~0.015mol/,硝酸镉溶液、氨水和硫脲溶液的体积比为20:36:12.8。
所述步骤(3)中In(NO3)3溶液的浓度为1.5×10-4 mol/L,化学浴溶液中In:Cd物质的量比在1:(100~400)之间。
所述In掺杂CdS薄膜的厚度为50~70nm,通过在水浴沉积CdS薄膜的过程中,控制In盐溶液的加入量来实现。
利用所述的In掺杂CdS薄膜制备的CIGS电池,包括钠钙玻璃衬底、Mo背电极、CIGS吸收层、In掺杂CdS缓冲层、本征ZnO和Al掺杂ZnO薄膜以及Ni-Al顶电极。
所述的In掺杂CdS薄膜制备的CIGS电池,所述Mo背电极由直流磁控溅射制备,厚度为800~1000nm;本征ZnO和Al掺杂ZnO薄膜均由磁控溅射法制备,厚度分别为50 nm和250nm;Ni-Al顶电极由热蒸发法制备,厚度为1μm。
上述以In掺杂CdS薄膜为缓冲层的CIGS薄膜太阳能电池的制备工艺流程如下:
步骤一、清洗钙玻璃衬底。依次用洗洁精、去离子水、丙酮、无水乙醇和异丙醇超声清洗钠钙玻璃30 min,随后放置于真空干燥箱中烘干备用;
步骤二、沉积Mo背电极。用直流磁控溅射法在上述清洁的玻璃衬底上沉积Mo背电极,分两层沉积。第一层Mo薄膜的厚度大约为300 nm,Ar气流量为7 mTorr,溅射功率为100watts;第二层Mo薄膜厚度大约为500 nm,Ar气流量为3 mTorr,溅射功率为170 watts。第一层Mo是在较高的工作气压下溅射的,目的是为了得到较好的Mo与玻璃之间较好的附着力,第二层Mo采用低气压溅射,其目的是为了得到较好的结晶质量,减小Mo薄膜的方块电阻;
步骤三、配置CIGSe前驱体溶液。首先,称量0.0699 g铜粉、0.0960 g铟粉、0.0250g镓颗粒和0.1812 g硒粉加入25 mL圆底烧瓶。通入氩气30 min,以排尽烧瓶中的空气。接着加入5 mL乙二胺、0.5 mL乙二硫醇。最后,将圆底烧瓶密封后放入加热套中60 ℃磁力搅拌数小时,直到所有的物质完全溶解,形成稳定的CIGS前驱体溶液;
步骤四、制备CIGS吸收层薄膜。将上述CIGS前驱体溶液旋涂到步骤二制得的钼玻璃基底上,在3000 rmp的条件下旋涂30 s,接着立即把旋涂得到的薄膜放置于预先加热到350 ℃的热台上煅烧1 min。然后重复旋涂加热的操作步骤,直到制备得到1-2 μm的CIGS前驱体薄膜;最后,把装有0.4 g硒粉和CIGS前驱体薄膜的石墨盒放置于通入氩气气流的快速升温管式炉中550 ℃硒化15 min。自然降温冷却后取出即得CIGS吸收层薄膜;
步骤五、在上述CIGS吸收层薄膜上用CBD方法沉积In掺杂CdS薄膜;
步骤六、制备本征ZnO和Al掺杂ZnO窗口层;
具体实验参数如下:用交流磁控溅射沉积50 nm的本征ZnO层,Ar气流量为5mTorr,溅射功率为80 watts;用直流磁控溅射沉积250 nm的Al:ZnO层,Ar气流量为1mTorr,溅射功率为75 watts;
步骤七、制备Ni-Al栅状电极。
采用电子束蒸发分别在上述窗口层上面沉积Ni-Al上电极。Ni的厚度为50 nm左右,Al的厚度为1 μm左右。其中Ni层可以改善Al电极与Al掺杂ZnO层之间的欧姆接触,提高它们之间附着力,同时可以阻挡Al向窗口层中的扩散。
本发明的有益效果是:本发明通过在CBD沉积CdS缓冲层过程中连续滴加In(NO3)3溶液,通过调节溶液中In离子的浓度和滴加速度,控制缓冲层中In、Cd的比例,制备了平整致密的In掺杂CdS薄膜。In掺杂引起CdS带隙值增大,减少了CIGS薄膜太阳能电池中CdS缓冲层对太阳光谱短波谱段的无效光吸收。因此,用In掺杂CdS薄膜做缓冲层的CIGS太阳能电池光电转换效率由13.43%提高到16.39%,尤其是在短波谱段的光电响应明显增强。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是CIGS电池结构示意图。
图2是传统CBD法制得的CdS薄膜和本发明制得In掺杂CdS薄膜的扫描电镜形貌图和原子力显微镜形貌图。
图3是由吸收光谱推导出的CdS薄膜和In掺杂CdS薄膜的带隙图。
图4是用CdS薄膜和In掺杂CdS薄膜组装CIGS太阳能电池的电流-电压曲线图比较。
图5是用CdS薄膜和In掺杂CdS薄膜组装CIGS太阳能电池的外量子效率图比较。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例制备CIGS电池的结构为:钠钙玻璃衬底/Mo背电极/CIGS吸收层/In掺杂CdS缓冲层/本征ZnO和Al掺杂ZnO窗口层/Ni-Al顶电极(如图1所示)。
电池中每层的制备方法如上所述,其中用CBD法制备In掺杂CdS缓冲层的流程如下:
步骤一、称取4.5672 g硫脲放入烧杯中,量取50 ml三次水,在60 ℃,500转/秒的加热套中搅拌至完全溶解;
步骤二、称取0.1432 g的In(NO3)3·4.5 H2O放入烧杯中,量取25 ml三次水,在500转/秒的加热套中搅拌至完全溶解;
步骤三、称取0.2313 g的Cd(NO3)3·4 H2O放入烧杯中,量取50 ml三次水,在500转/秒的加热套中搅拌至完全溶解;
步骤三、量取20 ml上述Cd(NO3)3·4 H2O溶液加入到250 mL烧杯中,在35 ℃,100转/秒的加热套中搅拌,随后每间隔2 min,依次加入36 ml的氨水,12.8 ml步骤一中制备的硫脲溶液和140 ml的三次水;
步骤四、将制得的CIGS吸收层薄膜放入到步骤三配置的溶液中,随后将装有上述溶液和吸收层薄膜的烧杯放入65 ℃的水浴锅中;
步骤五、用针管量取0.1 ml步骤二中制得的In(NO3)3溶液加入恒压漏斗中,用三次水均匀稀释至10 ml,并逐滴滴加到步骤四的水热溶液中,控制滴加速度为4 s每滴;
步骤六、恒压漏斗中的In(NO3)3溶液滴加完毕后,观察吸收层薄膜的表面至呈现蓝紫色后取出,整个CBD沉积In掺杂CdS薄膜的过程为10 min左右,In掺杂CdS薄膜缓冲层的厚度为60 nm左右。
对比例
对比例与实施例1除CIGS电池缓冲层外,电池其他各层制备条件基本相同,对比例采用CdS作为电池的缓冲层,在CBD制备CdS缓冲层的过程中不加入In(NO3)3溶液。
图2为实施例1制备的In掺杂CdS薄膜和对比例制备的CdS薄膜的扫描电镜形貌图和原子力显微镜形貌图。从图中可以看出,实施例1中制得的In掺杂CdS薄膜和对比例制得的传统CdS薄膜表面均比较平整致密,适合作为CIGS电池的缓冲层。图3是由紫外可见吸收光谱推导出的CdS薄膜和In掺杂CdS薄膜的带隙图,从中可以看出,所制得的In掺杂CdS薄膜的带隙是2.47 eV,而传统方法制得的CdS薄膜的带隙是2.38 eV,In掺杂CdS可以提高薄膜的带隙宽度,减少对短波谱段太阳光的无效吸收。
图4为实施例1的以In掺杂CdS薄膜为缓冲层的CIGS太阳能电池与对比例中以CdS为缓冲层的CIGS太阳能电池的电流密度与电压关系曲线图。从中可以看出,实施例1中以In掺杂CdS为缓冲层的CIGS太阳能电池其开路电压(Voc)为670 mV,短路电流密度(Jsc)为32.52 mA/cm2,填充因子为75.3,光电转换效率为16.39%;对比例中以CdS为缓冲层的CIGS太阳能电池其开路电压(Voc)为613 mV,短路电流密度(Jsc)为31.30 mA/cm2,填充因子为70.1,光电转换效率为13.43%。从图5实施例1和对比例组装的CIGS太阳能电池的外量子效率图可以明显看出,用In掺杂CdS薄膜为缓冲层的CIGS太阳能电池在短波光谱范围有更大的外量子转换效率,由于减少了短波波段由于CdS的无效光吸收而带来的量子效率损失,电池的整体性能指标明显提高。
实施例2
本实施例制备CIGS电池的结构为:钠钙玻璃衬底/Mo背电极/CIGS吸收层/In掺杂CdS缓冲层/本征ZnO和Al掺杂ZnO窗口层/Ni-Al顶电极。电池中每层的制备方法和前述一致,其中用CBD法制备In掺杂CdS缓冲层的流程如下:
步骤一、称取4.5672 g硫脲放入烧杯中,量取50 ml三次水,在60 ℃,500转/秒的加热套中搅拌至完全溶解;
步骤二、称取0.1432 g的In(NO3)3·4.5 H2O放入烧杯中,量取25 ml三次水,在500转/秒的加热套中搅拌至完全溶解;
步骤三、称取0.2313 g的Cd(NO3)3·4 H2O放入烧杯中,量取50 ml三次水,在500转/秒的加热套中搅拌至完全溶解;
步骤三、量取20 ml上述Cd(NO3)3·4 H2O溶液加入到250 mL烧杯中,在35 ℃,100转/秒的加热套中搅拌,随后每间隔2 min,依次加入36 ml的氨水,12.8 ml步骤一中制备的硫脲溶液和140 ml的三次水;
步骤四、将制得的CIGS吸收层薄膜放入到步骤三配置的溶液中,随后将装有上述溶液和吸收层薄膜的烧杯放入65 ℃的水浴锅中;
步骤五、用针管量取0.2 ml步骤二中制得的In(NO3)3溶液加入恒压漏斗中,用三次水均匀稀释至10 ml,并逐滴滴加到置于步骤四水浴锅中的烧杯内,控制滴加速度为4 s每滴;
步骤六、恒压漏斗中的In(NO3)3溶液滴加完毕后,观察吸收层薄膜的表面至呈现蓝紫色后取出,整个CBD沉积In掺杂CdS薄膜的过程为10 min左右,In掺杂CdS薄膜缓冲层的厚度为60 nm左右。
实施例3
本实施例制备CIGS电池的结构为:钠钙玻璃衬底/Mo背电极/CIGS吸收层/In掺杂CdS缓冲层/本征ZnO和Al掺杂ZnO窗口层/Ni-Al顶电极。电池中每层的制备方法和前述一致,其中用CBD法制备In掺杂CdS缓冲层的流程如下:
步骤一、称取4.5672 g硫脲放入烧杯中,量取50 ml三次水,在60 ℃,500转/秒的加热套中搅拌至完全溶解;
步骤二、称取0.1432 g的In(NO3)3·4.5 H2O放入烧杯中,量取25 ml三次水,在500转/秒的加热套中搅拌至完全溶解;
步骤三、称取0.2313 g的Cd(NO3)3·4 H2O放入烧杯中,量取50 ml三次水,在500转/秒的加热套中搅拌至完全溶解;
步骤三、量取20 ml上述Cd(NO3)3·4 H2O溶液加入到250 mL烧杯中,在35 ℃,100转/秒的加热套中搅拌,随后每间隔2 min,依次加入36 ml的氨水,12.8 ml步骤一中制备的硫脲溶液和140 ml的三次水;
步骤四、将制得的CIGS吸收层薄膜放入到步骤三配置的溶液中,随后将装有上述溶液和吸收层薄膜的烧杯放入65 ℃的水浴锅中;
步骤五、用针管量取0.05 ml步骤二中制得的In(NO3)3溶液加入恒压漏斗中,用三次水均匀稀释至10 ml,并逐滴滴加到置于步骤四水浴锅中的烧杯内,控制滴加速度为4 s每滴;
步骤六、恒压漏斗中的In(NO3)3溶液滴加完毕后,观察吸收层薄膜的表面至呈现蓝紫色后取出,整个CBD沉积In掺杂CdS薄膜的过程为10 min左右,In掺杂CdS薄膜缓冲层的厚度为60 nm左右。
下述表1为实施例1-3与对比例制备得到的CIGS太阳能电池各参数对比。
表1 实施例1-3与对比例CIGS太阳能电池的各参数对比
Figure DEST_PATH_IMAGE002
从表1可以看出,用本发明中方法制备In掺杂CdS薄膜取代CIGS太阳能电池的CdS缓冲层后,电池的短路电流密度、开路电压和填充因子均有不同程度的提高,从而使CIGS太阳能电池的光电转换效率从对比例的13.43%提高到最佳的16.39%(实施例1)。说明此方法制备的In掺杂CdS薄膜可以作为一种更有效的CIGS太阳能电池缓冲层,改善CIGS电池的光吸收效率和载流子收集效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种用于CIGS太阳能电池缓冲层的In掺杂CdS薄膜的制备方法,其特征在于,步骤如下:
(1)利用铜粉、铟粉、镓粉和硒粉制备CIGS前驱体薄膜,将CIGS前驱体薄膜硒化处理,制得CIGS吸收层薄膜;
(2)向硝酸镉溶液中加入氨水和硫脲溶液,混合后加入步骤(1)制备得到的CIGS吸收层薄膜,65-85℃水浴加热;
(3)将In(NO3)3溶液加入恒压漏斗中,稀释后逐滴滴加到步骤(2)的水热溶液中,控制滴加速度为4 s每滴;
(4)滴加完毕后,待薄膜表面呈蓝紫色后取出,得到In掺杂CdS薄膜。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中将铜粉、铟粉、镓粉和硒粉按照质量比为1:0.8:0.4:2溶于溶剂中,于70℃搅拌形成均匀稳定的褐色溶液,将褐色溶液旋涂到钼玻璃上,在350 ℃加热1 min,重复旋涂和加热的步骤,制得1-2μm的CIGS前驱体薄膜。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中CIGS前驱体薄膜置于装有硒粉的石墨盒中,在通入氩气的快速升温炉中550 ℃下硒化处理15 min,制得CIGS吸收层薄膜。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中硫脲溶液的浓度是1.0~1.5mol/L,硝酸镉溶液的浓度是0.01~0.015mol/L,硝酸镉溶液、氨水和硫脲溶液的体积比为20:36:12.8。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中In(NO3)3溶液的浓度为1.5×10-4 mol/L,控制溶液中In和Cd的物质的量比在1:(100~400)之间。
6.权利要求1-5任一项所述的制备方法制备的In掺杂CdS薄膜,其特征在于:所述In掺杂CdS薄膜的厚度为50~70nm。
7.利用权利要求6所述的In掺杂CdS薄膜制备的CIGS电池,其特征在于:包括钠钙玻璃衬底、Mo背电极、CIGS吸收层、In掺杂CdS缓冲层、本征ZnO和Al掺杂ZnO薄膜窗口层以及Ni-Al顶电极。
8.根据权利要求7所述的In掺杂CdS薄膜制备的CIGS电池,其特征在于:所述Mo背电极由直流磁控溅射制备,厚度为800~1000nm;本征ZnO和Al掺杂ZnO薄膜窗口层均由磁控溅射法制备,厚度分别为50 nm和250 nm;Ni-Al顶电极由热蒸发法制备,厚度为1μm。
CN202011526666.2A 2020-12-22 2020-12-22 In掺杂CdS薄膜、制备方法及制备的CIGS电池 Active CN112563118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011526666.2A CN112563118B (zh) 2020-12-22 2020-12-22 In掺杂CdS薄膜、制备方法及制备的CIGS电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011526666.2A CN112563118B (zh) 2020-12-22 2020-12-22 In掺杂CdS薄膜、制备方法及制备的CIGS电池

Publications (2)

Publication Number Publication Date
CN112563118A true CN112563118A (zh) 2021-03-26
CN112563118B CN112563118B (zh) 2023-01-31

Family

ID=75031254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011526666.2A Active CN112563118B (zh) 2020-12-22 2020-12-22 In掺杂CdS薄膜、制备方法及制备的CIGS电池

Country Status (1)

Country Link
CN (1) CN112563118B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116393145A (zh) * 2023-02-27 2023-07-07 广东石油化工学院 一种Ga掺杂In2S3催化剂的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112410A (en) * 1989-06-27 1992-05-12 The Boeing Company Cadmium zinc sulfide by solution growth
US20020189665A1 (en) * 2000-04-10 2002-12-19 Davis, Joseph & Negley Preparation of CIGS-based solar cells using a buffered electrodeposition bath
CN101645466A (zh) * 2009-07-09 2010-02-10 深圳丹邦投资集团有限公司 薄膜太阳电池CdS缓冲层及制备方法
CN110112062A (zh) * 2019-05-22 2019-08-09 中南大学 IIIA族元素掺杂CdS的CZTS太阳电池制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112410A (en) * 1989-06-27 1992-05-12 The Boeing Company Cadmium zinc sulfide by solution growth
US20020189665A1 (en) * 2000-04-10 2002-12-19 Davis, Joseph & Negley Preparation of CIGS-based solar cells using a buffered electrodeposition bath
CN101645466A (zh) * 2009-07-09 2010-02-10 深圳丹邦投资集团有限公司 薄膜太阳电池CdS缓冲层及制备方法
CN110112062A (zh) * 2019-05-22 2019-08-09 中南大学 IIIA族元素掺杂CdS的CZTS太阳电池制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘琪等: "Cu(In,Ga)Se_2太阳电池缓冲层ZnS薄膜性质及应用", 《半导体学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116393145A (zh) * 2023-02-27 2023-07-07 广东石油化工学院 一种Ga掺杂In2S3催化剂的制备方法及其应用
CN116393145B (zh) * 2023-02-27 2024-04-26 广东石油化工学院 一种Ga掺杂In2S3催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN112563118B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
Chantana et al. Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells
Chu et al. Recent progress in thin‐film cadmium telluride solar cells
US8283187B2 (en) Photovoltaic device and method for making
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
JP3519543B2 (ja) 半導体薄膜形成用前駆体及び半導体薄膜の製造方法
CN106653946B (zh) 一种碲化镉薄膜太阳能电池吸收层的沉积方法
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN113410340B (zh) CZTSSe薄膜太阳能电池吸收层改性方法
KR101017141B1 (ko) 3차원 접합형 태양전지 및 그 제조방법
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
US20150087107A1 (en) Method for manufacturing photoelectric conversion device
US8258003B2 (en) Manufacturing method of compound semiconductor solar cell
CN109841697B (zh) 一种基于CuO/Se复合材料薄膜的太阳能电池
CN103268906B (zh) 硫化镉薄膜及具有硫化镉薄膜的太阳能电池的制备方法
KR102015985B1 (ko) 태양전지용 cigs 박막의 제조방법
Il’chuk et al. Chemical surface deposition of CdS ultra thin films from aqueous solutions
US20120080306A1 (en) Photovoltaic device and method for making
Bharam et al. Advantages and challenges of silicon in the photovoltaic cells
KR101069109B1 (ko) 박막 태양 전지 및 이의 제조 방법
CN110323293B (zh) 一种铜铟镓硒薄膜太阳能电池
Zhang et al. Recent Developments in Fabrication and Performance of Solar Cell
JP2011091249A (ja) 太陽電池
Soonmin et al. Chalcogenides-based nanomaterials for solar cells and dye sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant