CN108649082A - 一种ZnS碳量子点日盲紫外探测器及其制备方法 - Google Patents

一种ZnS碳量子点日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN108649082A
CN108649082A CN201810347600.3A CN201810347600A CN108649082A CN 108649082 A CN108649082 A CN 108649082A CN 201810347600 A CN201810347600 A CN 201810347600A CN 108649082 A CN108649082 A CN 108649082A
Authority
CN
China
Prior art keywords
quantum dot
zns
carbon quantum
solar blind
ultraviolet detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810347600.3A
Other languages
English (en)
Other versions
CN108649082B (zh
Inventor
匡文剑
刘向
咸冯林
徐林华
苏静
张仙玲
赖敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taipu (Suzhou) Textile Technology Co.,Ltd.
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201810347600.3A priority Critical patent/CN108649082B/zh
Publication of CN108649082A publication Critical patent/CN108649082A/zh
Application granted granted Critical
Publication of CN108649082B publication Critical patent/CN108649082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种ZnS碳量子点日盲紫外探测器及其制备方法,所述日盲紫外探测器包括ZnS量子点‑碳量子点混合层。其制备方法是先分别制备ZnS量子点溶液和碳量子点溶液,然后将其按一定比例混合后通过印刷、滴涂或旋涂的方式在印有金属电极的基底上制成ZnS量子点‑碳量子点混合层。本发明解决了基于ZnS量子点的日盲紫外探测器中,由于ZnS量子点载流子迁移率低而导致器件光电流、响应度和探测度偏低的问题,提供了一种ZnS碳量子点日盲紫外探测器及其制备方法,利用碳量子点作为载流子传输层,可以极大程度的提高探测器的光响应电流,从而提高响应度,达到提高器件性能的目的。

Description

一种ZnS碳量子点日盲紫外探测器及其制备方法
技术领域
本发明属于光电子器件技术领域,具体涉及一种ZnS碳量子点日盲紫外探测器及其制备方法。
背景技术
太阳辐射中的一部分紫外光,在通过大气层过程中受到热层氧原子和平流层臭氧层的强烈吸收,使得短于300 nm波长的紫外光几乎达不到地球近地表空间。这样在近地表面太阳辐射中300 nm以下部分基本形成盲区,这个波段被称为“日盲紫外区”。针对日盲区的紫外光电探测器,背景噪声很小,几乎不受太阳辐射的干扰。所以日盲紫外探测技术是一项在民用和军用都非常有应用价值的探测技术,尤其在火焰与弧光探测、环境监测、生化基因检测、空间通信、飞行器制导等诸多方面。随着新型半导体材料的发展,基于宽禁带半导体(如AlGaN、SiC 、SiZnO、MgZnO、Ga2O3、金刚石等)的日盲紫外探测器已经得到较为深入的研究,部分实现了产业化。但是也存在一些问题,比如随着Al组分的增加,高质量高空穴浓度的p型AlGaN外延薄膜的制备就比较困难;类似的,高Mg组分的MgZnO较难生长出单晶纤锌矿结构。虽然这些困难目前也在逐步解决,不过一定程度上制约了这些宽禁带半导体材料在日盲紫外探测领域的发展。此外,由于此类传统半导体器件加工工艺较为复杂、制备成本高昂,在大面积生产和柔性应用方面有限制。
硫化锌(ZnS)是一种宽禁带半导体材料,其室温下的体材料的禁带宽度约为3.6eV(立方闪锌矿结构)和3.8 eV(六方纤锌矿结构),激子束缚能约为40 meV。然而ZnS量子点的载流子迁移率较低,制备成探测器件后,虽然暗电流极小,但是光响应电流微弱,不利于信号识别。在混入碳量子点后,ZnS量子点的光生电子可以迅速转移到碳量子点中,加速分离电子和空穴,可以极大程度的提高探测器的光响应电流。结合印刷电子工艺,可以基于CMOS集成电路制备日盲紫外光电晶体管阵列,促进产业升级及多样化应用。
发明内容
本发明解决了基于ZnS量子点的日盲紫外探测器中,由于ZnS量子点载流子迁移率低而导致器件光电流、响应度和探测度偏低的问题,提供了一种ZnS碳量子点日盲紫外探测器及其制备方法,利用碳量子点作为载流子传输层,可以极大程度的提高探测器的光响应电流,从而提高响应度,达到提高器件性能的目的。
一种ZnS碳量子点日盲紫外探测器,包括ZnS量子点-碳量子点混合层。
上述ZnS碳量子点日盲紫外探测器的制备方法,包括以下步骤:
步骤1,采用化学溶液法合成ZnS量子点,将其分散在乙醇中制成ZnS量子点溶液待用;
步骤2,采用化学溶液法合成碳量子点,将其分散在甲苯中制成碳量子点溶液待用;
步骤3,在基底上制备金属电极;
步骤4,将ZnS量子点溶液和碳量子点溶液混合,混合液通过印刷、滴涂或旋涂的方式在步骤3的基底上制成ZnS量子点-碳量子点混合层,烘干,即得。
进一步地,步骤1中ZnS量子点的直径在2 nm。
进一步地,步骤1中ZnS量子点溶液中ZnS量子点的浓度为0.2 mol/L。
进一步地,步骤2中碳量子点的直径在2-6 nm。
进一步地,步骤2中碳量子点溶液中碳量子点的浓度为0.8 mol/L。
进一步地,步骤4所述混合液中ZnS量子点和碳量子点的摩尔比为10:1-1:1。
进一步地,步骤4中ZnS量子点-碳量子点混合层的膜厚在0.2-2 μm,烘干条件为120℃、1h。
ZnS量子点的载流子迁移率较低,制备成探测器件后,虽然暗电流极小,但是光响应电流微弱,不利于信号识别。很多半导体光电探测器,为了尽快把电子和空穴收集到电极,金属电极的距离要求非常近,这样在工艺上存在一定的难度。而碳/石墨烯量子点,有较高的电子迁移率和导热性,并且材料结构稳定,可以快速转移电子,对金属电极没有很近的距离要求。碳量子点可以减少界面阻抗,加速ZnS量子点中光生电子-空穴对的分离和漂移。基于ZnS量子点的日盲紫外探测器中,由于ZnS量子点载流子迁移率低而导致器件光电流、响应度和探测度偏低的问题,提出并ZnS量子点-碳量子点混合层作为光敏层的光电探测器,利用碳量子点作为载流子传输层,可以极大程度的提高探测器的光响应电流,从而提高响应度,达到提高器件性能的目的。
与现有技术相比,本发明的日盲紫外探测器,完全基于溶液过程的制备工艺,适用于印刷电子工艺制备,可以实现低成本、大面积生产。
附图说明
图1为实施例1制备的MSM日盲紫外探测器结构示意图,101为基底,102为金属电极,103为ZnS-碳量子点混合薄膜。
图2是实施例1制备的MSM日盲紫外探测器的剖面结构示意图,101为基底,102为金属电极,103为ZnS-碳量子点混合薄膜。
图3是实施例2制备的硅基日盲紫外探测器的剖面结构示意图。
图4是实施例3制备的柔性日盲紫外探测器的剖面结构示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细描述。
本发明中实施例所采用的ZnS量子点和碳量子点通过以下方法制备得到。
ZnS量子点的具体制备过程:在空气环境中,采用化学溶液法,二水乙酸锌作为锌源,硫代乙酰胺缓慢水解生成硫化氢,通过置换反应,得到ZnS。步骤如下:把10 mmol (2.20g) 二水乙酸锌溶解在70 ℃的100 mL乙醇中;在冰浴条件下,把10 mmol (0.75 g) 硫代乙酰胺溶于50 mL的0 ℃乙醇。将上述两种溶液混合,在60 ℃下强力搅拌20分钟,加入3倍体积比的正庚烷,以大于5000 xg离心力析出。再次加入正庚烷/乙醇混合溶液清洗,超声分散后再次离心,干燥后以浓度0.2 mol/L (19 mg/mL) 重新分散在乙醇中保存。
碳量子点的具体制备过程。十八烯作为非配位性溶剂, 十六胺作为表面钝化剂,无水柠檬酸作为碳源。简要步骤如下: 在氩气保护下,把1.5 g十六胺溶解在300 ℃的15mL十八烯中,然后把5 mmol (0.96 g) 无水柠檬酸加入上述溶液。保持一定时间,用丙酮多次清洗后,得到约0.1 g (8 mmol) 碳量子点产物,以浓度0.8 mol/L (~10 mg/mL) 分散在甲苯中保存。
实施例1
如图1、图2所示的金属-半导体-金属(MSM)肖特基结日盲紫外探测器,其制备方法包括如下步骤:
步骤1,将玻璃基片或者PET基底101,依次在去离子水、丙酮、异丙醇中超声15分钟,放置于烘箱中在110℃条件下烘干。
步骤2,通过热蒸发或磁控溅射方法,使用掩膜制备金属电极图案102,膜厚约100nm,电极间距5-20 μm。
步骤3,取8 mL浓度0.2 mol/L 的ZnS量子点溶液,混合1 mL浓度0.8 mol/L碳量子点溶液,通过滴涂或旋涂的方式制备在基底101上。随即在120℃烘干1小时,得到ZnS-碳量子点混合薄膜103,膜厚约0.2-1 μm。
至此完成ZnS-碳量子点MSM日盲紫外探测器的基本制备。制得的ZnS-碳量子点日盲紫外探测器在200-290 nm波段具有较高的光响应电流。
实施例2
如图3所示的硅基日盲紫外光电晶体管,其制备方法包括如下步骤:
步骤1,将氧化硅片(包括n掺杂Si作为栅极201,氧化硅介电层202),依次在去离子水、丙酮、异丙醇中超声15分钟,放置于烘箱中在120℃条件下烘干。
步骤2,取ZnS量子点和碳量子点混合溶液,通过微电子打印机(材料喷印沉积仪)喷墨打印的方式制备在氧化硅介电层202上。随即在120℃烘干1小时,得到ZnS-碳量子点混合薄膜203。
步骤3,把银纳米颗粒按照一定的图案,喷墨打印在ZnS-碳量子点混合薄膜203上,随即于150℃退火2分钟,形成源漏电极204。
至此完成ZnS-碳量子点硅基日盲光电晶体管的基本制备。
实施例3
如图4所示的柔性日盲紫外光电晶体管,其制备方法包括如下步骤:
步骤1,将柔性PET基底301,依次在去离子水、丙酮、异丙醇中超声15分钟,放置于烘箱中在110℃条件下烘干。
步骤2,用微电子打印机(材料喷印沉积仪)把银纳米颗粒喷墨打印在基底301上,随即于150℃退火2分钟,形成栅极302。
步骤4,把聚(4-乙烯苯酚)(PVP),喷墨打印在栅极302上,随即于100℃烘干30分钟,形成介电层303。
步骤4,取ZnS量子点和碳量子点混合溶液,通过喷墨打印的方式制备在介电层303之上。随即在120 ℃烘干1小时,得到ZnS-碳量子点混合薄膜304。
步骤5,把银纳米颗粒按照一定的图案,喷墨打印在ZnS-碳量子点混合薄膜304上,随即于150℃退火2分钟,形成源漏电极305。
至此完成ZnS-碳量子点柔性日盲光电晶体管的基本制备。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (8)

1.一种ZnS碳量子点日盲紫外探测器,其特征在于:包括ZnS量子点-碳量子点混合层。
2.权利要求1所述的ZnS碳量子点日盲紫外探测器的制备方法,其特征在于:包括以下步骤:
步骤1,采用化学溶液法合成ZnS量子点,将其分散在乙醇中制成ZnS量子点溶液待用;
步骤2,采用化学溶液法合成碳量子点,将其分散在甲苯中制成碳量子点溶液待用;
步骤3,在基底上制备金属电极;
步骤4,将ZnS量子点溶液和碳量子点溶液混合,混合液通过印刷、滴涂或旋涂的方式在步骤3的基底上制成ZnS量子点-碳量子点混合层,烘干,即得。
3.根据权利要求2所述的ZnS碳量子点日盲紫外探测器的制备方法,其特征在于:步骤1中ZnS量子点的直径在2 nm。
4.根据权利要求2所述的ZnS碳量子点日盲紫外探测器的制备方法,其特征在于:步骤1中ZnS量子点溶液中ZnS量子点的浓度为0.2 mol/L。
5.根据权利要求2所述的ZnS碳量子点日盲紫外探测器的制备方法,其特征在于:步骤2中碳量子点的直径在2-6 nm。
6.根据权利要求2所述的ZnS碳量子点日盲紫外探测器的制备方法,其特征在于:步骤2中碳量子点溶液中碳量子点的浓度为0.8 mol/L。
7.根据权利要求2所述的ZnS碳量子点日盲紫外探测器的制备方法,其特征在于:步骤4所述混合液中ZnS量子点和碳量子点的摩尔比为10:1-1:1。
8.根据权利要求2所述的ZnS碳量子点日盲紫外探测器的制备方法,其特征在于:步骤4中ZnS量子点-碳量子点混合层的膜厚在0.2-2 μm,烘干条件为120℃、1h。
CN201810347600.3A 2018-04-18 2018-04-18 一种ZnS碳量子点日盲紫外探测器及其制备方法 Active CN108649082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810347600.3A CN108649082B (zh) 2018-04-18 2018-04-18 一种ZnS碳量子点日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810347600.3A CN108649082B (zh) 2018-04-18 2018-04-18 一种ZnS碳量子点日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN108649082A true CN108649082A (zh) 2018-10-12
CN108649082B CN108649082B (zh) 2020-01-17

Family

ID=63746508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810347600.3A Active CN108649082B (zh) 2018-04-18 2018-04-18 一种ZnS碳量子点日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN108649082B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379873A (zh) * 2019-07-30 2019-10-25 纳晶科技股份有限公司 一种量子点探测器
CN110518086A (zh) * 2019-07-16 2019-11-29 东南大学 一种碳量子点日盲紫外探测器及其制备方法
CN111048604A (zh) * 2019-12-17 2020-04-21 吉林大学 一种基于MgZnO/ZnSⅡ型异质结的紫外探测器及其制备方法
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法
CN112436070A (zh) * 2020-12-01 2021-03-02 南京信息工程大学 一种量子点异质结日盲紫外探测芯片及其制备方法
CN114823950A (zh) * 2022-05-10 2022-07-29 云南师范大学 一种基于碳量子点和贵金属纳米颗粒的光电探测器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060642A3 (en) * 2006-02-10 2009-04-02 Univ New York State Res Found High density coupling of quantum dots to carbon nanotube surface for efficient photodetection
CN102280515A (zh) * 2011-06-28 2011-12-14 合肥工业大学 n型掺杂ZnS准一维纳米结构薄膜光电导型紫外探测器及制备方法
US20140054442A1 (en) * 2012-07-20 2014-02-27 Board Of Regents Of The University Of Nebraska Nanocomposite Photodetector
CN104701393A (zh) * 2015-03-13 2015-06-10 上海集成电路研发中心有限公司 双波段光电探测器及其制备方法
CN106006718A (zh) * 2016-05-11 2016-10-12 北京化工大学 一种硫化锌、硫化亚铜与碳纳米复合材料及其制备方法
CN106433632A (zh) * 2016-10-08 2017-02-22 哈尔滨师范大学 一种碳量子点的制备方法及其应用
CN107564992A (zh) * 2017-08-18 2018-01-09 上海理工大学 一种快速响应的半导体异质结紫外光探测器及其制作方法
CN108389977A (zh) * 2018-04-26 2018-08-10 西南石油大学 一种钙钛矿太阳能电池及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060642A3 (en) * 2006-02-10 2009-04-02 Univ New York State Res Found High density coupling of quantum dots to carbon nanotube surface for efficient photodetection
CN102280515A (zh) * 2011-06-28 2011-12-14 合肥工业大学 n型掺杂ZnS准一维纳米结构薄膜光电导型紫外探测器及制备方法
US20140054442A1 (en) * 2012-07-20 2014-02-27 Board Of Regents Of The University Of Nebraska Nanocomposite Photodetector
CN104701393A (zh) * 2015-03-13 2015-06-10 上海集成电路研发中心有限公司 双波段光电探测器及其制备方法
CN106006718A (zh) * 2016-05-11 2016-10-12 北京化工大学 一种硫化锌、硫化亚铜与碳纳米复合材料及其制备方法
CN106433632A (zh) * 2016-10-08 2017-02-22 哈尔滨师范大学 一种碳量子点的制备方法及其应用
CN107564992A (zh) * 2017-08-18 2018-01-09 上海理工大学 一种快速响应的半导体异质结紫外光探测器及其制作方法
CN108389977A (zh) * 2018-04-26 2018-08-10 西南石油大学 一种钙钛矿太阳能电池及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518086A (zh) * 2019-07-16 2019-11-29 东南大学 一种碳量子点日盲紫外探测器及其制备方法
CN110379873A (zh) * 2019-07-30 2019-10-25 纳晶科技股份有限公司 一种量子点探测器
CN111048604A (zh) * 2019-12-17 2020-04-21 吉林大学 一种基于MgZnO/ZnSⅡ型异质结的紫外探测器及其制备方法
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法
CN112436070A (zh) * 2020-12-01 2021-03-02 南京信息工程大学 一种量子点异质结日盲紫外探测芯片及其制备方法
CN112436070B (zh) * 2020-12-01 2023-05-23 南京信息工程大学 一种量子点异质结日盲紫外探测芯片及其制备方法
CN114823950A (zh) * 2022-05-10 2022-07-29 云南师范大学 一种基于碳量子点和贵金属纳米颗粒的光电探测器
CN114823950B (zh) * 2022-05-10 2024-06-07 云南师范大学 一种基于碳量子点和贵金属纳米颗粒的光电探测器

Also Published As

Publication number Publication date
CN108649082B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN108649082A (zh) 一种ZnS碳量子点日盲紫外探测器及其制备方法
Reddeppa et al. Interaction activated interfacial charge transfer in 2D g-C3N4/GaN nanorods heterostructure for self-powered UV photodetector and room temperature NO2 gas sensor at ppb level
Al-Hardan et al. A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
Kumar et al. Visible-blind Au/ZnO quantum dots-based highly sensitive and spectrum selective Schottky photodiode
CN109244158A (zh) 一种氧化镓场效应晶体管日盲探测器及其制作工艺
Young et al. High response of ultraviolet photodetector based on Al-doped ZnO nanosheet structures
Lan et al. ZnO–WS 2 heterostructures for enhanced ultra-violet photodetectors
Husham et al. Microwave-assisted chemical bath deposition of nanocrystalline CdS thin films with superior photodetection characteristics
CN110993721B (zh) 一种光敏薄膜晶体管及其制备方法
CN109713126A (zh) 基于宽禁带半导体/钙钛矿异质结的宽频光电探测器
WO2016027934A1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
Saghaei et al. Vapor treatment as a new method for photocurrent enhancement of UV photodetectors based on ZnO nanorods
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
Liu et al. Ga-doped ZnO nanosheet structure-based ultraviolet photodetector by low-temperature aqueous solution method
Tsai et al. High density novel porous ZnO nanosheets based on a microheater chip for ozone sensors
Hsu et al. Fabrication of fully transparent indium-doped ZnO nanowire field-effect transistors on ITO/glass substrates
Luo et al. Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes
CN108735858A (zh) 一种复合纳米结构的紫外/红外光电探测器制备方法
CN112436070B (zh) 一种量子点异质结日盲紫外探测芯片及其制备方法
Kuang et al. Solution-processed solar-blind ultraviolet photodetectors based on ZnS quantum dots
Yadav et al. Development of visible-blind UV photodetector using solution processed Ag-ZnO nanostructures
Huang et al. Dual functional modes for nanostructured p-Cu2O/n-Si heterojunction photodiodes
CN110148643A (zh) 表面光伏性能良好的半导体量子点/石墨烯范德瓦尔斯结薄膜柔性器件的构筑方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210331

Address after: 210000 room 401-137, 116 Mufu West Road, Gulou District, Nanjing, Jiangsu Province

Patentee after: Nanjing Tianjing Photoelectric Technology Co.,Ltd.

Address before: 210044 No. 219, Ning six road, Nanjing, Jiangsu

Patentee before: NANJING University OF INFORMATION SCIENCE & TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210908

Address after: 210005 room 410-367, No. 116, Mufu West Road, Gulou District, Nanjing, Jiangsu Province

Patentee after: Nanjing lightsaber Intelligent Technology Co.,Ltd.

Address before: 210000 room 401-137, 116 Mufu West Road, Gulou District, Nanjing, Jiangsu Province

Patentee before: Nanjing Tianjing Photoelectric Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220413

Address after: 215100 room 219, floor 2, building 2, No. 101, Fuli Road, Guangfu Town, Wuzhong District, Suzhou City, Jiangsu Province

Patentee after: Taipu (Suzhou) Textile Technology Co.,Ltd.

Address before: 210005 room 410-367, No. 116, Mufu West Road, Gulou District, Nanjing, Jiangsu Province

Patentee before: Nanjing lightsaber Intelligent Technology Co.,Ltd.