CN112436070B - 一种量子点异质结日盲紫外探测芯片及其制备方法 - Google Patents

一种量子点异质结日盲紫外探测芯片及其制备方法 Download PDF

Info

Publication number
CN112436070B
CN112436070B CN202011381986.3A CN202011381986A CN112436070B CN 112436070 B CN112436070 B CN 112436070B CN 202011381986 A CN202011381986 A CN 202011381986A CN 112436070 B CN112436070 B CN 112436070B
Authority
CN
China
Prior art keywords
quantum dot
type semiconductor
semiconductor layer
preparing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011381986.3A
Other languages
English (en)
Other versions
CN112436070A (zh
Inventor
匡文剑
刘向
咸冯林
裴世鑫
赖敏
刘博�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN202011381986.3A priority Critical patent/CN112436070B/zh
Publication of CN112436070A publication Critical patent/CN112436070A/zh
Application granted granted Critical
Publication of CN112436070B publication Critical patent/CN112436070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种量子点异质结日盲紫外探测芯片及其制备方法,该芯片自下至上依次为基底、底栅电极、栅绝缘层、p型半导体层、本征层和n型半导体层,p型半导体层上设置有源电极,n型半导体层上设置有漏电极,p型半导体层、本征层和n型半导体层构成p‑i‑n异质结场效应沟道,该芯片的制备方法包括以下步骤:(1)在基底制备底栅电极;(2)制备栅绝缘层;(3)制备p型半导体层;(4)制备源电极;(5)制备宽禁带半导体量子点本征层;(6)制备n型半导体层;(7)制备漏电极。该芯片能够在提高内量子效率同时降低暗电流,加速分离光生电子和空穴,使光生电子和空穴分别快速转移到n区和p区,继而分别到达源电极和漏电极,提高其响应度。

Description

一种量子点异质结日盲紫外探测芯片及其制备方法
技术领域
本发明涉及一种日盲紫外探测芯片及其制备方法,更具体地,涉及一种量子点异质结日盲紫外探测芯片及其制备方法。
背景技术
太阳辐射中的部分紫外光,在通过大气层过程中受到热层氧原子和平流层臭氧层的强烈吸收,使得短于280nm波长的紫外光几乎达不到地球近地表空间,这个波段被称为“日盲紫外区”。针对日盲区的紫外光电探测器,基本不受太阳辐射的干扰,因此日盲紫外探测技术在民用和军用都有重要研究意义和广泛应用价值。随着新型半导体材料和器件制备工艺的发展,基于超宽禁带半导体(如AlGaN、SiZnO、MgZnO、IGZO、ZnGa2O4、Ga2O3、BiOBr等)的日盲紫外探测器已经得到较为深入的研究,具有较高的响应度和探测率,并部分实现了产业化。由于此类传统半导体器件加工工艺较为复杂、对真空沉积设备要求较高、制备成本相对高昂,在大面积生产和柔性应用方面有一定的限制。基于非高温湿化学法制备的纳米半导体量子点,是一种可以通过溶液工艺制备光电探测器的新途径,但是,超宽禁带半导体量子点的载流子迁移率较低,加上量子点表面悬挂键等表面缺陷态导致的界面势垒,载流子复合几率较高,限制了达到电极的光响应电流。
发明内容
发明目的:本发明的目的是提供一种载流子密度高、在低功耗下具备较高的响应度的量子点异质结日盲紫外探测芯片,本发明的另一目的是提供该芯片的制备方法。
技术方案:本发明所述的量子点异质结日盲紫外探测芯片,自下至上依次为基底、底栅电极、栅绝缘层、p型半导体层、本征层和n型半导体层,p型半导体层上设置有源电极,n型半导体层上设置有漏电极,本征层为宽禁带半导体量子点本征层,p型半导体层、本征层和n型半导体层构成p-i-n异质结场效应沟道。
其中,基底和底栅电极为P+硅片,宽禁带半导体量子点本征层为宽禁带宽度为不少于4.0eV的超宽禁带半导体,超宽禁带半导体为ZnS或GaOX,漏电极为Au、Pt、C电极,功函数>4.8eV,源电极层为Ag、Al、Cu、Ni、Ti电极,功函数<4.8eV,其势垒可降低暗电流,栅绝缘层为4-乙烯基苯酚(PVP)、SiO2或CaF2
本发明所述的量子点异质结日盲紫外探测芯片的制备方法,包括以下步骤:
(1)对基底进行预处理,并通过热蒸发、磁控溅射或打印工艺在基底上制备底栅电极;
(2)在底栅电极上利用磁控溅射法或喷墨打印法沉积栅绝缘层;
(3)将p型半导体前驱液或量子点悬浮液,通过旋涂、点胶、或喷墨打印的方式制备在栅绝缘层上,烘干即制得p型半导体层;
(4)在p型半导体层上使用掩膜通过热蒸发、磁控溅射方法或者喷墨打印制备源电极;
(5)将宽禁带半导体量子点本征层通过滴涂、旋涂、或喷墨打印的方式制备在p型半导体层上,烘干即制得本征层;
(6)将n型碳量子点悬浮液,通过旋涂、或喷墨打印的方式制备在本征层上,制备n型半导体层;
(7)在n型半导体层上沉积或者喷墨打印漏电极,完成表面钝化,即得量子点异质结日盲紫外探测芯片。
其中,步骤(1)中的底栅电极为Au或Ag金属底栅电极。
其中,底栅电极为P+硅片,同时P+硅片作为基底。
其中,基底为玻璃、石英或PET基底。
工作原理:本发明在场效应光电晶体管的沟道中制备量子点p-i-n异质结,源电极和漏电极的不同功函数形成势垒,通过栅极电压场效应控制沟道中的载流子密度分布,降低本征量子点中电子或空穴密度,减少复合几率,同时使n或p区的多数载流子密度提高,因此能够在低功耗下得到高的增益及外量子效率。当日盲紫外光照射在探测芯片表面,超宽禁带半导体量子点表面的光生电子在极短时间内漂移到n区,同时空穴向p区漂移,在偏压VDS以及内建电场共同形成的电场下迅速被源漏电极收集,通过栅极调控,能够提高p区电子浓度,沟道迁移率与光电流增益成正比,利用异质结沟道场效应耦合机制提高器件的响应度。
有益效果:本发明与现有技术相比,其显著优点是:1、能够在提高内量子效率的同时降低暗电流,加速分离光生电子和空穴,使光生电子和空穴分别快速转移到n区和p区,继而分别到达源电极和漏电极,提高其响应度;2、适用于印刷电子工艺制备,能够实现低成本、大面积生产。
附图说明
图1是实施例1结构示意图;
图2是实施例1剖面结构示意图;
图3是实施例2结构示意图。
具体实施方式
实施例1
如图1、图2所示的量子点异质结日盲紫外光探测芯片,自下至上依次为PET基底101、Ag金属底栅电极102、4-乙烯基苯酚(PVP)栅极绝缘层103、p型MnO半导体层104、Ga2O3量子点本征层106和n型碳量子点半导体层107,p型MnO半导体层104上设置有Ag源电极105,n型碳量子点半导体层107上设置有Au漏电极108,Ga2O3量子点本征层106与p型MnO半导体层104、n型碳量子点半导体层107形成p-i-n异质结场效应沟道,其制备方法包括如下步骤:
(1)将PET基底101依次在去离子水、丙酮、异丙醇中超声15分钟,放置于烘箱中在110℃条件下烘干,通过喷墨打印方法,在PET基底101上制备金属底栅电极102,在金属底栅电极102上通过旋涂PVP前驱体溶液,并置于200℃下退火30分钟,制备PVP栅极绝缘层103;
(2)将MnO量子点悬浮液,通过喷墨打印的方式制备在PVP栅极绝缘层103上,随即再烘干,作为p型MnO半导体层104;
(3)通过喷墨打印银导电墨水,在p型MnO半导体层104上制备Ag源电极105;
(4)将Ga2O3超宽禁带半导体量子点悬浮液,通过点胶的方式制备在p型MnO半导体层104上,随即烘干,制得Ga2O3量子点本征层106;
(5)将n型碳量子点悬浮液,通过点胶方式制备在Ga2O3量子点本征层106上,制得n型碳量子点半导体层107;
(6)在n型碳量子点半导体层107上喷墨打印金导电墨水制备Au漏电极108;最后完成表面钝化,即得量子点异质结日盲紫外光探测芯片。
实施例2
如图3所示的量子点异质结日盲紫外光探测芯片,自下至上依次为p+型硅片底栅电极201、CaF2栅绝缘层202、p型PEDOT:PSS半导体层203、ZnS量子点本征层205和n型碳量子点半导体层206,p型PEDOT:PSS半导体层203上设置有Ag源电极204,n型碳量子点半导体层206上设置有Au漏电极207,ZnS量子点本征层205与p型PEDOT:PSS半导体层203、n型碳量子点半导体层206形成p-i-n异质结场效应沟道,其制备方法包括如下步骤:
(1)将p+型硅片依次在去离子水、丙酮、异丙醇中超声15分钟,放置于烘箱中在110℃条件下烘干,直接作为p+型硅片底栅电极201,在p+型硅片底栅电极201上通过磁控溅射制备CaF2栅绝缘层202;
(2)将PEDOT:PSS前驱液,通过旋涂的方式制备在CaF2栅绝缘层202上,随即再烘干,作为p型PEDOT:PSS半导体层203;
(3)利用热蒸发在p型PEDOT:PSS半导体层203上制备Ag源电极204;
(4)将ZnS超宽禁带半导体量子点悬浮液,通过旋涂制备在p型PEDOT:PSS半导体层203上,随即烘干,制得ZnS量子点本征层205;
(5)将n型碳量子点悬浮液,通过点胶方式制备在ZnS量子点本征层205上,制得n型碳量子点半导体层206;
(6)在n型碳量子点半导体层206上喷墨打印金导电墨水制备Au漏电极207;最后完成表面钝化,即得量子点异质结日盲紫外光探测芯片。

Claims (10)

1.一种量子点异质结日盲紫外探测芯片,其特征在于,自下至上依次为基底、底栅电极、栅绝缘层、p型半导体层、本征层和n型半导体层,所述p型半导体层上设置有源电极,所述n型半导体层上设置有漏电极,所述本征层为宽禁带半导体量子点本征层,所述p型半导体层、本征层和n型半导体层构成p-i-n异质结场效应沟道。
2.根据权利要求1所述的量子点异质结日盲紫外探测芯片,其特征在于,所述基底和底栅电极为P+硅片。
3.根据权利要求1所述的量子点异质结日盲紫外探测芯片,其特征在于,所述宽禁带半导体量子点本征层为宽禁带宽度为不少于4.0eV的超宽禁带半导体。
4.根据权利要求3所述的量子点异质结日盲紫外探测芯片,其特征在于,所述超宽禁带半导体为ZnS或GaOX
5.根据权利要求1所述的量子点异质结日盲紫外探测芯片,其特征在于,所述漏电极为Au、Pt或C电极,功函数>4.8 eV,所述源电极层为Ag、Al、Cu、Ni或Ti电极,功函数<4.8 eV。
6.根据权利要求1所述的量子点异质结日盲紫外探测芯片,其特征在于,所述绝缘层为4-乙烯基苯酚、SiO2或CaF2
7.一种权利要求1所述的量子点异质结日盲紫外探测芯片的制备方法,其特征在于,包括以下步骤:
(1)对基底进行预处理,并通过热蒸发、磁控溅射或打印工艺在基底上制备底栅电极;
(2)在底栅电极上利用磁控溅射法或喷墨打印法沉积栅绝缘层;
(3)将p型半导体前驱液或量子点悬浮液,通过旋涂、点胶、或喷墨打印的方式制备在栅绝缘层上,烘干即制得p型半导体层;
(4)在p型半导体层上使用掩膜通过热蒸发、磁控溅射方法或者喷墨打印制备源电极;
(5)将宽禁带半导体量子点本征层通过滴涂、旋涂、或喷墨打印的方式制备在p型半导体层上,烘干即制得本征层;
(6)将n型碳量子点悬浮液,通过旋涂、或喷墨打印的方式制备在本征层上,制备n型半导体层;
(7)在n型半导体层上沉积或者喷墨打印漏电极,完成表面钝化,即得量子点异质结日盲紫外探测芯片。
8.根据权利要求7所述的量子点异质结日盲紫外探测芯片的制备方法,其特征在于,所述步骤(1)中的底栅电极为Au或Ag金属底栅电极。
9.根据权利要求7所述的量子点异质结日盲紫外探测芯片的制备方法,其特征在于,所述步骤(1)中的底栅电极为P+硅片,同时P+硅片作为基底。
10.根据权利要求7所述的量子点异质结日盲紫外探测芯片的制备方法,其特征在于,所述基底为玻璃、石英或PET基底。
CN202011381986.3A 2020-12-01 2020-12-01 一种量子点异质结日盲紫外探测芯片及其制备方法 Active CN112436070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011381986.3A CN112436070B (zh) 2020-12-01 2020-12-01 一种量子点异质结日盲紫外探测芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011381986.3A CN112436070B (zh) 2020-12-01 2020-12-01 一种量子点异质结日盲紫外探测芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN112436070A CN112436070A (zh) 2021-03-02
CN112436070B true CN112436070B (zh) 2023-05-23

Family

ID=74698785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011381986.3A Active CN112436070B (zh) 2020-12-01 2020-12-01 一种量子点异质结日盲紫外探测芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN112436070B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864270B (zh) * 2021-03-04 2022-09-23 南京信息工程大学 光晶体管集成传感核心的无光栅量子点光谱探测器
CN113299789A (zh) * 2021-05-18 2021-08-24 中国科学院宁波材料技术与工程研究所 一种日盲紫外光电探测器及其应用
CN113314642B (zh) * 2021-05-28 2022-06-21 吉林建筑大学 一种双绝缘层日盲紫外光敏薄膜晶体管的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552131A (zh) * 2016-01-27 2016-05-04 东南大学 基于量子点掺杂栅绝缘层的新型高性能光调制薄膜晶体管
WO2018103645A1 (zh) * 2016-12-08 2018-06-14 西安电子科技大学 Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法
CN108649082A (zh) * 2018-04-18 2018-10-12 南京信息工程大学 一种ZnS碳量子点日盲紫外探测器及其制备方法
CN109297601A (zh) * 2018-11-13 2019-02-01 太原理工大学 基于双滤波器增强量子点日盲紫外光成像系统的设计方法
CN110364625A (zh) * 2019-06-18 2019-10-22 北京大学深圳研究生院 一种用于弱光探测的钙钛矿量子点光电晶体管及制备方法
CN110429147A (zh) * 2019-08-01 2019-11-08 上海芯物科技有限公司 一种金属氧化物合金纳米线、及其制备方法和用途
CN110715727A (zh) * 2019-11-01 2020-01-21 Oppo广东移动通信有限公司 紫外传感器模组及移动终端
EP3912196A1 (en) * 2019-01-17 2021-11-24 King Abdullah University of Science and Technology Deep ultra-violet devices using ultra-violet nanoparticles with p-type conductivity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9741901B2 (en) * 2006-11-07 2017-08-22 Cbrite Inc. Two-terminal electronic devices and their methods of fabrication
WO2019081492A1 (en) * 2017-10-26 2019-05-02 Emberion Oy PHOTOSENSITIVE FIELD EFFECT TRANSISTOR

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552131A (zh) * 2016-01-27 2016-05-04 东南大学 基于量子点掺杂栅绝缘层的新型高性能光调制薄膜晶体管
WO2018103645A1 (zh) * 2016-12-08 2018-06-14 西安电子科技大学 Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法
CN108649082A (zh) * 2018-04-18 2018-10-12 南京信息工程大学 一种ZnS碳量子点日盲紫外探测器及其制备方法
CN109297601A (zh) * 2018-11-13 2019-02-01 太原理工大学 基于双滤波器增强量子点日盲紫外光成像系统的设计方法
EP3912196A1 (en) * 2019-01-17 2021-11-24 King Abdullah University of Science and Technology Deep ultra-violet devices using ultra-violet nanoparticles with p-type conductivity
CN110364625A (zh) * 2019-06-18 2019-10-22 北京大学深圳研究生院 一种用于弱光探测的钙钛矿量子点光电晶体管及制备方法
CN110429147A (zh) * 2019-08-01 2019-11-08 上海芯物科技有限公司 一种金属氧化物合金纳米线、及其制备方法和用途
CN110715727A (zh) * 2019-11-01 2020-01-21 Oppo广东移动通信有限公司 紫外传感器模组及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZnS/Carbon Quantum Dot Heterojunction Phototransistors for Solar-Blind Ultraviolet Detection;Wen-Jian Kuang 等;《IEEE PHOTONICS TECHNOLOGY LETTERS》;第30卷(第4期);第204-207页 *

Also Published As

Publication number Publication date
CN112436070A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
CN112436070B (zh) 一种量子点异质结日盲紫外探测芯片及其制备方法
Basol High‐efficiency electroplated heterojunction solar cell
CN106505115B (zh) 量子点光掺杂石墨烯/氮化硼/氮化镓紫外探测器及其制作方法
CN108649082B (zh) 一种ZnS碳量子点日盲紫外探测器及其制备方法
Chu et al. Improved UV-sensing of Au-decorated ZnO nanostructure MSM photodetectors
CN106784117A (zh) 一种短波/中波/长波三波段红外探测器的制备方法
Huang et al. A self-powered ultraviolet photodiode using an amorphous InGaZnO/p-silicon nanowire heterojunction
CN106410055A (zh) 一种量子点发光二极管及制备方法
CN104638036B (zh) 高光响应近红外光电探测器
Lin et al. High-performance self-powered ultraviolet photodetector based on PEDOT: PSS/CuO/ZnO nanorod array sandwich structure
Singh et al. Low Operating Voltage Solution Processed (Li₂ZnO₂) Dielectric and (SnO₂) Channel-Based Medium Wave UV-B Phototransistor for Application in Phototherapy
Wang et al. Realization of cost-effective and high-performance solar-blind ultraviolet photodetectors based on amorphous Ga2O3 prepared at room temperature
Tian et al. Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer
Hasan et al. Solution processed high performance perovskite quantum dots/ZnO phototransistors
Singh et al. Effect of mesa structure formation on the electrical properties of zinc oxide thin film transistors
CN203038959U (zh) 新型多层结构碳化硅光电导开关
Odeh et al. Metal oxides in electronics
CN113834862B (zh) 界面应力调控/增强自驱动柔性气体传感器灵敏度的方法
Sasar et al. Fabrication and UV sensitivity of a ZnO decorated NiO thin film field effect transistor
CN210092100U (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器
Kuang et al. ZnS/carbon quantum dot heterojunction phototransistors for solar-blind ultraviolet detection
Mehrabian et al. Experimental optimization of molar concentration to fabricate PbS quantum dots for solar cell applications
Kumar et al. Electrical and optical characteristics of solution-processed MoOx and ZnO QDs heterojunction
CN111640791A (zh) 基于InAs/GaSb异质结的量子阱隧穿场效应晶体管及其制备方法
Qin et al. Perovskite/InGaZnO-based reconfigurable optoelectronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant