WO2018103645A1 - Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法 - Google Patents

Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法 Download PDF

Info

Publication number
WO2018103645A1
WO2018103645A1 PCT/CN2017/114673 CN2017114673W WO2018103645A1 WO 2018103645 A1 WO2018103645 A1 WO 2018103645A1 CN 2017114673 W CN2017114673 W CN 2017114673W WO 2018103645 A1 WO2018103645 A1 WO 2018103645A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
layer
sic
region
emitter
Prior art date
Application number
PCT/CN2017/114673
Other languages
English (en)
French (fr)
Inventor
元磊
贾仁需
张弘鹏
张玉明
Original Assignee
西安电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611124462.XA external-priority patent/CN106784125A/zh
Priority claimed from CN201611123675.0A external-priority patent/CN106531838B/zh
Application filed by 西安电子科技大学 filed Critical 西安电子科技大学
Publication of WO2018103645A1 publication Critical patent/WO2018103645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of semiconductor discrete devices, and in particular relates to a method for preparing a Ga 2 O 3 /SiC heterojunction NPN/PNP phototransistor.
  • PN junction transistors in the 1950s laid the foundation for electronic technology and integrated circuits.
  • PN junctions are made by doping on a semiconductor material by doping two different types of conductivity, also known as homojunctions;
  • the heterojunction is a combination of two different materials by vapor deposition. The difference between the forbidden band width and other material properties of the two materials makes them have a series of properties that are not found in the homojunction.
  • Some functions, especially in the field of optoelectronics, are widely used. For example, the formation of a photonic PNP transistor with a heterojunction PN junction can effectively increase the photocurrent gain, thereby enabling the detection of weak optical signals.
  • phototransistors which are transistors that receive optical signals into electrical signals, so the ability to receive and convert them determines the device performance of phototransistors.
  • the former is judged by the light absorption capability, and the latter is judged by the photoelectric gain of the phototransistor.
  • the light absorption range of the phototransistor is difficult to expand to the deep ultraviolet region due to material characteristics and sensitivity, however, with national defense technology and high-end civilian use With the development of the field, the demand for photoelectric signal conversion in the deep ultraviolet band is becoming more and more obvious, and a new type of transistor having high photoelectric gain is urgently required.
  • the present invention provides a method for fabricating a Ga 2 O 3 /SiC heterojunction NPN/PNP phototransistor, which can greatly improve the photoelectric gain and device reliability of the phototransistor in the deep ultraviolet band.
  • an embodiment of the present invention provides a method for fabricating a Ga 2 O 3 /SiC heterojunction photonic NPN transistor, including:
  • a second metal material is grown on the surface of the emitter region to form an emitter to ultimately form a photo-electric NPN transistor.
  • Embodiments of the present invention provide a method for fabricating another Ga 2 O 3 /SiC heterojunction photo-electric NPN transistor, including:
  • N-type homoepitaxial layer and a P-type heteroepitaxial layer are respectively grown on the surface of the semi-insulating SiC substrate;
  • a second metal material is grown on the surface of the emitter to form an emitter, ultimately forming a photo-electric NPN transistor.
  • Embodiments of the present invention provide a method for fabricating a Ga 2 O 3 /SiC heterojunction photo-electric PNP transistor, including:
  • a second metal material is grown on the surface of the emitter to form an emitter, and finally a Ga 2 O 3 /SiC heterojunction photo-electric PNP transistor is formed.
  • the phototransistor of the embodiment of the present invention uses two different wide bandgap materials to form a heterojunction, and the difference in band gap width and material characteristics thereof make the phototransistor of the present invention have a higher electron injection ratio, thereby making the device optoelectronic
  • the gain is greatly improved, and the ability of the phototransistor to convert the optical signal into an electrical signal is improved, thereby further improving the device performance and device reliability of the SiC-based phototransistor.
  • the top layer Ga 2 O 3 used in the present invention is a transparent semiconductor material, which can effectively promote ultraviolet light to enter the photosensitive region, and further improve the ultraviolet light absorption rate of the phototransistor.
  • FIG. 1 is a schematic cross-sectional view of a Ga 2 O 3 /SiC heterojunction photonic NPN/PNP transistor according to an embodiment of the present invention
  • FIG. 2 is a top plan view of a Ga 2 O 3 /SiC heterojunction photonic NPN/PNP transistor according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for preparing a Ga 2 O 3 /SiC heterojunction photo-electric NPN transistor according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of another method for preparing a Ga 2 O 3 /SiC heterojunction photo-electric NPN transistor according to an embodiment of the present invention
  • 5a-5h are schematic diagrams showing a method for fabricating a Ga 2 O 3 /SiC heterojunction photo-electric NPN transistor according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a first mask according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a second mask according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a third mask according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a fourth mask according to an embodiment of the present invention.
  • FIG 10 is a schematic method for preparing a Ga 2 O 3 / SiC junction photovoltaic heterojunction PNP transistor according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a Ga 2 O 3 /SiC heterojunction photonic NPN/PNP transistor according to an embodiment of the present invention.
  • the photo-electric NPN transistor includes a substrate 1, a collector region composed of an N-type homoepitaxial layer 2, a base region composed of a P-type heteroepitaxial layer 3, an emitter region composed of an N-type Ga 2 O 3 layer 4, and an emitter. 5 and collector 6.
  • the substrate 1 is a semi-insulating substrate of N-type 4H-SiC or 6H-SiC material; the N-type homoepitaxial layer is N-doped SiC with a doping concentration of 10 15 cm -3 ; heterogeneous P-type
  • the epitaxial layer is SiC doped with Al, the doping concentration is on the order of 10 17 cm -3 ; the light absorbing layer is doped at a concentration of 10 18 -10 19 cm -3 , and the doping element is Sn, Zn or Al.
  • Elemental N-type ⁇ -Ga 2 O 3 (-201), N-type ⁇ -Ga 2 O 3 (010) or N-type ⁇ -Ga 2 O 3 (001) material; emitter electrode is Au, Al, Ti, A metal material such as Sn, Ge, In, Ni, Co, Pt, W, Mo, Cr, Cu, or Pb is formed of a conductive compound such as two or more of these metals or ITO. Further, it may have a two-layer structure composed of two or more different metals, for example, an Au/Ti laminated bimetal material.
  • the collector electrode is made of a metal material such as Au, Al, Ti, Sn, Ge, In, Ni, Co, Pt, W, Mo, Cr, Cu, Pb, or a conductive compound including two or more of these metals or ITO. . Further, it is possible to have a two-layer structure composed of two or more different metals, for example, an Au/Ti laminated bimetal material.
  • the implantation efficiency of the emitter is greatly improved by using Ga 2 O 3 as the wide band gap emission region.
  • the incident light is rarely in the emission region due to the wide band gap of the emitter region than the base region. It is absorbed but absorbed by the emitter region in the base region and the collector region to generate electron-hole pairs, which lowers the barrier height of the base region/collector region, and increases the electron injection in the emitter region and the electrons in the base region. Transfer, which improves injection efficiency.
  • the method for fabricating the photoelectric NPN transistor includes the following steps:
  • Step 1 selecting a SiC substrate
  • Step 2 growing a homoepitaxial layer on the surface of the SiC substrate to form a collector region
  • Step 3 growing a heteroepitaxial layer on the surface of the homoepitaxial layer and etching to form a base region;
  • Step 4 growing a ⁇ -Ga 2 O 3 material on the surface of the heteroepitaxial layer and etching to form an emission region;
  • Step 5 growing a first metal material on the surface of the collector region to form a collector
  • Step 6 Growing a second metal material on the surface of the emitter region to form an emitter to finally form a photo-electric NPN transistor.
  • step 2 may include:
  • An N-doped SiC material is grown on the surface of the SiC substrate by an LPCVD process to form an N-type collector region having a doping concentration of the order of 10 15 cm -3 .
  • Step 3 can include:
  • Step 31 using a LPCVD process, growing a P-type SiC material doped with Al element on the surface of the homoepitaxial layer to form a heteroepitaxial layer having a doping concentration of 10 17 ;
  • Step 32 Using a second mask, using CF 4 and O 2 as an etching gas, etching the heteroepitaxial layer to form a base region by a plasma etching process.
  • Step 4 can include:
  • Step 41 using a molecular beam epitaxy process to grow an N-type ⁇ -Ga 2 O 3 material having a doping element of Sn, Si and a doping concentration of 10 18 to 10 19 cm -3 on the surface of the heteroepitaxial layer;
  • Step 42 using a first mask, using BCl 3 as an etching gas, etching the N-type ⁇ -Ga 2 O 3 material by a plasma etching process to form an emission region.
  • Step 5 can include:
  • Step 51 using a third mask, using a magnetron sputtering process to sputter the Ni material on the surface of the collector region;
  • Step 52 Under the atmosphere of nitrogen and argon, an ohmic contact is formed on the surface of the homoepitaxial layer and the surface of the Ni material by a rapid thermal annealing process to complete the preparation of the collector.
  • step 51 may include:
  • the sputter target is made of Ni with a mass ratio of >99.99%, and Ar with a mass percent purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber.
  • the chamber of the magnetron sputtering device is treated with high purity argon gas. Wash for 5 minutes and then evacuate.
  • the collector Ni was prepared under the conditions of a vacuum of 6 ⁇ 10 -4 to 1.3 ⁇ 10 -3 Pa, an argon flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 100 W. For example, it is 150 nm to 250 nm.
  • Step 52 can include: at 1000 Rapid thermal annealing for 3 min under nitrogen or argon.
  • Step 6 can include:
  • Step 61 using a fourth mask, using a magnetron sputtering process to sputter a Ti/Au laminated bimetal material on the surface of the emitter;
  • Step 62 Under the atmosphere of nitrogen and argon, an ohmic contact is formed on the surface of the emitter region with the surface of the Ti/Au laminated bimetal material by a rapid thermal annealing process to complete the preparation of the emitter.
  • step 61 may include:
  • the sputtering target is made of Ti having a mass ratio of >99.99%, and Ar having a mass percentage of purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber.
  • the magnetron sputtering is performed with high purity argon gas.
  • the equipment chamber was cleaned for 5 minutes and then evacuated.
  • the gate electrode Ti is prepared under the conditions of a vacuum of 6 ⁇ 10 -4 to 1.3 ⁇ 10 -3 Pa, an Ar flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 20 W to 100 W.
  • the thickness is, for example, 20 nm to 30 nm.
  • Step 612 The sputtering target is made of Au with a mass ratio of >99.99%, and Ar with a mass percentage of purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber. Before sputtering, the magnetron sputtering is performed with high purity argon gas. The equipment chamber was cleaned for 5 minutes and then evacuated. The gate electrode Au is prepared under conditions of a vacuum of 6 ⁇ 10 ⁇ 4 to 1.3 ⁇ 10 ⁇ 3 Pa, an argon flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 20 W to 100 W.
  • the electrode thickness is, for example, 150 nm to 200 nm.
  • Step 62 can include: at 500 An ohmic contact was formed by rapid thermal annealing for 3 min under nitrogen and argon.
  • the preparation of the emitter may be performed first, or the preparation of the collector may be performed first, and no limitation is imposed here.
  • the photoelectric NPN transistor of the present embodiment uses two different wide band gap materials to form a heterojunction.
  • the difference in band gap width and material characteristics thereof greatly increase the photoelectric gain of the phototransistor of the present invention, and improve the photoelectric transistor to convert the optical signal into The ability of electrical signals to further improve device performance and device reliability of SiC-based phototransistors.
  • the photoelectric properties of the Ga 2 O 3 material itself having deep ultraviolet light detection in the day blind region and its transparent conductive properties determine that the application of the Ga 2 O 3 material to the light absorbing layer of the present invention can effectively improve the light absorbing ability of the device of the present invention.
  • the detection of deep ultraviolet light in the blind spot is more accurate.
  • the method for fabricating the photoelectric NPN transistor may include:
  • Step 1 Select a semi-insulating SiC substrate
  • Step 2 growing an N-type homoepitaxial layer and a P-type heteroepitaxial layer on the surface of the semi-insulating SiC substrate;
  • Step 3 Growing an N-type ⁇ -Ga 2 O 3 material on the surface of the P-type heteroepitaxial layer;
  • Step 4 etching the N-type ⁇ -Ga 2 O 3 material to form an emission region
  • Step 5 etching a P-type heteroepitaxial layer to form a base region, and growing a first metal material at a position of a surface portion of the exposed N-type homoepitaxial layer to form a collector;
  • Step 6 Growing a second metal material on the surface of the emitter region to form an emitter, and finally forming a Ga 2 O 3 /SiC heterojunction photo-electric NPN transistor.
  • step 2 it can include:
  • Step 21 using an LPCVD process, growing an N-type N-type SiC material on the surface of the SiC substrate to form a homoepitaxial layer;
  • Step 22 Using a LPCVD process, a P-type SiC material doped with Al element is grown on the surface of the homoepitaxial layer to form a heteroepitaxial layer.
  • step 3 it may include:
  • the N-type ⁇ -Ga 2 O 3 material having a doping element of Sn, Si, Al or the like and a doping concentration of 10 18 to 10 19 cm -3 is grown on the surface of the heteroepitaxial layer by a molecular beam epitaxy process.
  • step 4 it may include:
  • the first mask is used, and BCl 3 is used as an etching gas, and the N-type ⁇ -Ga 2 O 3 material is etched by a plasma etching process to form an emitter region.
  • step 5 it may include:
  • Step 51 using a second mask, using CF 4 and O 2 as an etching gas, etching a P-type hetero epitaxial layer by a plasma etching process to form a base region;
  • Step 52 sputtering a Ni material on the surface of the N-type homoepitaxial layer on which the heteroepitaxial layer is etched by a magnetron sputtering process;
  • Step 53 Under the atmosphere of nitrogen and argon, an ohmic contact is formed on the surface of the N-type homoepitaxial layer with the surface of the Ni material by a rapid thermal annealing process to complete the preparation of the collector.
  • step 6 it may include:
  • Step 61 sputtering a Ti material and an Au material on the surface of the emitter region by a magnetron sputtering process to form a Ti/Au laminated bimetal material;
  • Step 62 Under the atmosphere of nitrogen and argon, an ohmic contact is formed on the surface of the emitter layer layer with the surface of the Ti/Au laminated bimetal material by a rapid thermal annealing process to complete the preparation of the emitter.
  • step 61 may include:
  • Step 611 using a fourth mask plate, using Ti material as a target material, using argon gas as a sputtering gas to pass into the sputtering cavity, and sputtering Ti on the surface of the emitter region under the working power of 20-100 W. material;
  • Step 612 using a fourth mask plate, using Au material as a target material, using argon gas as a sputtering gas to pass into the sputtering cavity, and sputtering Au on the surface of the Ti material under the working power of 20-100 W.
  • the material forms a Ti/Au laminated bimetallic material.
  • the preparation of the emitter may be performed first, or the preparation of the collector may be performed first, and no limitation is imposed here.
  • a method for preparing a novel Ga 2 O 3 /SiC heterojunction photo-electric NPN transistor for a Ga 2 O 3 material is proposed for the first time.
  • Step 1 Referring to Figure 5a, prepare a semi-insulating SiC substrate 1 with a thickness of 350 ⁇ m, on the substrate Perform RCA standard cleaning.
  • Step 2 Referring to FIG. 5b, an N-type homoepitaxial layer 2 is formed by LPCVD on the semi-insulating SiC substrate 1 prepared in step 1, with a doping concentration of 10 15 cm -3 and a doping element of N. Thickness is 2um;
  • Step 3 Referring to FIG. 5c, a P-type heteroepitaxial layer 3 is formed by LPCVD on the N-type homoepitaxial layer 2 prepared in Step 2, the doping concentration is on the order of 10 17 cm -3 , and the doping element is Al. , thickness is 0.3um;
  • Step 4 Referring to FIG. 5d, the ⁇ -Ga 2 O 3 layer is grown by molecular beam epitaxy on the P-type heteroepitaxial layer 3 prepared in Step 3, and the doping concentration is on the order of 10 18 -10 19 cm -3 .
  • the doping element is an element such as Sn, Si, Al, etc., and has a thickness of 1 um.
  • Step 5 Referring to FIG. 5e and FIG. 6, the first mask is used on the ⁇ -Ga 2 O 3 layer 4 prepared in step 4, and the light absorbing layer is formed by plasma etching, and the etching gas is BCl 3 ;
  • Step 6 Referring to FIG. 5f and FIG. 7, the second mask is used on the P-type hetero epitaxial layer 3 prepared in the step 3, and the P-type heteroepitaxial layer 3 is formed by plasma etching, and the etching gas is CF. 4 and O 2 ;
  • Step 7 Referring to Figures 5g and 8, the third mask is used on the upper surface of the N-type homoepitaxial layer prepared in Step 2, and the collector Ni material is grown by magnetron sputtering.
  • the sputtering target is made of Ni with a mass ratio of >99.99%, and Ar with a mass percentage of purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber.
  • the magnetron sputtering equipment is used with high purity argon gas.
  • the chamber was cleaned for 5 minutes and then evacuated.
  • the collector Ni was prepared under the conditions of a vacuum of 6 ⁇ 10 -4 to 1.3 ⁇ 10 -3 Pa, an argon flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 100 W. 150nm to 250nm, then at 1000 Rapid thermal annealing for 3 min under nitrogen or argon.
  • the metal of the emitter electrode can be selected from different elements such as Au, Al, Ti, etc., and the two layers of the composition, and the collector can be replaced by a metal such as Al ⁇ Ti ⁇ Ni ⁇ Ag ⁇ Pt. Among them, Au ⁇ Ag ⁇ Pt is chemically stable; Al ⁇ Ti ⁇ Ni low cost.
  • Step 8 Referring to FIG. 5h and FIG. 9, the fourth mask is used on the light absorbing layer prepared in the step 5, and the emitter electrode Ti/Au is grown by magnetron sputtering.
  • the sputtering target is made of Ti with a mass ratio of >99.99%, and Ar with a mass percent purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber.
  • the high-purity argon gas is used for the magnetron sputtering equipment.
  • the chamber was cleaned for 5 minutes and then evacuated.
  • the gate electrode titanium is prepared under the conditions of a vacuum of 6 ⁇ 10 -4 to 1.3 ⁇ 10 -3 Pa, an argon flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 20 W to 100 W.
  • the electrode thickness is 20 nm to 30 nm.
  • the sputtering target is made of Au with a mass ratio of >99.99%, and Ar with a mass percentage of purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber.
  • the chamber of the magnetron sputtering device is treated with high purity argon gas. Wash for 5 minutes and then evacuate.
  • the gate electrode gold is prepared under the conditions of a vacuum of 6 ⁇ 10 -4 to 1.3 ⁇ 10 -3 Pa, an argon flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 20 W to 100 W.
  • the electrode thickness is 150nm ⁇ 200nm, then at 500 An ohmic contact was formed by rapid thermal annealing for 3 min under nitrogen and argon.
  • the metal of the emitter electrode can be selected from different elements such as Au, Al, Ti, etc., and the two layers of the composition, and the collector can be replaced by a metal such as Al ⁇ Ti ⁇ Ni ⁇ Ag ⁇ Pt. Among them, Au ⁇ Ag ⁇ Pt is chemically stable; Al ⁇ Ti ⁇ Ni is low in cost.
  • the method for preparing the Ga 2 O 3 /SiC heterojunction photo-electric PNP transistor may include the following steps:
  • Step a selecting a SiC substrate
  • Step b growing a P-type SiC homoepitaxial layer on the surface of the SiC substrate to form a collector region;
  • Step c growing an N-type SiC homoepitaxial layer on the surface of the P-type SIC homoepitaxial layer;
  • Step d growing a P-type ⁇ -Ga 2 O 3 heteroepitaxial layer on the surface of the N-type SiC homoepitaxial layer;
  • Step e dry etching a P-type ⁇ -Ga 2 O 3 heteroepitaxial layer to form an emission region
  • Step f dry etching the N-type SiC homoepitaxial layer to form a base region
  • Step g growing a first metal material in the collector region to form a collector
  • Step h growing a second metal material on the surface of the emitter to form an emitter, and finally forming a Ga 2 O 3 /SiC heterojunction photo-electric PNP transistor.
  • step b it may include:
  • a P-type SiC material doped with an Al element doped at a concentration of 10 16 cm -3 is grown on the surface of the SiC substrate by a LPCVD process to form a P-type collector region.
  • step c it may be included
  • N-type N-type SiC material is grown on the surface of the homoepitaxial layer by an LPCVD process to form an N-type SiC epitaxial layer.
  • step d it may include:
  • a P-type ⁇ -Ga 2 O 3 material having a doping element of Cu or Zn and a doping concentration of 10 19 cm -3 is grown on the surface of the heteroepitaxial layer by a molecular beam epitaxy process.
  • step e it may include:
  • the first mask is used, and BCl 3 is used as an etching gas, and the P-type ⁇ -Ga 2 O 3 material is etched by a plasma etching process to form an emitter region.
  • step f it may include:
  • step g it may include:
  • Step g1 using a third mask, sputtering a Ni metal material on the surface of the collector region by a magnetron sputtering process;
  • Step g2 Under the atmosphere of nitrogen and argon, an ohmic contact is formed on the surface of the homoepitaxial layer with the surface of the Ni metal material by a rapid thermal annealing process to complete the preparation of the collector.
  • step g2 it may include: at 1000 Rapid thermal annealing for 3 min under nitrogen or argon.
  • step h it may include:
  • Step h1 using a fourth mask plate, using a magnetron sputtering process to sputter Ti material and Au material on the surface of the emitter region to form a Ti/Au laminated bimetal material;
  • Step h2 Under the atmosphere of nitrogen and argon, an ohmic contact is formed on the surface of the emitter layer layer with the surface of the Ti/Au laminated bimetal material by a rapid thermal annealing process to complete the preparation of the emitter.
  • step h1 may include:
  • Step h11 using a fourth mask plate, using Ti material as a target material, using argon gas as a sputtering gas to pass into the sputtering cavity, and sputtering Ti on the surface of the emitter region under the working power of 20-100 W
  • the material electrode thickness is, for example, 20 nm to 30 nm;
  • Step h12 using a fourth mask plate, using Au material as a target material, using argon gas as a sputtering gas to pass into the sputtering cavity, and sputtering Au on the surface of the Ti material under the working power of 20-100 W.
  • the material electrode thickness is, for example, 150 nm to 200 nm to form a Ti/Au laminated bimetal material.
  • Step h2 may include: at 500 An ohmic contact was formed by rapid thermal annealing for 3 min under nitrogen and argon.
  • step g and step h It is important to emphasize that the process flow of the emitter and collector in step g and step h is not fixed.
  • the preparation of the emitter may be performed first, or the preparation of the collector may be performed first, and no limitation is imposed here.
  • a method for preparing a novel Ga 2 O 3 /SiC heterojunction photo-electric PNP transistor for a Ga 2 O 3 material is proposed for the first time.
  • the PNP transistor of the present invention uses two different wide bandgap materials to form a heterojunction.
  • the difference in band gap width and material properties thereof greatly increase the photoelectric gain of the phototransistor of the present invention, and improve the photoelectric signal to convert the optical signal into an electrical signal.
  • the photoelectric properties of the Ga 2 O 3 material itself having deep ultraviolet light detection in the day blind region and its transparent conductive properties determine that the application of the Ga 2 O 3 material to the light absorbing layer of the present invention can effectively improve the light absorbing ability of the device of the present invention.
  • the detection of deep ultraviolet light in the blind spot is more accurate.
  • This embodiment describes the preparation method of the Ga 2 O 3 /SiC heterojunction photo-electric PNP transistor of the present invention on the basis of the above-mentioned fourth embodiment. as follows:
  • Step 1 Referring to Fig. 5a, a SiC semi-insulating substrate 1 was prepared, having a thickness of 350 ⁇ m, and the substrate was subjected to RCA standard cleaning.
  • Step 2 Referring to FIG. 5b, a P-type homoepitaxial layer 2 is formed by LPCVD on the SiC semi-insulating substrate 1 prepared in the step 1, and the doping concentration is on the order of 10 16 to 10 17 cm -3 , and the doping element Al, the thickness is 2um;
  • Step 3 Referring to FIG. 5c, an N-type SiC homoepitaxial layer 3 is formed by LPCVD on the P-type homoepitaxial layer 2 prepared in Step 2, and the doping concentration is on the order of 1017-1018 cm -3 , and the doping element is N, thickness is 0.3um;
  • Step 4 Referring to FIG. 5d, the ⁇ -Ga 2 O 3 layer 4 is grown as a light absorbing layer by molecular beam epitaxy on the N-type SiC homoepitaxial layer 3 prepared in the step 3, and the doping concentration is 1 ⁇ 10 19 ⁇ 2 ⁇ 10 19 cm -3 , the doping element is Cu, Zn and other elements, and the thickness is 1 um;
  • Step 5 Referring to FIG. 5e and FIG. 6, the first mask is used on the ⁇ -Ga 2 O 3 layer 4 prepared in step 4, and the light absorbing layer is formed by plasma etching, and the etching gas is BCl 3 ;
  • Step 6 Referring to FIG. 5f and FIG. 7, the second mask is used on the P-type hetero epitaxial layer 3 prepared in step 3, and the N-type heteroepitaxial layer in FIG. 4f is formed by plasma etching to form a base region.
  • the etching gas is CF 4 and O 2 ;
  • Step 7 Referring to FIG. 5g and FIG. 8, the third mask is used on the upper surface of the N-type homoepitaxial layer 2 prepared in the step 2, and the collector Ni material is grown by magnetron sputtering.
  • the sputtering target is made of nickel with a mass ratio of >99.99%, and Ar with a mass percentage of purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber.
  • the chamber of the magnetron sputtering device is treated with high purity argon gas. Wash for 5 minutes and then evacuate.
  • the collector Ni is prepared under the conditions of a vacuum of 6 ⁇ 10 -4 to 1.3 ⁇ 10 -3 Pa, an argon flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 20 W to 100 W.
  • the electrode thickness is from 150 nm to 250 nm.
  • the metal of the emitter electrode can be selected from different elements such as Au, Al, Ti, etc., and the two layers of the composition, and the collector can be replaced by a metal such as Al ⁇ Ti ⁇ Ni ⁇ Ag ⁇ Pt. Among them, Au ⁇ Ag ⁇ Pt is chemically stable; Al ⁇ Ti ⁇ Ni is low in cost.
  • Step 8 Referring to FIG. 5h and FIG. 9, the fourth mask is used on the emitter prepared in step 5, and the emitter electrode Ti/Au is grown by magnetron sputtering.
  • the sputtering target is made of titanium with a mass ratio of >99.99%, and Ar with a mass percentage of purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber.
  • the chamber of the magnetron sputtering device is treated with high purity argon gas. Wash for 5 minutes and then evacuate.
  • the gate electrode titanium is prepared under the conditions of a vacuum of 6 ⁇ 10 -4 to 1.3 ⁇ 10 -3 Pa, an argon flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 20 W to 100 W.
  • the electrode thickness is 20 nm to 30 nm.
  • the sputtering target is made of Au with a mass ratio of >99.99%, and Ar with a mass percentage of purity of 99.999% is used as a sputtering gas to pass into the sputtering chamber.
  • the chamber of the magnetron sputtering device is treated with high purity argon gas. Wash for 5 minutes and then evacuate.
  • the gate electrode aluminum is prepared under the conditions of a vacuum of 6 ⁇ 10 -4 to 1.3 ⁇ 10 -3 Pa, an argon flow rate of 20 to 30 cm 3 /sec, a target base distance of 10 cm, and an operating power of 20 W to 100 W.
  • the electrode thickness is 150nm ⁇ 200nm, then at 500 An ohmic contact was formed by rapid thermal annealing for 3 min under nitrogen and argon.
  • the metal of the emitter electrode can be selected from different elements such as Au, Al, Ti, etc., and the two layers of the composition, and the collector can be replaced by a metal such as Al ⁇ Ti ⁇ Ni ⁇ Ag ⁇ Pt. Among them, Au ⁇ Ag ⁇ Pt is chemically stable; Al ⁇ Ti ⁇ Ni is low in cost.
  • the Ga 2 O 3 material in the structure of the photodetector by using the Ga 2 O 3 material in the structure of the photodetector, the extremely high light transmittance and transparency of the material in the deep ultraviolet light region and the visible light region are fully exerted, and the device performance of the photodetection diode can be greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

一种Ga 2O 3/SiC异质结光电NPN/PNP晶体管的制备方法。其中该制备方法包括:选取SiC衬底(1),在SiC衬底表面生长同质外延层(2)形成集电区,在同质外延层表面生长异质外延层(3)并刻蚀形成基区,在异质外延层表面生长β-Ga 2O 3材料(4)并刻蚀形成发射区,在集电区表面生长第一金属材料形成集电极(6),在发射区表面生长第二金属材料形成发射极(5)。

Description

Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法 技术领域
本发明属于半导体分立器件领域,特别涉及一种Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法。
背景技术
20世纪50年代起PN结晶体管的发明奠定了电子技术和集成电路的基础,PN结是在一块半导体材料上通过掺杂做出导电类型不同的两部分,又称为同质结;而之后发展的异质结是通过气相淀积的方法把两种不同材料相结合,两种材料禁带宽度及其他材料特性的不同使其具有一系列同质结所没有的特性,在器件设计上实现独有的功能,尤其在光电领域应用广泛,例如光电PNP晶体管的发射结采用异质PN结形成可以有效提高光电流增益,从而实现微弱光信号的检测。
目前光电晶体管种类繁多,均为接收光信号转化为电信号的晶体管,所以其接收、转化的能力将决定了光电晶体管的器件性能。前者通过光吸收能力来判断,后者通过光电晶体管的光电增益来判断,目前光电晶体管的光吸收范围因为材料特性及其灵敏度所以很难扩大到深紫外区,然而,随着国防科技和高端民用领域的发展,针对深紫外波段光电信号转换的需求日趋明显,迫切需要具有高光电增益的新型晶体管。
发明内容
因此,本发明提出一种Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法,其可实现大幅提高光电晶体管在深紫外波段的光电增益及器件可靠性。
具体地,本发明实施例提出一种Ga2O3/SiC异质结光电NPN晶体管的制 备方法,包括:
选取SiC衬底;
在SiC衬底表面生长同质外延层形成集电区;
在同质外延层表面生长异质外延层并刻蚀形成基区;
在异质外延层表面生长β-Ga2O3材料并刻蚀形成发射区;
在集电区表面生长第一金属材料形成集电极;
在发射区表面生长第二金属材料形成发射极以最终形成光电NPN晶体管。
本发明实施例提出了另一种Ga2O3/SiC异质结光电NPN晶体管的制备方法,包括:
选取半绝缘SiC衬底;
在半绝缘SiC衬底表面分别生长N型同质外延层和P型异质外延层;
在P型异质外延层表面生长N型β-Ga2O3材料;
刻蚀N型β-Ga2O3材料形成发射区;
刻蚀P型异质外延层形成基区,并在暴露出的N型同质外延层表面部分位置处生长第一金属材料形成集电极;
在发射区表面生长第二金属材料形成发射极,最终形成光电NPN晶体管。
本发明实施例提出了一种Ga2O3/SiC异质结光电PNP晶体管的制备方法,包括:
选取SiC衬底;
在SiC衬底表面生长P型SiC同质外延层形成集电区;
在P型SiC同质外延层表面生长N型SiC同质外延层;
在N型SiC同质外延层表面生长P型β-Ga2O3异质外延层;
在P型β-Ga2O3异质外延层通过干法刻蚀形成发射区;
在N型SiC同质外延层通过干法刻蚀形成基区;
并在暴露出的P型SiC同质外延层表面部分位置处生长第一金属材料形成集电极;
在发射区表面生长第二金属材料形成发射极,最终形成Ga2O3/SiC异质结光电PNP晶体管。
本发明实施例的光电晶体管,使用两种不同的宽禁带材料构成异质结,其禁带宽度的不同及其材料特性使得本发明光电晶体管具有较高的电子注入比,从而使得器件的光电增益大幅提高,提高了光电晶体管将光信号转化为电信号的能力,从而进一步提高SiC基光电晶体管的器件性能以及器件可靠性。此外,本发明所采用的顶层Ga2O3为透明半导体材料,可以有效促进紫外光进入光敏区,进一步提高光电晶体管的紫外光吸收率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图概述
图1为本发明实施例提供的一种Ga2O3/SiC异质结光电NPN/PNP晶体管的截面示意图;
图2为本发明实施例提供的一种Ga2O3/SiC异质结光电NPN/PNP晶体管的俯视示意图;
图3为本发明实施例提供的一种Ga2O3/SiC异质结光电NPN晶体管的制备方法流程示意图;
图4为本发明实施例提供的另一种Ga2O3/SiC异质结光电NPN晶体管的制备方法流程示意图;
图5a-图5h为本发明实施例提供的一种Ga2O3/SiC异质结光电NPN晶体管的制备方法示意图;
图6为本发明实施例提供的一种第一掩膜版的结构示意图;
图7为本发明实施例提供的一种第二掩膜版的结构示意图;
图8为本发明实施例提供的一种第三掩膜版的结构示意图;
图9为本发明实施例提供的一种第四掩膜版的结构示意图;
图10为本发明实施例提供的一种Ga2O3/SiC异质结光电PNP晶体管的制备方法示意图。
本发明的较佳实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法其具体实施方式、方法、步骤及功效,详细说明如后。
有关本发明的前述及其他技术内容、特点及功效,在以下配合参考图式的较佳实施例详细说明中将可清楚的呈现。通过具体实施方式的说明,当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
实施例一
请参见图1及图2,图1为本发明实施例提供的一种Ga2O3/SiC异质结光电NPN/PNP晶体管的截面示意图。该光电NPN晶体管包括:衬底1、N型同质外延层2构成的集电区、P型异质外延层3构成的基区、N型Ga2O3层4构成的发射区以及发射极5和集电极6。
衬底1为N型的4H-SiC或6H-SiC材料的半绝缘衬底;N型同质外延层为掺杂N元素的SiC,掺杂浓度1015cm-3量级;异质P型外延层为掺杂Al元 素的SiC,掺杂浓度1017cm-3量级;光吸收层为掺杂浓度在1018~1019cm-3量级、掺杂元素为Sn、Zn或Al等元素的N型β-Ga2O3(-201)、N型β-Ga2O3(010)或N型β-Ga2O3(001)材料;发射极电极为Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属材料、包含这些金属中2种以上合金或ITO等导电性化合物形成。另外,可以具有由不同的2种以上金属构成的2层结构,例如Au/Ti叠层双金属材料。集电极电极为Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属材料、包含这些金属中2种以上合金或ITO等导电性化合物形成。另外,可以具有由不同的2种及以上金属构成的2层结构,例如Au/Ti叠层双金属材料。
本发明实施例,通过采用Ga2O3作为宽带隙发射区从而大幅提高发射极的注入效率,当光电晶体管表面被光照时由于发射区比基区大的宽带隙所以入射光在发射区很少被吸收而是透过发射区在基区和集电区被吸收而产生电子空穴对,降低了基区/集电区的势垒高度,增大了发射区的电子注入和基区的电子传输,从而提高了注入效率。
请参见图3,该光电NPN晶体管的制备方法包括如下步骤:
步骤1、选取SiC衬底;
步骤2、在SiC衬底表面生长同质外延层形成集电区;
步骤3、在同质外延层表面生长异质外延层并刻蚀形成基区;
步骤4、在异质外延层表面生长β-Ga2O3材料并刻蚀形成发射区;
步骤5、在集电区表面生长第一金属材料形成集电极;
步骤6、在发射区表面生长第二金属材料形成发射极以最终形成光电NPN晶体管。
其中,步骤2可以包括:
利用LPCVD工艺,在SiC衬底表面生长掺杂N元素的SiC材料以形成掺杂浓度为1015cm-3量级的N型集电区。
步骤3可以包括:
步骤31、利用LPCVD工艺,在同质外延层表面生长掺杂Al元素的P型SiC材料以形成掺杂浓度为1017量级的异质外延层;
步骤32、采用第二掩膜板,采用CF4和O2作为刻蚀气体,利用等离子刻蚀工艺刻蚀异质外延层形成基区。
步骤4可以包括:
步骤41、利用分子束外延工艺,在异质外延层表面生长掺杂元素为Sn、Si,掺杂浓度为1018~1019cm-3量级的N型β-Ga2O3材料;
步骤42、采用第一掩膜板,采用BCl3作为刻蚀气体,利用等离子刻蚀工艺对N型β-Ga2O3材料进行刻蚀形成发射区。
步骤5可以包括:
步骤51、采用第三掩膜版,利用磁控溅射工艺在集电区表面溅射Ni材料;
步骤52、在氮气和氩气的气氛下,利用快速热退火工艺在同质外延层表面与Ni材料表面处形成欧姆接触以完成集电极的制备。
其中,步骤51可以包括:
溅射靶材选用质量比纯度>99.99%的Ni,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、氩气流量为20~30cm3/秒、靶材基距为10cm和工作功率为100W的条件下,制备集电极Ni,电极厚度例如为150nm~250nm。
步骤52可以包括:在1000
Figure PCTCN2017114673-appb-000001
氮气或氩气环境下快速热退火3min。
步骤6可以包括:
步骤61、采用第四掩膜版,利用磁控溅射工艺在发射区表面溅射Ti/Au叠层双金属材料;
步骤62、在氮气和氩气的气氛下,利用快速热退火工艺在发射区表面与Ti/Au叠层双金属材料表面处形成欧姆接触以完成发射极的制备。
其中,步骤61可以包括:
步骤611、溅射靶材选用质量比纯度>99.99%的Ti,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、Ar流量为20~30cm3/秒、靶材基距为10cm和工作功率为20W~100W的条件下,制备栅电极Ti,电极厚度例如为20nm~30nm。
步骤612、溅射靶材选用质量比纯度>99.99%的Au,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、氩气流量为20~30cm3/秒、靶材基距为10cm和工作功率为20W~100W的条件下,制备栅电极Au,电极厚度例如为150nm~200nm。
步骤62可以包括:在500
Figure PCTCN2017114673-appb-000002
氮气和氩气环境下进行快速热退火3min形成欧姆接触。
需要重点强调的是,步骤5和步骤6中的发射极和集电极的工艺流程并不固定。可以先进行发射极的制备,也可以先进行集电极的制备,此处不做任何限制。
本实施例的光电NPN晶体管使用两种不同的宽禁带材料构成异质结,其禁带宽度的不同及其材料特性使得本发明光电晶体管的光电增益大幅提高,提高光电晶体管将光信号转化为电信号的能力,从而进一步提高SiC基光电晶体管的器件性能以及器件可靠性。此外Ga2O3材料本身具有日盲区深紫外光探测的光电特性及其透明导电特性决定了将Ga2O3材料应用于本发明的光吸收层可有效地提高本发明器件的光吸收能力,对于日盲区深紫外光的探测更加准确。
实施例二
请参见图4,该光电NPN晶体管的制备方法可以包括:
步骤1、选取半绝缘SiC衬底;
步骤2、在半绝缘SiC衬底表面分别生长N型同质外延层和P型异质外延层;
步骤3、在P型异质外延层表面生长N型β-Ga2O3材料;
步骤4、刻蚀N型β-Ga2O3材料形成发射区;
步骤5、刻蚀P型异质外延层形成基区,并在暴露出的N型同质外延层表面部分位置处生长第一金属材料形成集电极;
步骤6、在发射区表面生长第二金属材料形成发射极,最终形成Ga2O3/SiC异质结光电NPN晶体管。
对于步骤2,可以包括:
步骤21、利用LPCVD工艺,在SiC衬底表面生长掺杂N元素的N型SiC材料以形成同质外延层;
步骤22、利用LPCVD工艺,在同质外延层表面生长掺杂Al元素的P型SiC材料以形成异质外延层。
对于步骤3,可以包括:
利用分子束外延工艺,在异质外延层表面生长掺杂元素为Sn、Si、Al等,掺杂浓度为1018~1019cm-3量级的N型β-Ga2O3材料。
对于步骤4,可以包括:
采用第一掩膜板,采用BCl3作为刻蚀气体,利用等离子刻蚀工艺对N型β-Ga2O3材料进行刻蚀形成发射区。
对于步骤5,可以包括:
步骤51、采用第二掩膜板,采用CF4和O2作为刻蚀气体,利用等离子刻蚀工艺对P型异质外延层进行刻蚀形成基区;
步骤52、利用磁控溅射工艺在被刻蚀掉异质外延层的N型同质外延层表面溅射Ni材料;
步骤53、在氮气和氩气的气氛下,利用快速热退火工艺在N型同质外延层表面与Ni材料表面处形成欧姆接触以完成集电极的制备。
对于步骤6,可以包括:
步骤61、利用磁控溅射工艺在发射区表面溅射Ti材料和Au材料形成Ti/Au叠层双金属材料;
步骤62、在氮气和氩气的气氛下,利用快速热退火工艺在发射区层表面与Ti/Au叠层双金属材料表面形成欧姆接触以完成发射极的制备。
其中,步骤61,可以包括:
步骤611、采用第四掩膜版,以Ti材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为20~100W的条件下,在发射区表面溅射Ti材料;
步骤612、采用第四掩膜版,以Au材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为20~100W的条件下,在Ti材料表面溅射Au材料形成Ti/Au叠层双金属材料。
需要重点强调的是,步骤5和步骤6中的发射极和集电极的工艺流程并不固定。可以先进行发射极的制备,也可以先进行集电极的制备,此处不做任何限制。
本发明实施例,首次提出了关于Ga2O3材料的新型Ga2O3/SiC异质结光电NPN晶体管的制备方法。
实施例三
请一并参见图5a-图5h及图6至图9,本实施例在上述实施例二的基础上,对本发明的光电NPN晶体管的制备方法进行详细说明如下:
步骤1:请参见图5a,准备半绝缘SiC衬底1,厚度为350μm,对衬底 进行RCA标准清洗。
步骤2:请参见图5b,在步骤1所准备的半绝缘SiC衬底1上通过LPCVD生成N型同质外延层2,掺杂浓度在1015cm-3量级,掺杂元素为N,厚度为2um;
步骤3:请参见图5c,在步骤2所准备的N型同质外延层2上通过LPCVD形成P型异质外延层3,掺杂浓度在1017cm-3量级,掺杂元素为Al,厚度为0.3um;
步骤4:请参见图5d,在步骤3所准备的P型异质外延层3上通过分子束外延法生长β-Ga2O3层,掺杂浓度在1018-1019cm-3量级,掺杂元素为Sn、Si、Al等元素,厚度为1um。
步骤5:请参见图5e及图6,在步骤4所准备的β-Ga2O3层4上使用第一掩膜版,通过等离子刻蚀形成光吸收层,刻蚀气体为BCl3
步骤6:请参见图5f及图7,在步骤3所准备的P型异质外延层3上使用第二掩膜版,通过等离子刻蚀形成P型异质外延层3,刻蚀气体为CF4和O2
步骤7:请参见图5g及,8,在步骤2所准备的N型同质外延层上表面使用第三掩膜版,通过磁控溅射生长集电极Ni材料。
其中,溅射靶材选用质量比纯度>99.99%的Ni,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、氩气流量为20~30cm3/秒、靶材基距为10cm和工作功率为100W的条件下,制备集电极Ni,电极厚度为150nm~250nm,之后在1000
Figure PCTCN2017114673-appb-000003
氮气或氩气环境下快速热退火3min。
发射电极的金属可选Au、Al、Ti等不同元素及其组成的2层结构,集电极可选用Al\Ti\Ni\Ag\Pt等金属替代。其中Au\Ag\Pt化学性质稳定;Al\Ti\Ni 成本低。
步骤8:请参见图5h及图9,在步骤5所准备的光吸收层上使用第四掩膜版,通过磁控溅射生长发射电极Ti/Au。
其中,溅射靶材选用质量比纯度>99.99%的Ti,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、氩气流量为20~30cm3/秒、靶材基距为10cm和工作功率为20W~100W的条件下,制备栅电极钛,电极厚度为20nm~30nm。
溅射靶材选用质量比纯度>99.99%的Au,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、氩气流量为20~30cm3/秒、靶材基距为10cm和工作功率为20W~100W的条件下,制备栅电极金,电极厚度为150nm~200nm,之后在500
Figure PCTCN2017114673-appb-000004
氮气和氩气环境下进行快速热退火3min形成欧姆接触。
发射电极的金属可选Au、Al、Ti等不同元素及其组成的2层结构,集电极可选用Al\Ti\Ni\Ag\Pt等金属替代。其中Au\Ag\Pt化学性质稳定;Al\Ti\Ni成本低。
实施例四
请参见图10,该Ga2O3/SiC异质结光电PNP晶体管的制备方法可以包括如下步骤:
步骤a、选取SiC衬底;
步骤b、在SiC衬底表面生长P型SiC同质外延层形成集电区;
步骤c、在P型SIC同质外延层表面生长N型SiC同质外延层;
步骤d、在N型SiC同质外延层表面生长P型β-Ga2O3异质外延层;
步骤e、干法刻蚀P型β-Ga2O3异质外延层形成发射区;
步骤f、干法刻蚀N型SiC同质外延层形成基区,
步骤g、在集电区生长第一金属材料形成集电极;
步骤h、在发射区表面生长第二金属材料形成发射极,最终形成Ga2O3/SiC异质结光电PNP晶体管。
对于步骤b,可以包括:
利用LPCVD工艺,在SiC衬底表面生长掺杂Al元素的掺杂浓度为1016cm-3量级的P型SiC材料以形成P型集电区。
对于步骤c,可以包括
利用LPCVD工艺,在同质外延层表面生长掺杂N元素的N型SiC材料以形成N型SiC外延层。
对于步骤d,可以包括:
利用分子束外延工艺,在异质外延层表面生长掺杂元素为Cu或者Zn,掺杂浓度为1019cm-3量级的P型β-Ga2O3材料。
对于步骤e,可以包括:
采用第一掩膜板,采用BCl3作为刻蚀气体,利用等离子刻蚀工艺对P型β-Ga2O3材料进行刻蚀形成发射区。
对于步骤f,可以包括:
采用第二掩膜板,采用CF4或O2作为刻蚀气体,利用等离子刻蚀工艺对N型SiC同质外延层进行刻蚀形成基区;
对于步骤g可以包括:
步骤g1、采用第三掩膜版,利用磁控溅射工艺在集电区表面溅射Ni金属材料;
步骤g2、在氮气和氩气的气氛下,利用快速热退火工艺在同质外延层表面与Ni金属材料表面形成欧姆接触以完成集电极的制备。
对于步骤g2,可以包括:在1000
Figure PCTCN2017114673-appb-000005
氮气或氩气环境下快速热退火3min。
对于步骤h,可以包括:
步骤h1、采用第四掩膜版,利用磁控溅射工艺在发射区表面溅射Ti材料和Au材料形成Ti/Au叠层双金属材料;
步骤h2、在氮气和氩气的气氛下,利用快速热退火工艺在发射区层表面与Ti/Au叠层双金属材料表面形成欧姆接触以完成发射极的制备。
其中,步骤h1,可以包括:
步骤h11、采用第四掩膜版,以Ti材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为20~100W的条件下,在发射区表面溅射Ti材料电极厚度例如为20nm~30nm;
步骤h12、采用第四掩膜版,以Au材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为20~100W的条件下,在Ti材料表面溅射Au材料电极厚度例如为150nm~200nm形成Ti/Au叠层双金属材料。
步骤h2可以包括:在500
Figure PCTCN2017114673-appb-000006
氮气和氩气环境下进行快速热退火3min形成欧姆接触。
需要重点强调的是,步骤g和步骤h中的发射极和集电极的工艺流程并不固定。可以先进行发射极的制备,也可以先进行集电极的制备,此处不做任何限制。
本发明实施例,首次提出了关于Ga2O3材料的新型Ga2O3/SiC异质结光电PNP晶体管的制备方法。本发明的PNP晶体管使用两种不同的宽禁带材料构成异质结,其禁带宽度的不同及其材料特性使得本发明光电晶体管的光电增益大幅提高,提高光电晶体管将光信号转化为电信号的能力,从而进一步提高SiC基光电晶体管的器件性能以及器件可靠性。此外Ga2O3材料本身具有日盲区深紫外光探测的光电特性及其透明导电特性决定了将Ga2O3材料应用于本发明的光吸收层可有效地提高本发明器件的光吸收能力,对于日盲区深紫外光的探测更加准确。
实施例五
请再次一并参见图5a-图5h及图6至图9,本实施例在上述实施例四的基础上,对本发明的Ga2O3/SiC异质结光电PNP晶体管的制备方法进行详细说明如下:
步骤1:请参见图5a,准备SiC半绝缘衬底1,厚度为350μm,对衬底进行RCA标准清洗。
步骤2:请参见图5b,在步骤1所准备的SiC半绝缘衬底1上通过LPCVD生成P型同质外延层2,掺杂浓度在1016~1017cm-3量级,掺杂元素为Al,厚度为2um;
步骤3:请参见图5c,在步骤2所准备的P型同质外延层2上通过LPCVD形成N型SiC同质外延层3,掺杂浓度在1017-1018cm-3量级,掺杂元素为N,厚度为0.3um;
步骤4:请参见图5d,在步骤3所准备的N型SiC同质外延层3上通过分子束外延法生长β-Ga2O3层4作为光吸收层,掺杂浓度在1×1019~2×1019cm-3,掺杂元素为Cu、Zn等元素,厚度为1um;
步骤5:请参见图5e及图6,在步骤4所准备的β-Ga2O3层4上使用第一掩膜版,通过等离子刻蚀形成光吸收层,刻蚀气体为BCl3
步骤6:请参见图5f及图7,在步骤3所准备的P型异质外延层3上使用第二掩膜版,通过等离子刻蚀形成图4f中的N型异质外延层形成基区,刻蚀气体为CF4和O2
步骤7:请参见图5g及图8,在步骤2所准备的N型同质外延层2上表面使用第三掩膜版,通过磁控溅射生长集电极Ni材料。
溅射靶材选用质量比纯度>99.99%的镍,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、氩气流量为 20~30cm3/秒、靶材基距为10cm和工作功率为20W~100W的条件下,制备集电极Ni,电极厚度为150nm~250nm。
之后在1050
Figure PCTCN2017114673-appb-000007
氮气和氩气环境下进行快速热退火3min形成欧姆接触。
发射电极的金属可选Au、Al、Ti等不同元素及其组成的2层结构,集电极可选用Al\Ti\Ni\Ag\Pt等金属替代。其中Au\Ag\Pt化学性质稳定;Al\Ti\Ni成本低。
步骤8:请参见图5h及图9,在步骤5所准备的发射区上使用第四掩膜版,通过磁控溅射生长发射电极Ti/Au。
溅射靶材选用质量比纯度>99.99%的钛,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、氩气流量为20~30cm3/秒、靶材基距为10cm和工作功率为20W~100W的条件下,制备栅电极钛,电极厚度为20nm~30nm。
溅射靶材选用质量比纯度>99.99%的Au,以质量百分比纯度为99.999%的Ar作为溅射气体通入溅射腔,溅射前,用高纯氩气对磁控溅射设备腔体进行5分钟清洗,然后抽真空。在真空度为6×10-4~1.3×10-3Pa、氩气流量为20~30cm3/秒、靶材基距为10cm和工作功率为20W~100W的条件下,制备栅电极铝,电极厚度为150nm~200nm,之后在500
Figure PCTCN2017114673-appb-000008
氮气和氩气环境下进行快速热退火3min形成欧姆接触。
发射电极的金属可选Au、Al、Ti等不同元素及其组成的2层结构,集电极可选用Al\Ti\Ni\Ag\Pt等金属替代。其中Au\Ag\Pt化学性质稳定;Al\Ti\Ni成本低。
以上,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的 技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
工业实用性
本发明实施例通过在光电探测器的结构中使用Ga2O3材料,充分发挥了该材料在深紫外光区域和可见光区域的极高光透率和透明度,可以大幅提高光电探测二极管的器件性能。

Claims (18)

  1. 一种Ga2O3/SiC异质结光电NPN晶体管的制备方法,其特征在于,包括:
    选取SiC衬底;
    在所述SiC衬底表面生长同质外延层形成集电区;
    在所述同质外延层表面生长异质外延层并刻蚀形成基区;
    在所述异质外延层表面生长β-Ga2O3材料并刻蚀形成发射区;
    在所述集电区表面生长第一金属材料形成集电极;
    在所述发射区表面生长第二金属材料形成发射极以最终形成所述光电NPN晶体管。
  2. 根据权利要求1所述的方法,其特征在于,在所述SiC衬底表面生长同质外延层形成集电区,包括:
    利用LPCVD工艺,在所述SiC衬底表面生长掺杂N元素的N型SiC材料以形成掺杂浓度为1×1015~9×1015cm-3的所述集电区。
  3. 根据权利要求1所述的方法,其特征在于,在所述同质外延层表面生长异质外延层并刻蚀形成基区,包括:
    利用LPCVD工艺,在所述同质外延层表面生长掺杂Al元素的P型SiC材料以形成掺杂浓度为1×1017~9×1017cm-3的所述异质外延层;
    采用第二掩膜板,采用CF4和O2作为刻蚀气体,利用等离子刻蚀工艺刻蚀所述异质外延层形成所述基区。
  4. 根据权利要求1所述的方法,其特征在于,在所述异质外延层表面生长β-Ga2O3材料并刻蚀形成发射区,包括:
    利用分子束外延工艺,在所述异质外延层表面生长掺杂元素为Sn、Si或者Al,掺杂浓度为1×1018~9×1019cm-3的N型β-Ga2O3材料;
    采用第一掩膜板,采用BCl3作为刻蚀气体,利用等离子刻蚀工艺对所述 N型β-Ga2O3材料进行刻蚀形成所述发射区。
  5. 根据权利要求1所述的方法,其特征在于,在所述集电区表面生长第一金属材料形成集电极,包括:
    采用第三掩膜版,利用磁控溅射工艺在所述集电区表面溅射Ni材料;
    在氮气和氩气的气氛下,利用快速热退火工艺在所述同质外延层表面与所述Ni材料表面形成欧姆接触以完成所述集电极的制备。
  6. 根据权利要求1所述的方法,其特征在于,在所述发射区表面生长第二金属材料形成发射极,包括:
    采用第四掩膜版,利用磁控溅射工艺在所述发射区表面溅射Ti/Au叠层双金属材料;
    在氮气和氩气的气氛下,利用快速热退火工艺在所述发射区表面与所述Ti/Au叠层双金属材料表面形成欧姆接触以完成所述发射极的制备。
  7. 一种Ga2O3/SiC异质结光电NPN晶体管的制备方法,其特征在于,包括:
    选取半绝缘SiC衬底;
    在所述半绝缘SiC衬底表面分别生长N型同质外延层和P型异质外延层;
    在所述P型异质外延层表面生长N型β-Ga2O3材料;
    刻蚀所述N型β-Ga2O3材料形成发射区;
    刻蚀所述P型异质外延层形成基区,并在暴露出的所述N型同质外延层表面部分位置处生长第一金属材料形成集电极;
    在所述发射区表面生长第二金属材料形成发射极,最终形成所述光电NPN晶体管。
  8. 根据权利要求7所述的方法,其特征在于,所述第二金属材料为Ti/Au叠层双金属材料。
  9. 根据权利要求8所述的方法,其特征在于,在所述发射区表面生长第二金属材料形成发射极,包括:
    采用第四掩膜版,以Ti材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为20~100W,在真空度为6×10-4~1.3×10-3Pa的条件下,在所述发射区表面溅射形成所述Ti材料;
    采用所述第四掩膜版,以Au材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为20~100W,在真空度为6×10-4~1.3×10-3Pa的条件下,在所述Ti材料表面溅射Au材料形成所述Ti/Au叠层双金属材料;
    在氮气和氩气的气氛下,利用快速热退火工艺在所述发射区表面与所述Ti/Au叠层双金属材料表面处形成欧姆接触以完成所述发射极的制备。
  10. 一种Ga2O3/SiC异质结光电PNP晶体管的制备方法,其特征在于,包括:
    选取SiC衬底;
    在所述SiC衬底表面生长P型SiC同质外延层形成集电区;
    在所述P型SiC同质外延层表面生长N型SiC同质外延层;
    在所述N型SiC同质外延层表面生长P型β-Ga2O3异质外延层;
    在所述P型β-Ga2O3异质外延层通过干法刻蚀形成发射区;
    在所述N型SiC同质外延层通过干法刻蚀形成基区;
    并在暴露出的所述P型SiC同质外延层表面部分位置处生长第一金属材料形成集电极;
    在所述发射区表面生长第二金属材料形成发射极,最终形成所述Ga2O3/SiC异质结光电PNP晶体管。
  11. 根据权利要求10所述的方法,其特征在于,在所述SiC衬底表面生长P型SiC同质外延层形成集电区,包括:
    利用LPCVD工艺,在所述SiC衬底表面生长掺杂Al元素的P型SiC材 料以形成厚度为3~5μm、掺杂浓度为1×1016~1×1017cm-3所述同质外延层;
  12. 根据权利要求10所述的方法,其特征在于,在所述P型SiC同质外延层表面生长N型SiC同质外延层,包括:
    利用LPCVD工艺,在所述P型SiC同质外延层表面生长掺杂N元素的N型SiC材料以形成厚度为0.3~0.5μm、掺杂浓度为1×1017~1×1018cm-3的所述N型SiC同质外延层。
  13. 根据权利要求10所述的方法,其特征在于,在所述N型SiC同质外延层表面生长P型β-Ga2O3异质外延层,包括:
    利用分子束外延工艺,在所述N型SiC同质层表面生长掺杂元素为Cu或者Zn,掺杂浓度为1×1019~9×1019cm-3,厚度为0.5~0.8μm的所述P型β-Ga2O3异质外延层。
  14. 根据权利要求10所述的方法,其特征在于,在所述P型β-Ga2O3异质外延层通过干法刻蚀形成发射区,包括:
    采用第一掩膜板,采用BCl3作为刻蚀气体,利用等离子刻蚀工艺对所述P型β-Ga2O3异质外延层进行刻蚀形成所述发射区。
  15. 根据权利要求10所述的方法,其特征在于,在所述N型SiC同质外延层通过干法刻蚀形成基区,包括:
    采用第二掩膜板,采用CF4或O2作为刻蚀气体,利用等离子刻蚀工艺对所述N型SiC同质外延层进行刻蚀形成所述基区。
  16. 根据权利要求10所述的方法,其特征在于,在暴露出的所述P型SiC同质外延层表面部分位置处生长第一金属材料形成集电极,包括:
    利用磁控溅射工艺在所述集电区表面溅射Ni金属材料;
    在氮气和氩气的气氛下,利用快速热退火工艺在所述P型SiC同质外延层表面与所述Ni金属材料表面形成欧姆接触以完成所述集电极的制备。
  17. 根据权利要求10所述的方法,其特征在于,在所述发射区表面生长 第二金属材料形成发射极,包括:
    利用磁控溅射工艺在所述发射区表面溅射Ti材料和Au材料形成Ti/Au叠层双金属材料;
    在氮气和氩气的气氛下,利用快速热退火工艺在所述发射区表面与所述Ti/Au叠层双金属材料表面形成欧姆接触以完成所述发射极的制备。
  18. 根据权利要求10所述的方法,其特征在于,利用磁控溅射工艺在所述发射区表面溅射Ti材料和Au材料形成Ti/Au叠层双金属材料,包括:
    采用第四掩膜版,以Ti材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为20~100W的条件下,在所述发射区表面溅射所述Ti材料;
    采用所述第四掩膜版,以Au材料作为靶材,以氩气作为溅射气体通入溅射腔体中,在工作功率为20~100W的条件下,在所述Ti材料表面溅射Au材料形成所述第二Ti/Au叠层双金属材料。
PCT/CN2017/114673 2016-12-08 2017-12-05 Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法 WO2018103645A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611124462.XA CN106784125A (zh) 2016-12-08 2016-12-08 Ga2O3/SiC异质结光电PNP晶体管及其制备方法
CN201611123675.0 2016-12-08
CN201611124462.X 2016-12-08
CN201611123675.0A CN106531838B (zh) 2016-12-08 2016-12-08 基于Ga2O3/SiC异质结构的光电NPN晶体管及其制备方法

Publications (1)

Publication Number Publication Date
WO2018103645A1 true WO2018103645A1 (zh) 2018-06-14

Family

ID=62491493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114673 WO2018103645A1 (zh) 2016-12-08 2017-12-05 Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法

Country Status (1)

Country Link
WO (1) WO2018103645A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111415979A (zh) * 2020-02-28 2020-07-14 深圳第三代半导体研究院 一种垂直异质p-n结结构器件及其制备方法
CN112436070A (zh) * 2020-12-01 2021-03-02 南京信息工程大学 一种量子点异质结日盲紫外探测芯片及其制备方法
CN113193037A (zh) * 2021-04-01 2021-07-30 北京大学 Ga2O3基共振隧穿二极管及其制备方法
CN113517366A (zh) * 2021-05-20 2021-10-19 西安电子科技大学 一种新型异质结光电探测器及其制备方法
CN114388651A (zh) * 2021-12-15 2022-04-22 西安理工大学 具有高通流能力的SiC双HEJ-LTT及制造方法
CN114695582A (zh) * 2022-06-01 2022-07-01 陕西半导体先导技术中心有限公司 一种双峰值异质结紫外探测器及制备方法
CN114792742A (zh) * 2022-04-22 2022-07-26 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536952A (en) * 1992-03-24 1996-07-16 Sumitomo Electric Industries, Ltd. Heterojunction bipolar transistor
CN101752789A (zh) * 2008-12-17 2010-06-23 中国科学院半导体研究所 Npn异质结双极型晶体管激光器
CN103594500A (zh) * 2013-12-02 2014-02-19 上海集成电路研发中心有限公司 一种锗硅异质结双极晶体管的制造方法
CN105742398A (zh) * 2016-03-18 2016-07-06 浙江理工大学 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
CN106531838A (zh) * 2016-12-08 2017-03-22 西安电子科技大学 基于Ga2O3/SiC异质结构的光电NPN晶体管及其制备方法
CN106784125A (zh) * 2016-12-08 2017-05-31 西安电子科技大学 Ga2O3/SiC异质结光电PNP晶体管及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536952A (en) * 1992-03-24 1996-07-16 Sumitomo Electric Industries, Ltd. Heterojunction bipolar transistor
CN101752789A (zh) * 2008-12-17 2010-06-23 中国科学院半导体研究所 Npn异质结双极型晶体管激光器
CN103594500A (zh) * 2013-12-02 2014-02-19 上海集成电路研发中心有限公司 一种锗硅异质结双极晶体管的制造方法
CN105742398A (zh) * 2016-03-18 2016-07-06 浙江理工大学 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
CN106531838A (zh) * 2016-12-08 2017-03-22 西安电子科技大学 基于Ga2O3/SiC异质结构的光电NPN晶体管及其制备方法
CN106784125A (zh) * 2016-12-08 2017-05-31 西安电子科技大学 Ga2O3/SiC异质结光电PNP晶体管及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111415979A (zh) * 2020-02-28 2020-07-14 深圳第三代半导体研究院 一种垂直异质p-n结结构器件及其制备方法
CN112436070A (zh) * 2020-12-01 2021-03-02 南京信息工程大学 一种量子点异质结日盲紫外探测芯片及其制备方法
CN112436070B (zh) * 2020-12-01 2023-05-23 南京信息工程大学 一种量子点异质结日盲紫外探测芯片及其制备方法
CN113193037A (zh) * 2021-04-01 2021-07-30 北京大学 Ga2O3基共振隧穿二极管及其制备方法
CN113517366A (zh) * 2021-05-20 2021-10-19 西安电子科技大学 一种新型异质结光电探测器及其制备方法
CN114388651A (zh) * 2021-12-15 2022-04-22 西安理工大学 具有高通流能力的SiC双HEJ-LTT及制造方法
CN114792742A (zh) * 2022-04-22 2022-07-26 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法
CN114792742B (zh) * 2022-04-22 2024-04-02 深圳大学 一种基于改性SnTe薄膜的光电传感器及其制备方法
CN114695582A (zh) * 2022-06-01 2022-07-01 陕西半导体先导技术中心有限公司 一种双峰值异质结紫外探测器及制备方法
CN114695582B (zh) * 2022-06-01 2022-09-13 陕西半导体先导技术中心有限公司 一种双峰值异质结紫外探测器及制备方法

Similar Documents

Publication Publication Date Title
WO2018103645A1 (zh) Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法
US10629766B2 (en) Method for manufacturing ultraviolet photodetector based on Ga2O3 material
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN106449894B (zh) 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
CN106531838B (zh) 基于Ga2O3/SiC异质结构的光电NPN晶体管及其制备方法
CN104282793A (zh) 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN108630779B (zh) 碳化硅探测器及其制备方法
CN111739960B (zh) 一种增益型异质结紫外光电探测器
CN112635614A (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法
CN106784125A (zh) Ga2O3/SiC异质结光电PNP晶体管及其制备方法
CN111446332A (zh) 一种AlGaN单极载流子日盲紫外探测器及其制备方法
CN102931272A (zh) 一种具有增益的紫外探测器结构及其制备方法
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN108899380B (zh) 红外半导体雪崩探测器及其制备方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
US20030215971A1 (en) Metamorphic long wavelength high-speed photodiode
CN109244179A (zh) 基于金刚石/SiC异质结构的光电NPN晶体管及其制备方法
CN109256437B (zh) 一种低温键合光电探测器及其制备方法
CN112786732A (zh) 一种InAs基室温宽波段红外光电探测器
CN109216493A (zh) 一种基于GaN材料的p-i-n结构紫外探测器及其制备方法
CN113948604B (zh) 一种三维结构高增益AlGaN日盲紫外探测器及其制备方法
US6225672B1 (en) High-gain and high-temperature applicable phototransistor with multiple mono-crystalline silicon-carbide layers on a silicon substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877638

Country of ref document: EP

Kind code of ref document: A1