CN112786732A - 一种InAs基室温宽波段红外光电探测器 - Google Patents

一种InAs基室温宽波段红外光电探测器 Download PDF

Info

Publication number
CN112786732A
CN112786732A CN202110116588.7A CN202110116588A CN112786732A CN 112786732 A CN112786732 A CN 112786732A CN 202110116588 A CN202110116588 A CN 202110116588A CN 112786732 A CN112786732 A CN 112786732A
Authority
CN
China
Prior art keywords
inas
layer
room temperature
broadband infrared
based room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110116588.7A
Other languages
English (en)
Inventor
林虹宇
胡淑红
周子骥
郝加明
谢浩
段永飞
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN202110116588.7A priority Critical patent/CN112786732A/zh
Publication of CN112786732A publication Critical patent/CN112786732A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种InAs基室温宽波段红外光电探测器。该探测器自下而上依次为InAs衬底、InAsSbP阻挡层、InAs吸收层、InAsSbP窗口层;下电极(5)制备在阻挡层上,上电极(6)制备在窗口层上。本发明提供的光电探测器具有室温下探测率高,可零偏压工作,有效探测波长范围宽等优点。

Description

一种InAs基室温宽波段红外光电探测器
技术领域
本发明涉及半导体光电探测器技术领域,具体涉及一种室温工作InAs基中短波(1.5-3.5μm)红外光电探测器。
背景技术
中短波红外光电探测器在军事侦察、气象预报、环境监测、智能农业、热光伏电池等众多军事和民用领域都有着广泛的应用。III-V族半导体化合物InAs及其合金由于禁带匹配、载流子迁移率高等优势,成为制备中短波红外光电探测器的重要材料。然而,目前大多数该类探测器仍存在工作温度低、探测波长范围较窄、信噪比低等缺陷,极大地制约了其实际应用。
扩散电流和产生-复合电流是影响光伏型探测器的重要因素,其中扩散电流与温度相关,且在高温(室温)下占据主导地位。为了降低器件的扩散暗电流,提高器件的信噪比,探测器通常需工作在低温条件下,不可避免要引入附加的制冷设备,这就给器件的应用带来了不便。随着科学技术的高速发展,特别是红外光电探测技术的应用场景越来越宽泛,对于探测器件的小型化和集成化提出了更高的要求。如何提升探测器在室温下的信噪比,是一项急需解决的问题。
pn结型红外探测器的截止波长定义为当输出信号下降到峰值信号的一半时,所对应的波长。截止波长可分为长波截止波长和短波截止波长。长波截止波长是由吸收层带隙宽度决定的,当入射光波长大于长截止波长时,光子能量太小,不足以使价带电子跃迁至导带形成自由载流子;短波截止波长因为对于短波入射光,大部分的辐射在很靠近表面的区域就被吸收,此区域远离耗尽区,区域内产生的载流子不易被收集并最终通过复合而损耗。据此定义,通常传统InAs基pn结光电探测器的有效探测波长范围为2.5μm-3.5μm,如此短的有效探测波长范围严重限制了探测器的应用。
针对上述问题,本发明公开了一种InAs基中短波红外光电探测器,其具有可在室温下零偏压工作、信噪比高、有效探测波长范围宽(1.5-3.5μm)等优点。
发明内容
(一)要解决的技术问题
针对上述问题,本发明提供了一种InAs基室温宽波段红外光电探测器,用于至少部分解决传统光电探测器工作温度低、探测波长范围窄、信噪比低等问题。
(二)技术方案
本发明公开了一种InAs基红外光电探测器,器件结构组成包括衬底1、阻挡层2、吸收层3、窗口层4;下电极5制备在阻挡层上,上电极6制备在窗口层上。
所述衬底1是(100)晶向的p型InAs薄膜层。
阻挡层2是p型Zn掺杂的的InAs1-x-ySbxPy薄膜层,Zn掺杂浓度为1-4×1018cm-3,厚度为0.1-2μm,组分中x=0.1-0.15,y=0.26-0.3。
吸收层3是非故意掺杂的InAs薄膜层,载流子浓度为3-5×1016cm-3,厚度为0.5-8μm。
窗口层4是n型Te掺杂的InAs1-x-ySbxPy薄膜层,Te掺杂浓度为5-8×1017cm-3,厚度为0.1-1μm,组分中x=0.1-0.15,y=0.26-0.3。
下电极5与上电极6是厚度为0.05-0.5μm的Cr、Ti、Ag或Au金属电极。本发明的优点在于:
本发明通过对阻挡层2材料InAs1-x-ySbxPy的选取、设计与优化,不但保证了器件中材料的晶格匹配,而且有效的降低了器件的暗电流;通过吸收层3的设计与优化,可高效吸收中短波红外入射光,产生光生载流子,并在内建电场的作用下被有效分离与收集;通过窗口层4材料的选取与优化,不但有效的抑制了器件的表面漏电流,而且特别重要的是大大的增强了器件对近红外入射光的有效探测。基于此,在室温(22℃)工作条件下对于宽波段(1.5-3.5μm)红外入射光器件在零偏压下探测率皆大于3×109Jones。
附图说明
图1为本发明实施例新型InAs基室温宽波段红外光电探测器的结构剖面图。
图2为本发明实施例新型InAs基室温宽波段红外光电探测器的结构俯视图。
图3为本发明实施例新型InAs基室温宽波段红外光电探测器的室温零偏压探测率。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本公开的提供了三种实施例,在第一种实施例中,衬底1材料是(100)晶向的p型InAs材料。阻挡层2材料是p型Zn掺杂的宽带隙的InAs1-x-ySbxPy,Zn掺杂浓度为1×1018cm-3,厚度为0.1μm,组分中x=0.1,y=0.26。吸收层3是非故意掺杂的InAs材料,载流子浓度为3×1016cm-3,厚度为0.5μm,窗口层4是n型Te掺杂的宽带隙的InAs1-x-ySbxPy,Te掺杂浓度为5×1017cm-3,厚度为0.1μm,组分中x=0.1,y=0.26,下电极5与上电极6是厚度为0.05μm的Ti/Au金属电极。
在第二种实施例中,衬底1材料是(100)晶向的p型InAs材料。阻挡层2材料是p型Zn掺杂的宽带隙的InAs1-x-ySbxPy,Zn掺杂浓度为2×1018cm-3,厚度为1μm,组分中x=0.13,y=0.28。吸收层3是非故意掺杂的InAs材料,载流子浓度为4×1016cm-3,厚度为4μm,窗口层4是n型Te掺杂的宽带隙的InAs1-x-ySbxPy,Te掺杂浓度为6.5×1017cm-3,厚度为0.5μm,组分中x=0.13,y=0.28,下电极5与上电极6是厚度为0.3μm的Ti/Au金属电极。
在第三种实施例中,衬底1材料是(100)晶向的p型InAs材料。阻挡层2材料是p型Zn掺杂的宽带隙的InAs1-x-ySbxPy,Zn掺杂浓度为4×1018cm-3,厚度为2μm,组分中x=0.15,y=0.3。吸收层3是非故意掺杂的InAs材料,载流子浓度为5×1016cm-3,厚度为8μm,窗口层4是n型Te掺杂的宽带隙的InAs1-x-ySbxPy,Te掺杂浓度为8×1017cm-3,厚度为1μm,组分中x=0.15,y=0.3,下电极5与上电极6是厚度为0.5μm的Ti/Au金属电极。
三种实施例均采用如下工艺:
采用液相外延方法在InAs衬底上依次原位生长阻挡层2、吸收层3、窗口层4。生长所采用的熔源首先在650℃下烘烤2-3h以除去熔源内非故意掺杂的杂质及使熔源材料混合均匀。衬底放入生长腔体前,依次用丙酮、异丙醇、去离子水超声5-10min,氮气枪吹干,再浸入HNO3:H2O2=3:5的腐蚀液中腐蚀30s-1min以除去表面的自然氧化层,随后用大量去离子水冲洗并用氮气枪吹干。生长时腔体内持续通入氢气以创造还原性氛围,生长采用超冷法,过冷度为15℃-25℃。
台面刻蚀前先依次用丙酮、异丙醇超声清洗10-15min,去除表面沾污。随后采用标准光刻工艺在生长好的样品表面制作台面图形,放入烘箱内,设置温度65℃后烘烤12h,以减轻台面刻蚀时的侧蚀现象。采用刻蚀工艺自上而下刻蚀形成台面。刻蚀停止于阻挡层2,使得制备完成的器件,暴露在外的部分为阻挡层2及窗口层4。采用丙酮及异丙醇浸泡去除样品表面的残胶,并用丙酮超声清洗20-30min,以彻底洗净表面残胶。
采用标准光刻工艺在样品表面开电极孔,随后将样品浸入BOE溶液(HF:NH4F=1:7)中30s-1min,氮气吹干,以除去前面工艺中可能产生的自然氧化层。采用热蒸发(真空溅射、电子束蒸发等方法均可)方法形成下电极5及上电极6。将样品在丙酮中浸泡12h,去除表面多余的金以及光刻胶,然后在异丙醇中漂洗以除去表面的丙酮,氮气吹干。
三种实施例制备的器件性能相近。在室温零偏压工作条件下,对于宽波段(1.5-3.5μm)红外入射光,器件探测率皆大于3×109Jones。
以上所属的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围内。

Claims (6)

1.一种InAs基室温宽波段红外光电探测器,所述结构自下而上依次为衬底(1)、阻挡层(2)、吸收层(3)、窗口层(4);下电极(5)制备在阻挡层上,上电极(6)制备在窗口层上。
2.如权利要求1所述的InAs基室温宽波段红外光电探测器,其特征在于,所述衬底(1)是(100)晶向的p型InAs薄膜层。
3.如权利要求1所述的InAs基室温宽波段红外光电探测器,其特征在于,所述阻挡层(2)是p型Zn掺杂的InAs1-x-ySbxPy薄膜层,掺杂浓度为1-4×1018cm-3,厚度为0.1-2μm,组分中x=0.1-0.15,y=0.26-0.3。
4.如权利要求1所述的InAs基室温宽波段红外光电探测器,其特征在于,所述吸收层(3)是非故意掺杂的InAs薄膜层,载流子浓度为3-5×1016cm-3,厚度为0.5-8μm。
5.如权利要求1所述的InAs基室温宽波段红外光电探测器,其特征在于,所述窗口层(4)是n型Te掺杂的InAs1-x-ySbxPy薄膜层,掺杂浓度为5-8×1017cm-3,厚度为0.1-1μm,组分中x=0.1-0.15,y=0.26-0.3。
6.如权利要求1所述的InAs基室温宽波段红外光电探测器,其特征在于,所述下电极(5)与上电极(6)是厚度为0.05-0.5μm的Cr、Ti、Ag或Au金属电极。
CN202110116588.7A 2021-01-28 2021-01-28 一种InAs基室温宽波段红外光电探测器 Pending CN112786732A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110116588.7A CN112786732A (zh) 2021-01-28 2021-01-28 一种InAs基室温宽波段红外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110116588.7A CN112786732A (zh) 2021-01-28 2021-01-28 一种InAs基室温宽波段红外光电探测器

Publications (1)

Publication Number Publication Date
CN112786732A true CN112786732A (zh) 2021-05-11

Family

ID=75759308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110116588.7A Pending CN112786732A (zh) 2021-01-28 2021-01-28 一种InAs基室温宽波段红外光电探测器

Country Status (1)

Country Link
CN (1) CN112786732A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012348A1 (zh) * 2022-07-11 2024-01-18 中国科学院上海技术物理研究所 一种人工微结构集成InAs基红外光电探测器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012348A1 (zh) * 2022-07-11 2024-01-18 中国科学院上海技术物理研究所 一种人工微结构集成InAs基红外光电探测器

Similar Documents

Publication Publication Date Title
Basol High‐efficiency electroplated heterojunction solar cell
CN109037374B (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
WO2018103645A1 (zh) Ga2O3/SiC异质结NPN/PNP光电晶体管的制备方法
CN112164732B (zh) 一种紫外光电二极管及其制备方法
Zhang et al. Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy
Hou et al. Self-powered ZnO nanowire UV photodetector integrated with GaInP/GaAs/Ge solar cell
CN112786732A (zh) 一种InAs基室温宽波段红外光电探测器
Kociubiński et al. Technology and characterization of 4H-SiC pin junctions
CN214797434U (zh) InAs基室温宽波段红外光电探测器
Mukherjee et al. Doped Cu 2 O/n-Si Heterojunction Solar Cell
Wen et al. High performance foreign-dopant-free ZnO/AlxGa1− xN ultraviolet phototransistors using atomic-layer-deposited ZnO emitter layer
CN108615782B (zh) 一种紫外探测器及其制造方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN115513315A (zh) 一种高饱和阈值的碲镉汞探测器芯片及制备方法
Nasrallah et al. Temperature Effect on Al/p-CuInS2/SnO2 (F) Schottky Diodes
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
CN114038926A (zh) 一种高增益平面型雪崩单光子探测器及其制备方法
Migliorato et al. CdTe/HgCdTe indium-diffused photodiodes
CN112768535A (zh) 一种石墨烯/黑硅复合结构光电探测器结构
CN108831933B (zh) 背表面场GaSb热光伏电池及其制备方法
Liu et al. Investigation and fabrication of p-Si/N-Mg 0.3 Zn 0.7 O: In self-powered heterojunction photodiodes by mist atmospheric pressure chemical vapor deposition
CN111524973A (zh) 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法
KR101517077B1 (ko) 고성능 투명 전극 소자 및 그 제조 방법
CN112071942B (zh) 基于NiFe2O4/SiC紫外光电二极管及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination