CN108831933B - 背表面场GaSb热光伏电池及其制备方法 - Google Patents

背表面场GaSb热光伏电池及其制备方法 Download PDF

Info

Publication number
CN108831933B
CN108831933B CN201810593479.2A CN201810593479A CN108831933B CN 108831933 B CN108831933 B CN 108831933B CN 201810593479 A CN201810593479 A CN 201810593479A CN 108831933 B CN108831933 B CN 108831933B
Authority
CN
China
Prior art keywords
gasb
back surface
substrate
layer
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810593479.2A
Other languages
English (en)
Other versions
CN108831933A (zh
Inventor
余丁
赵有文
白永彪
沈桂英
董志远
刘京明
谢辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Qinene New Materials Co.,Ltd.
Original Assignee
Institute of Semiconductors of CAS
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS, University of Chinese Academy of Sciences filed Critical Institute of Semiconductors of CAS
Priority to CN201810593479.2A priority Critical patent/CN108831933B/zh
Publication of CN108831933A publication Critical patent/CN108831933A/zh
Application granted granted Critical
Publication of CN108831933B publication Critical patent/CN108831933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种背表面场GaSb热光伏电池,包括:一衬底;一背电场层,其制作在衬底的背面;一背电极,其制作在背电场层上;一有源区,其制作在衬底的上面;一前电极,其制作在有源区上面的中间,该前电极的尺寸小于有源区的尺寸。本发明通过在电池背面增加一个nn+结,与原内建电场形成高低结电场,提供空穴势垒,利用能带工程提高光生载流子的收集效率,同时由于背电极附近掺杂浓度高,势垒区宽度更小,利于电子通过隧道效应贯穿势垒,使GaSb与背电极金属形成更好的欧姆接触。从而提高电池的效率。

Description

背表面场GaSb热光伏电池及其制备方法
技术领域
本发明涉及热光伏电池技术领域,具体涉及一种背表面场GaSb热光伏电池及其制备方法。
背景技术
热光伏电池是利用窄带隙半导体pn结的光生伏特效应将红外光转换成电能的器件。其原理与传统太阳电池类似,能量大于禁带宽度的光子由于本征吸收在pn结两边产生的电子-空穴对,即光生少数载流子。在pn结内建电场作用下光生少数载流子分别向相反方向运动,在pn结两端形成光生电动势。各种高温热辐射体,如燃气炉、核反应堆热钢坯等,都可以作为热光伏电池的光源,因此相比传统太阳电池,热光伏电池可以不受天气、昼夜等影响,工作更加稳定。
自20世纪60年代热光伏技术提出以来,基于Ge、Si、GaSb、InGaAsSb等材料的热光伏电池已可以通过LPE、MOCVD、MBE或扩散法制得。常见的GaSb电池通常由扩散法制得,为pn型,其中电池正表面为p型掺杂,结构非常简单,美国JX Crystals生产的GaSb单结热光伏电池,其热光伏系统效率为24%,但相比其他类型的太阳电池,热光伏电池的转换效率仍然较低。
发明内容
为了克服现有GaSb热光伏电池的不足,本发明提供一种背表面场GaSb热光伏电池及其制备方法,通过在电池背面增加一个nn+结,与原内建电场形成高低结电场,提供空穴势垒,利用能带工程提高光生载流子的收集效率,同时由于背电极附近掺杂浓度高,势垒区宽度更小,利于电子通过隧道效应贯穿势垒,使GaSb与背电极金属形成更好的欧姆接触。从而提高电池的效率。
本发明提供一种背表面场GaSb热光伏电池,包括:
一衬底;
一背电场层,其制作在衬底的背面;
一背电极,其制作在背电场层上;
一有源区,其制作在衬底的上面;
一前电极,其制作在有源区上面的中间,该前电极的尺寸小于有源区的尺寸。
本发明还提供一种背表面场GaSb热光伏电池的制备方法,包括如下步骤:
步骤1:将衬底依次用丙酮、CCl4、丙酮和无水乙醇超声清洗,除去晶片表面残留的有机杂质;之后用浓度<20%的稀盐酸清洗,除去表面的氧化层;用去离子水冲洗之后用氮气吹干;
步骤2:用扩散法在衬底上制备有源区,随后分别用丙酮、无水乙醇超声清洗,然后用氮气吹干;
步骤3:将扩散所得的GaSb晶片背部打磨减薄80-100μm,除去背部的Zn扩散层并减薄衬底;
步骤4:在衬底的背面制备n+型背电场层,第一次快速退火;
步骤5:在背电场层上制作背电极,第二次快速退火;
步骤6:在有源区上制作前电极,形成基片;
步骤7:对基片进行切割,对已经制备前后电极的GaSb电池切割进行边缘绝缘,防止电池短路。
采用上述方法制备的本发明的背表面场GaSb热光伏电池相比传统GaSb电池,在GaSb晶片的背面通过高能离子注入法增加了一层掺Te的n+重掺杂区域,因此电池的背表面增加了一个nn+结,与原内建电场形成高低结电场。所增加的背电场提供了空穴势垒,可以实现背表面附近载流子的空间分离,抑制了GaSb-背电极界面的少子复合。同时由于背电极附近掺杂浓度高,势垒区宽度更小,利于电子通过隧道效应贯穿势垒,使GaSb与背电极金属形成更好的欧姆接触。
附图说明
为进一步说明本发明的技术内容,以下结合实施例及附图详细说明如后,其中:
图1为本发明所述的背表面场GaSb热光伏电池的结构示意图;
图2位本发明所述的背表面场GaSb热光伏电池在热平衡态时的能带结构示意图;
图3为本发明所述的背表面场GaSb热光伏电池制备方法的流程图。
具体实施方式
请参阅图1所示,本发明提供一种背表面场GaSb热光伏电池,包括:
一衬底3,所述的衬底3为采用液封直拉法(LEC)生长的Te掺杂n型GaSb单晶切割并抛光所得的单晶片,施主Te掺杂浓度为5×1016-8×1016cm-3,晶向(100)方向向(110)方向偏2°,厚度500μm,尺寸为1×1cm2
一有源区4,其制作在衬底3的上面,所述有源区4的材料为Zn扩散的p型GaSb,扩散深度为300-800nm,掺杂浓度为5×1018-5×1019cm-3
一背电场层2,其制作在衬底3的背面,所述背电场层2的材料为Te离子注入的n+型GaSb,注入深度为50-75nm,掺杂浓度为1×1018-1×1019cm-3
一背电极1,其制作在背电场层2上,所述背电极1的材料和厚度为Ti(30-50nm)/Au(80-100nm);
一前电极5,其制作在有源区4上面的中间,该前电极5的尺寸小于有源区4,所述前电极5的材料和厚度为Ti(30-50nm)/Au(80-100nm)。
请参阅图3,并结合参阅图1所示,本发明提供一种背表面场GaSb热光伏电池的制备方法,包括如下步骤:
步骤1:将衬底3依次用丙酮、CCl4、丙酮和无水乙醇超声清洗,除去晶片表面残留的有机杂质;之后用浓度<20%的稀盐酸清洗,除去表面的氧化层;用去离子水冲洗之后用氮气吹干,所述的衬底3的材料为n型GaSb;
步骤2:用扩散法在衬底3上制备p型有源区4,所述制备有源区4的步骤包括:在石英舟内放置固态Zn、Ga颗粒作为扩散源,与清洗后的衬底3一并置于石英管中;将石英管用分子泵抽至真空(<10-5mbar)后密封,在500-550℃的温度条件下扩散90-120min;扩散结束后将GaSb晶片用1∶15稀盐酸清洗1min,随后分别用丙酮、无水乙醇超声清洗,然后用氮气吹干,所述有源区4的材料为Zn扩散的p型GaSb;
步骤3:将扩散所得的GaSb晶片背部打磨减薄80-100μm,除去背部的Zn扩散层并减薄衬底3;
步骤4:在衬底3的背面制备n+型背电场层2,第一次快速退火,所述制备n+型背电场2的步骤包括:用高能离子注入机将能量为150-250keV、剂量为1013cm-2的Te离子注入到去背结后的衬底3背表面;将离子注入后的GaSb晶片在600℃氮气气氛下第一次快速退火处理,退火时间为30-60s,所述背电场层2的材料为Te离子注入的n+型GaSb;
步骤5:在n+型背电场层2上用电子束蒸发法制作背电极1,在250℃氮气气氛下第二次快速退火10-30s,所述背电极1的材料和厚度为Ti(30-50nm)/Au(80-100nm);
步骤6:在有源区4上通过光刻选定沉积前电极5的区域,用电子束蒸发法制作前电极5,随后用丙酮溶液清洗除去残余光刻胶,形成基片,所述前电极5的材料和厚度为Ti(30-50nm)/Au(80-100nm);
步骤7:对已经制备前后电极的GaSb电池基片切割进行边缘绝缘,防止电池短路。
请参阅图2,并结合参阅图1所示,本发明的背表面场GaSb热光伏电池在热平衡态时的能带结构包括:导带6;费米能级7;价带8;Zn扩散的p型GaSb有源区4对应的能带结构9;n型GaSb衬底3对应的能带结构10;Te离子注入的n+型GaSb背电场层2对应的能带结构11。
本发明的工作过程为:热辐射源M发出的入射光M照射到本发明的背表面场GaSb热光伏电池,能量大于GaSb禁带宽度的光子由于本征吸收在有源区4和衬底3形成的pn结的两边产生电子-空穴对,即光生少数载流子;在pn结内建电场作用下光生少数载流子分别向相反方向运动,即电子向电池背表面运动,空穴向电池前表面运动;光生少数载流子由背电极1和前电极5进行收集,并形成电流。
衬底3和背电场层2形成的nn+结提供了空穴势垒,阻止了空穴向背电场层2的运动,实现了少数载流子的空间分离,抑制了电池背表面附近的少数载流子复合;背电场层2掺杂浓度高,势垒区宽度更小,利于电子通过隧道效应贯穿势垒,使背电场层2与背电极1形成更好的欧姆接触。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种背表面场GaSb热光伏电池的制备方法,包括如下步骤:
步骤1:将衬底依次用丙酮、CCl4、丙酮和无水乙醇超声清洗,除去晶片表面残留的有机杂质;之后用浓度<20%的稀盐酸清洗,除去表面的氧化层;用去离子水冲洗之后用氮气吹干;
步骤2:用扩散法在衬底上制备有源区,随后分别用丙酮、无水乙醇超声清洗,然后用氮气吹干;
步骤3:将扩散所得的GaSb晶片背部打磨减薄80-100μm,除去背部的Zn扩散层并减薄衬底;
步骤4:在衬底的背面制备n+型背电场层,具体包括如下子步骤:用高能离子注入机将1013cm-2、150-250keV的Te离子注入到去背结后的GaSb晶片背表面;将离子注入后的GaSb晶片在600℃氮气气氛下第一次快速退火处理,退火时间为30-60s;
步骤5:在背电场层上制作背电极,第二次快速退火;
步骤6:在有源区上制作前电极,形成基片;
步骤7:对已经制备前后电极的GaSb电池切割从而达到边缘绝缘、防止电池短路的目的。
2.根据权利要求1所述的背表面场GaSb热光伏电池的制备方法,其中衬底的材料为n型GaSb,前电极的材料为Ti/Au,厚度为Ti层30-50nm,Au层80-100nm。
3.根据权利要求1所述的背表面场GaSb热光伏电池的制备方法,其中有源区的材料为Zn扩散的p型GaSb。
4.根据权利要求1所述的背表面场GaSb热光伏电池的制备方法,其中背电极的材料为Ti/Au,厚度为Ti层30-50nm,Au层80-100nm。
CN201810593479.2A 2018-06-11 2018-06-11 背表面场GaSb热光伏电池及其制备方法 Active CN108831933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810593479.2A CN108831933B (zh) 2018-06-11 2018-06-11 背表面场GaSb热光伏电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810593479.2A CN108831933B (zh) 2018-06-11 2018-06-11 背表面场GaSb热光伏电池及其制备方法

Publications (2)

Publication Number Publication Date
CN108831933A CN108831933A (zh) 2018-11-16
CN108831933B true CN108831933B (zh) 2020-05-12

Family

ID=64144638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810593479.2A Active CN108831933B (zh) 2018-06-11 2018-06-11 背表面场GaSb热光伏电池及其制备方法

Country Status (1)

Country Link
CN (1) CN108831933B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813635B (zh) * 2019-01-01 2021-04-30 中国人民解放军63653部队 基于电场贯穿扩散法测定核素在岩土介质中扩散系数的装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130104970A1 (en) * 2011-10-14 2013-05-02 Florida State University Research Foundation, Inc. Four junction solar cell
US9153724B2 (en) * 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
US10243089B2 (en) * 2014-06-19 2019-03-26 Raytheon Company Photovoltaic device for generating electrical power using nonlinear multi-photon absorption of incoherent radiation
CN104900733B (zh) * 2015-06-11 2017-03-01 吉林大学 一种基于GaSb的InxGa1‑xSb/GaSb应变量子阱中间能带热光伏电池及其制备方法

Also Published As

Publication number Publication date
CN108831933A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
TWI474494B (zh) 多晶矽發射極太陽能電池所用的圖案化摻雜
CN102544195B (zh) 太阳能电池及其制作方法
KR101626248B1 (ko) 실리콘 태양전지 및 이의 제조 방법
CN101587913B (zh) Sinp硅蓝紫光电池及其制备方法
CN102487102B (zh) 太阳能电池及其制备方法
Islam et al. Metal/insulator/semiconductor carrier selective contacts for photovoltaic cells
Markvart Radiation damage in solar cells
Zhang et al. Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy
CN102487103B (zh) 太阳能电池及其制备方法
JPH06104463A (ja) 太陽電池およびその製造方法
JP2011077293A (ja) 多接合型太陽電池
JP2014220351A (ja) 多接合太陽電池
CN108831933B (zh) 背表面场GaSb热光伏电池及其制备方法
CN102738263B (zh) 掺杂单元、掺杂晶片、掺杂方法、电池及制作方法
EP2634820A2 (en) Solar cell with delta doping layer
Virshup et al. A 19% efficient AlGaAs solar cell with graded band gap
CN102738267B (zh) 具有超晶格结构的太阳能电池及其制备方法
Cheng et al. Demonstration of a GaN betavoltaic microbattery
CN102569498A (zh) 太阳能电池及其制作方法
JP2013021309A (ja) 光電変換装置
KR20090019600A (ko) 고효율 태양전지 및 그의 제조방법
Nakamura et al. Selective emitter N-pert solar cell using NON mass separatION type ION implantatION
Karlina et al. The distinctive characteristic of growth and radiation response of InP/InGaAs solar cells
CN102412335A (zh) 太阳能晶片及其制备方法
CN102339876B (zh) 太阳能晶片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210226

Address after: 226500 3rd floor, building 5, electronic information industrial park, No.2 Haiyang South Road, Chengnan street, Rugao City, Nantong City, Jiangsu Province

Patentee after: Jiangsu Qinene New Materials Co.,Ltd.

Address before: 100083 No. 35, Qinghua East Road, Beijing, Haidian District

Patentee before: Institute of Semiconductors, Chinese Academy of Sciences

Patentee before: University OF CHINESE ACADEMY OF SCIENCES

TR01 Transfer of patent right