CN111524973A - 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法 - Google Patents

叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法 Download PDF

Info

Publication number
CN111524973A
CN111524973A CN202010373617.3A CN202010373617A CN111524973A CN 111524973 A CN111524973 A CN 111524973A CN 202010373617 A CN202010373617 A CN 202010373617A CN 111524973 A CN111524973 A CN 111524973A
Authority
CN
China
Prior art keywords
gan
layer
interdigital
sample
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010373617.3A
Other languages
English (en)
Inventor
仲大佑
雷建明
郭慧
胡利群
张廷志
张开骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Guanding Optoelectronics Technology Co ltd
Original Assignee
Nanjing Guanding Optoelectronics Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Guanding Optoelectronics Technology Co ltd filed Critical Nanjing Guanding Optoelectronics Technology Co ltd
Priority to CN202010373617.3A priority Critical patent/CN111524973A/zh
Publication of CN111524973A publication Critical patent/CN111524973A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • H01L29/7784Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with delta or planar doped donor layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种叉指状p‑GaN栅结构HEMT型紫外探测器,其中所述p‑GaN层在AlGaN层上呈往复式折线型分布,在AlGaN层台面设有多根平行的横向p‑GaN线,且通过纵向p‑GaN线将所有平行的p‑GaN线首尾相连,形成一根完整的p‑GaN线,p‑GaN线将AlGaN层台面分割成两个部分;还包括设置在AlGaN层上的欧姆接触电极,所述欧姆接触电极为叉指结构,线形的叉指部分生长在横向p‑GaN线之间,与横向p‑GaN线平行。本发明叉指型的电极和特殊的p‑GaN设计减小了电极间距,增加有效受光面积,提高样品利用率,提高了器件的光增益。

Description

叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法
技术领域
本发明涉及一种叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法,属于半导体器件技术领域。
背景技术
紫外探测器是基于光电效应的原理,按工作机制不同可分为外光电效应器件和内光电效应器件。外光电效应是指在一定波长的光照下,某些光敏材料中的电子逸出材料表面的现象。这些特定的光敏材料被用作阴极材料来制备光电发射探测器,当光子入射后,电子从阴极光敏材料逃逸,进入真空倍增系统进一步的二次发射实现倍增放大,最后探测到电子并作为电信号输出。这种光电倍增管紫外探测器的各方面性能都是非常高的,不仅探噪声小、探测灵敏度高,而且响应速度快、光谱选择性好,某些高精度的光电倍增器件甚至可以实现单光子探测。然而这类器件也有很多缺点,比如能耗高、体积较大,不易于集成,且成本相对较高,不太适合应用于很多领域。内光电效应是指半导体材料在光照下,电导率发生变化或产生光生电动势的现象,根据变化可分为光电导效应和光伏效应。基于光电导效应的紫外探测器,其主要工作原理为入射光激发半导体材料产生光生载流子使自由载流子浓度提高,从而使材料整体的电导率增大。在一定外加偏压下,获得电流信号,从而实现紫外探测。光伏型器件主要利用半导体的结区(pn结、肖特基结等)进行工作,当光照射结区时产生激子,在内建电场的作用下,光生电子和空穴发生分离,接通电路后形成光电流,在开路条件下也会形成开路电压。不同的工作机制使光电导型和光伏型器件的性能优势也有所不同,对于光电导型器件,器件由于不存在载流子传输势垒,在外加偏压下更容易产生光电导增益,探测器的光电流和响应度相对较高。而对于光伏型器件,由于势垒和耗尽区的存在,光照下器件难以形成增益,即电信号全部由入射的光子所产生,因此光电流相对较低,但好处就是在暗态下载流子同样难以传输,因此器件的暗电流和噪声可以被限制到比较小的水平。
与基于外光电效应的探测器相比,基于内光电效应的器件结构更简单,体积更小,容易集成并且成本较低,结合已有的成熟的硅、锗、砷化镓等材料工艺,目前一系列应用广泛的内光电效应光电探测器已被研制成功。然而这些工艺成熟的感光材料均为窄带隙材料,在进行紫外探测时,为了避免其他波段的影响,需添加相应的滤波器才能进行有效的紫外探测。而这不仅增加了器件结构的复杂性和器件成本,也会造成一定程度的紫外光损失,使器件的光响应度等性能有所降低。为了避免这些不足,宽禁带半导体材料和紫外探测器的研发成为这一领域十分明确的研究方向。
发明内容
本发明的目的在于提供一种叉指状p-GaN栅结构HEMT型紫外探测器,工作电压低,暗电流小。
本发明的目的通过以下技术方案实现:
一种叉指状p-GaN栅结构HEMT型紫外探测器,其结构自下而上依次包括:
衬底层;
GaN缓冲层;
i-GaN层;
非故意掺杂AlGaN层;
p-GaN层;
所述p-GaN层在AlGaN层上呈往复式折线型分布,在AlGaN层台面设有多根平行的横向p-GaN线,且通过纵向p-GaN线将所有平行的p-GaN线首尾相连,形成一根完整的p-GaN线,p-GaN线将AlGaN层台面分割成两个部分;
还包括设置在AlGaN层上的欧姆接触电极,所述欧姆接触电极为叉指结构,线形的叉指部分生长在横向p-GaN线之间,与横向p-GaN线平行。
优选的,所述p-GaN线的宽度为1~2μm,厚度为100~150nm,相邻的横向p-GaN线间距为4~8μm。
优选的,所述p-GaN层的Mg掺杂浓度为1×1019~5×1019cm–3
优选的,GaN缓冲层的厚度为15~25nm,i-GaN层的厚度为1~3μm。
优选的,所述AlGaN厚度为12~15nm,Al组分20%~25%。
优选的,所述欧姆接触电极为Ti/Au/Ni/Au多层金属,叉指部分线宽为2~4μm,与横向p-GaN线的间距为1~3μm。
本发明还公开了上述的叉指状p-GaN栅结构HEMT型紫外探测器的制备方法,其步骤包括:
(1)准备样品,所述样品结构为:在衬底层上依次生长有GaN缓冲层、i-GaN层、非故意掺杂AlGaN层、p-GaN层,清洁样品表面;
(2)隔离台面的刻蚀:在样品表面涂上一层光刻胶,然后曝光、显影后进行ICP刻蚀,刻蚀至i-GaN层,清除掉光刻胶,形成多个分割的台面结构;
(3)p-GaN线的刻蚀:在样品表面涂上一层光刻胶,然后曝光、显影后进行ICP刻蚀,严格控制刻蚀深度,刻蚀至AlGaN层与p-GaN层的交界处,且确保p-GaN层残余厚度在5nm以下,在每个AlGaN层台面上形成一条p-GaN线;
(4)欧姆接触电极的蒸镀:在样品表面涂上一层反转型光刻胶,然后曝光,再进行泛曝,使用负胶显影液将未曝光部分的光刻胶显影,获得欧姆接触电极的图形,然后蒸镀金属到样品表面,再使用丙酮溶液剥离多余的金属,最后将样品退火,得到欧姆接触电极。
优选的,步骤(1)中将样品放在超声清洗仪器中超声10min,然后放入盐酸溶液(水与盐酸的体积比为4:1)中浸泡10min,最后再依次放入丙酮、酒精和去离子水中进行超声清洗,用氮气枪将样品表面的水分吹干,并置于烘台上将剩余的水分烘干。
优选的,步骤(2)中刻蚀完成后将样品放入100℃水浴温度下的0.5mol/L的KOH溶液中浸泡3min。
本发明的紫外探测器根据HEMT器件中高浓度二维电子气很高的电导率以及p-GaN层对二维电子气的耗尽作用原理,特别设计了p-GaN线来将整个器件分隔成两块互不导通的区域而达到了较低的暗电流,并且结合了太阳能电池原理以达到光照对二维电子气控制效果从而实现了光照对两块区域通断的控制,同时,特别设计的p-GaN线和相应的电极又充分利用了器件具有的光电导增益的特性来进一步大大增加器件的光增益,这样一来就同时保证器件具有低的暗电流和极高的光响应。此外Al、Ga、N三元化合物的禁带宽度对应波长在紫外波段连续可调的优势赋予了此种探测器很高的抑制比以及易于调节的探测波段,叉指型的电极和特殊的p-GaN线设计减小了电极间距增加有效受光面积提高样品利用率从而进一步提高了器件的光增益。
本发明的紫外探测器不仅工作电压低,暗电流小,紫外-可见光抑制比高而且减小了电极间距增加了受光面积使得光响应进一步提高,响应速度提高,且具有结构简单易于集成等优势。
附图说明
图1是未刻蚀前的样品的结构示意图,图中省略了衬底层和GaN缓冲层。
图2是实施例1的步骤(2)得到的样品的结构示意图。
图3是实施例1的步骤(3)得到的样品的剖面图。
图4是实施例1的步骤(3)得到的样品的俯视图。
图5是实施例1的步骤(4)得到的样品的剖面图。
图6是实施例1的步骤(4)得到的样品的俯视图。
具体实施方式
以下是结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种叉指状p-GaN栅结构HEMT型紫外探测器的制备方法,其步骤包括:
(1)样品清洗:样品表面的污染物和氧化物会降低器件的性能,所以对样品的清洗也是半导体工艺中很重要的环节。首先将样品依次放入丙酮溶解去除样品表面的有机污染物、然后用酒精溶解去除剩余的丙酮,最后用去离子水洗掉酒精,清洗的方式都是放在超声清洗仪器中超声10min,然后放入稀释的盐酸(水和盐酸的体积比为4:1)中浸泡10min,最后再依次放入丙酮、酒精和去离子水中进行超声清洗,用氮气枪将样品表面的水分吹干,并置于100℃烘台上烘烤90s将剩余的水分烘干,避免其对后续的光刻胶匀胶产生影响。
(2)隔离台面的刻蚀:采用正胶AZ1500,将光刻胶滴到样品表面,随后吸附到匀胶机上进行匀胶,匀胶条件为600rpm转速下转6s,4000rpm转速下转40s。接下来在100℃下前烘100s,接下来用光刻机曝光12s(随曝光功率而定),然后用正胶显影液显影16s。在光学显微镜下观察样品表面的光刻胶图形正确且边缘平直无明显毛刺后即可进行ICP刻蚀,ICP刻蚀条件为(随不同设备而定):RIE功率为100W,RCP功率为300W,Cl2/BCl2的气体流量为48/6sccm。刻蚀完用丙酮去除样品上的光刻胶并用酒精和去离子水清洗,然后将样品放入100℃水浴温度下的0.5mol/L的KOH溶液中浸泡3min以减小干法刻蚀对样品表面产生的刻蚀损伤。最后在光学显微镜下观察,确定样品形成台面结构,并用台阶仪确认样品表面的刻蚀到了指定的深度。台面隔离后横截面示意图如图2。
(3)p-GaN的刻蚀:制备工艺过程中要求最高也是最重要的工艺就是将不需要p-GaN覆盖区域的p-GaN刻蚀掉。刻蚀深度的精度要求比较高,如果刻蚀过浅会对下方的二维电子气产生影响,如果刻蚀过深则会刻蚀到下方的AlGaN,而AlGaN的厚度比较薄,一旦被刻蚀也会对异质结面处产生影响,此外,由于AlGaN较容易被氧化,暴露于空气中容易产生氧化物从而形成表面态。因此p-GaN的刻蚀尤为重要。光刻刻蚀方法与步骤(2)相同,p-GaN线宽为1~2μm。ICP刻蚀条件为:RIE功率为20W,RCP功率为60W,Cl2/BCl2的气体流量为30/3sccm。最后在光学显微镜下观察,确定样品形成p-GaN台面结构,并用台阶仪确认样品表面的刻蚀到了指定的深度,p-GaN层残余厚度在5nm以下,随后在原子力显微镜(AFM)下观察样品表面形貌并测得表面粗糙度均方根值。p-GaN刻蚀后横截面示意图如图3,俯视示意图如图4。
(4)欧姆接触电极的蒸镀:采用双性胶AZ5214对样品进行对准套刻。AZ5214光刻胶原本是负胶,但在光刻机下曝光一次后再一次进行烘烤和泛曝,AZ5214光刻胶的胶性就会发生反转,成为正胶,这样就能使用正胶显影液将未曝光部分的光刻胶显影掉,获得欧姆接触电极的图形,同时在蒸镀完金属后也易于将光刻胶剥离。接着通过PVD依次将Ti/Au/Ni/Au金属蒸镀到样品表面,之后使用丙酮溶液剥离多余的金属,并用光学显微镜进行观察,直到样品表面的金属仅剩下欧姆接触电极。最后将样品置于800℃温度及氮气氛围下进行快速热退火(RTA),得到的金属合金,即为欧姆接触电极。剖面示意图如图5,俯视示意图如图6。
实施例2
一种叉指状p-GaN栅结构HEMT型紫外探测器,其结构自下而上依次包括:
蓝宝石衬底层;
GaN缓冲层,厚度为20nm;
i-GaN层,厚度为1μm;
非故意掺杂AlGaN层,厚度为12nm,Al组分20%;
p-GaN层,Mg掺杂浓度为1×1019cm–3
所述p-GaN层在AlGaN层上呈往复式折线型分布,在AlGaN层台面设有多根平行的横向p-GaN线,且通过纵向p-GaN线将所有平行的p-GaN线首尾相连,形成一根完整的p-GaN线,p-GaN线将AlGaN层台面分割成两个部分,所述p-GaN线的宽度为2μm,厚度为100nm,相邻的横向p-GaN线间距为4μm;
还包括设置在AlGaN层上的欧姆接触电极,所述欧姆接触电极为叉指结构,线形的叉指部分生长在横向p-GaN线之间,与横向p-GaN线平行,所述欧姆接触电极为30/50/150/100nm厚度的Ti/Au/Ni/Au多层金属,叉指部分线宽为2μm,与横向p-GaN线的间距为1μm。
实施例3
一种叉指状p-GaN栅结构HEMT型紫外探测器,其结构自下而上依次包括:
蓝宝石衬底层;
GaN缓冲层,厚度为20nm;
i-GaN层,厚度为2μm;
非故意掺杂AlGaN层,厚度为14nm,Al组分22%;
p-GaN层,Mg掺杂浓度为3×1019cm–3
所述p-GaN层在AlGaN层上呈往复式折线型分布,在AlGaN层台面设有多根平行的横向p-GaN线,且通过纵向p-GaN线将所有平行的p-GaN线首尾相连,形成一根完整的p-GaN线,p-GaN线将AlGaN层台面分割成两个部分,所述p-GaN线的宽度为1μm,厚度为120nm,相邻的横向p-GaN线间距为6μm;
还包括设置在AlGaN层上的欧姆接触电极,所述欧姆接触电极为叉指结构,线形的叉指部分生长在横向p-GaN线之间,与横向p-GaN线平行,所述欧姆接触电极为30/50/150/100nm厚度的Ti/Au/Ni/Au多层金属,叉指部分线宽为3μm,与横向p-GaN线的间距为1μm。
实施例4
一种叉指状p-GaN栅结构HEMT型紫外探测器,其结构自下而上依次包括:
蓝宝石衬底层;
GaN缓冲层,厚度为20nm;
i-GaN层,厚度为3μm;
非故意掺杂AlGaN层,厚度为15nm,Al组分25%;
p-GaN层,Mg掺杂浓度为5×1019cm–3
所述p-GaN层在AlGaN层上呈往复式折线型分布,在AlGaN层台面设有多根平行的横向p-GaN线,且通过纵向p-GaN线将所有平行的p-GaN线首尾相连,形成一根完整的p-GaN线,p-GaN线将AlGaN层台面分割成两个部分,所述p-GaN线的宽度为2μm,厚度为150nm,相邻的横向p-GaN线间距为8μm;
还包括设置在AlGaN层上的欧姆接触电极,所述欧姆接触电极为叉指结构,线形的叉指部分生长在横向p-GaN线之间,与横向p-GaN线平行,所述欧姆接触电极为30/50/150/100nm厚度的Ti/Au/Ni/Au多层金属,叉指部分线宽为4μm,与横向p-GaN线的间距为2μm。
实施例5
本实施例与实施例3结构基本一致,区别在于所述p-GaN线的宽度为2μm相邻的横向p-GaN线间距为8μm,欧姆接触电极叉指部分线宽为2μm,与横向p-GaN线的间距为3μm。

Claims (9)

1.一种叉指状p-GaN栅结构HEMT型紫外探测器,其结构自下而上依次包括:
衬底层;
GaN缓冲层;
i-GaN层;
非故意掺杂AlGaN层;
p-GaN层;
其特征在于:所述p-GaN层在AlGaN层上呈往复式折线型分布,在AlGaN层台面设有多根平行的横向p-GaN线,且通过纵向p-GaN线将所有平行的p-GaN线首尾相连,形成一根完整的p-GaN线,p-GaN线将AlGaN层台面分割成两个部分;
还包括设置在AlGaN层上的欧姆接触电极,所述欧姆接触电极为叉指结构,线形的叉指部分生长在横向p-GaN线之间,与横向p-GaN线平行。
2.根据权利要求1所述的叉指状p-GaN栅结构HEMT型紫外探测器,其特征在于:所述p-GaN线的宽度为1~2μm,厚度为100~150nm,相邻的横向p-GaN线间距为4~8μm。
3.根据权利要求2所述的叉指状p-GaN栅结构HEMT型紫外探测器,其特征在于:所述p-GaN层的Mg掺杂浓度为1×1019~5×1019cm–3
4.根据权利要求1所述的叉指状p-GaN栅结构HEMT型紫外探测器,其特征在于:GaN缓冲层的厚度为15~25nm,i-GaN层的厚度为1~3μm。
5.根据权利要求1所述的叉指状p-GaN栅结构HEMT型紫外探测器,其特征在于:所述AlGaN厚度为12~15nm,Al组分20%~25%。
6.根据权利要求1所述的叉指状p-GaN栅结构HEMT型紫外探测器,其特征在于:所述欧姆接触电极为Ti/Au/Ni/Au多层金属,叉指部分线宽为2~4μm,与横向p-GaN线的间距为1~3μm。
7.权利要求1-6所述的叉指状p-GaN栅结构HEMT型紫外探测器的制备方法,其步骤包括:
(1)准备样品,所述样品结构为:在衬底层上依次生长有GaN缓冲层、i-GaN层、非故意掺杂AlGaN层、p-GaN层,清洁样品表面;
(2)隔离台面的刻蚀:在样品表面涂上一层光刻胶,然后曝光、显影后进行ICP刻蚀,刻蚀至i-GaN层,清除掉光刻胶,形成多个分割的台面结构;
(3)p-GaN线的刻蚀:在样品表面涂上一层光刻胶,然后曝光、显影后进行ICP刻蚀,严格控制刻蚀深度,刻蚀至AlGaN层与p-GaN层的交界处,且确保p-GaN层残余厚度在5nm以下,在每个AlGaN层台面上形成一条p-GaN线;
(4)欧姆接触电极的蒸镀:在样品表面涂上一层反转型光刻胶,然后曝光,再进行泛曝,使用负胶显影液将未曝光部分的光刻胶显影,获得欧姆接触电极的图形,然后蒸镀金属到样品表面,再使用丙酮溶液剥离多余的金属,最后将样品退火,得到欧姆接触电极。
8.根据权利要求7所述的叉指状p-GaN栅结构HEMT型紫外探测器的制备方法,其特征在于:步骤(1)中将样品放在超声清洗仪器中超声10min,然后放入盐酸溶液中浸泡10min,最后再依次放入丙酮、酒精和去离子水中进行超声清洗,用氮气枪将样品表面的水分吹干,并置于烘台上将剩余的水分烘干。
9.根据权利要求7或8所述的叉指状p-GaN栅结构HEMT型紫外探测器的制备方法,其特征在于:步骤(2)中刻蚀完成后将样品放入100℃水浴温度下的KOH溶液中浸泡3min。
CN202010373617.3A 2020-05-06 2020-05-06 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法 Pending CN111524973A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010373617.3A CN111524973A (zh) 2020-05-06 2020-05-06 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010373617.3A CN111524973A (zh) 2020-05-06 2020-05-06 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN111524973A true CN111524973A (zh) 2020-08-11

Family

ID=71908619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010373617.3A Pending CN111524973A (zh) 2020-05-06 2020-05-06 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111524973A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678439A (zh) * 2022-03-14 2022-06-28 江南大学 一种对称叉指结构的2deg紫外探测器及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321256A (zh) * 2018-03-29 2018-07-24 中山大学 一种基于p型透明栅极GaN基紫外探测器的制备方法
JP2019145703A (ja) * 2018-02-22 2019-08-29 株式会社デンソー 半導体装置
CN110690273A (zh) * 2019-10-16 2020-01-14 南京大学 横向GaN基增强型结型场效应管器件及其制备方法
CN111106204A (zh) * 2019-12-10 2020-05-05 杭州电子科技大学 基于ⅲ-ⅴ族半导体高电子迁移率晶体管的日盲紫外探测器及制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145703A (ja) * 2018-02-22 2019-08-29 株式会社デンソー 半導体装置
CN108321256A (zh) * 2018-03-29 2018-07-24 中山大学 一种基于p型透明栅极GaN基紫外探测器的制备方法
CN110690273A (zh) * 2019-10-16 2020-01-14 南京大学 横向GaN基增强型结型场效应管器件及其制备方法
CN111106204A (zh) * 2019-12-10 2020-05-05 杭州电子科技大学 基于ⅲ-ⅴ族半导体高电子迁移率晶体管的日盲紫外探测器及制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678439A (zh) * 2022-03-14 2022-06-28 江南大学 一种对称叉指结构的2deg紫外探测器及制备方法

Similar Documents

Publication Publication Date Title
US9337380B2 (en) Method for fabricating heterojunction interdigitated back contact photovoltaic cells
US9214593B2 (en) Solar cell and method for manufacturing the same
KR100847741B1 (ko) p-n접합 계면에 패시베이션층을 구비하는 점 접촉 이종접합 실리콘 태양전지 및 그의 제조방법
JP2005310830A (ja) 太陽電池および太陽電池の製造方法
WO2020011201A1 (zh) 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法
JP2012243797A (ja) 太陽電池の製造方法
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
CN110047955B (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN112117351B (zh) 一种用于碲镉汞pn结电学性能引出的方法、探测器芯片
CN110690323B (zh) 紫外光电探测器的制备方法及紫外光电探测器
CN111524973A (zh) 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
CN112164732B (zh) 一种紫外光电二极管及其制备方法
US20140162395A1 (en) Method for Manufacturing Solar Cell
CN110335904B (zh) 一种插入AlInGaN势垒层结构的InGaN/GaN多量子阱太阳能电池
JP5779005B2 (ja) 紫外線受光素子及びそれらの製造方法
CN116799092A (zh) 一种基于氧化镓基的日盲紫外探测器及其制备方法
CN108615782B (zh) 一种紫外探测器及其制造方法
JP2006303322A (ja) 太陽電池
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN114242800B (zh) 日盲AlGaN紫外光电探测器及其制备方法
KR101154095B1 (ko) 태양 전지 및 그 제조 방법
CN114883434B (zh) 自供电MSM型ZnO基紫外光电探测器及制备方法
CN112909109A (zh) 一种基于横向桥接pn结的自供电纳米紫外探测器
CN112420872A (zh) 基于WSe2/KTaO3范德华异质结的光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200811